
Overhead-Aware Compositional Analysis of Real-Time Systems⇤

Linh T.X. Phan Meng Xu Jaewoo Lee Insup Lee Oleg Sokolsky
Department of Computer and Information Sciences, University of Pennsylvania

Email: {linhphan,mengxu,jaewoo,lee,sokolsky}@cis.upenn.edu

Abstract—Over the past decade, interface-based compositional
schedulability analysis has emerged as an effective method for
guaranteeing real-time properties in complex systems. Several
interfaces and interface computation methods have been devel-
oped, and they offer a range of tradeoffs between the complexity
and the accuracy of the analysis. However, none of the existing
methods consider platform overheads in the component interfaces.
As a result, although the analysis results are sound in theory,
the systems may violate their timing constraints when running
on realistic platforms. This is due to various overheads, such as
task release delays, interrupts, cache effects, and context switches.
Simple solutions, such as increasing the interface budget or the
tasks’ worst-case execution times by a fixed amount, are either
unsafe (because of the overhead accumulation problem) or they
waste a lot of resources.

In this paper, we present an overhead-aware compositional
analysis technique that can account for platform overheads in the
representation and computation of component interfaces. Our
technique extends previous overhead accounting methods, but
it additionally addresses the new challenges that are specific
to the compositional scheduling setting. To demonstrate that
our technique is practical, we report results from an extensive
evaluation on a realistic platform.

I. INTRODUCTION

The growing complexity of modern real-time systems has
brought forward two major trends. First, it is becoming
increasingly common to run multiple systems on a shared
computing platform, rather than deploying them separately on
different physical processors. Second, complex systems are
increasingly being created by integrating smaller subsystems
that were developed independently. While these current trends
help reduce cost and development efforts, they also add many
challenges to the timing analysis of such systems.

One effective way to tackle these challenges is to use a
compositional schedulability analysis (CSA) [28]. In a CSA
framework, the system is partitioned into a tree of compo-
nents that are scheduled hierarchically [29]. The schedula-
bility analysis of such a system is done by constructing a
resource interface for each component, which abstracts away
the detailed timing information of the tasks and exposes only
the minimum resources required to satisfy the component’s
resource demands. The system as a whole is schedulable if the
resource requirements in its top-level interface can be satisfied.
Thus, CSA techniques enable the composition and isolation of
independently developed real-time systems while preserving
their timing guarantees.

CSA was introduced on top of hierarchical scheduling [17],
[23], [29] nearly a decade ago by Shin and Lee [28], and it has

⇤This research was supported in part by the ARO grant W911NF-11-
1-0403, NSF grants CNS-1117185 and CPS-1135630, and the MKE (The
Ministry of Knowledge Economy), Korea, under the Global Collaborative
R&D program supervised by the KIAT (M002300089).

since received considerable attention (see e.g., [4], [13], [15],
[22], [24], [27]). Many aspects of CSA are well-understood;
for instance, prior work has developed a number of inter-
face computation methods and representations for resource
interfaces [4], [13], [15], [18], as well as resource sharing
protocols for compositional scheduling (e.g., [7]). However, to
the best of our knowledge, all existing CSA theories assume
a somewhat idealized platform in which various overheads –
such as release delays, preemption overheads, cache effects,
and context switches – are negligible.

In practice, assuming that platform overheads are negligible
is not realistic: release delays, preemption overheads, cache
effects and context switches can significantly interfere with
the execution of the tasks. Without taking such overheads
into account, the computed interfaces can underestimate the
amount of resources required to feasibly schedule the tasks
within the underlying components; as a result, tasks can miss
their deadlines even if their interfaces are satisfied. In other
words, even if a system is schedulable in theory, it can still
violate its timing constraints on a realistic platform.

In this paper, we extend the existing compositional schedu-
lability analysis with overhead-aware interfaces, and we
present the corresponding interface computation methods for a
uniprocessor platform. Such an overhead-aware compositional
analysis is crucial to bridging the current gap between theory
and practice of compositional scheduling theory.

An overhead-aware interface analysis must address two key
challenges. First, certain types of overheads cannot be quan-
tified as part of the tasks’ worst-case execution time (WCET)
because these overheads have no notion of deadlines and
cannot be scheduled. For example, interrupts and task release
events need to be served by the operating system as soon
as they arrive, rather than being scheduled together with the
tasks [8], [11]. As a result, existing deadline-sensitive resource
interfaces, such as the periodic resource model (PRM) [28]
and the explicit deadline periodic model (EDP) [15] cannot
be used.

Second, due to the overhead accumulation problem, the
platform overheads experienced by a component cannot be
safely bounded by a fixed amount of resources. For instance,
the scheduling of a component may be delayed by interrupt
processing or by release events that arrive in another compo-
nent. Hence, the platform overhead that a component can expe-
rience increases with the number of other tasks (components)
in the system. However, in a compositional analysis setting, a
component’s task-level details are not usually available to other
components, so it is not possible to compute a safe bound on
the resource overhead originating from other components.

Our approach is to identify methods for accounting the two
categories of overheads and then, extend existing interfaces

to encapsulate the overheads that cannot be included in the
tasks’ WCETs. The first category consists of all overheads
that can be included as part of the tasks’ WCETs, such as
cache effects and context switches; these can be captured
together with tasks’ resource demands by a traditional
resource model, such as PRM or EDP. The second category
consists of the overheads that cannot be included as part of
the tasks’ WCETs, such as interrupt overheads and release
delays; these are captured using the deadline-insensitive
request bound function [25]. By separating these two
categories, our interface representation not only leverages
the existing compositional analysis results but also enables
the computation of inter-component overheads during the
interface composition; thus, we can overcome the overhead
accumulation problem.
Contributions. This paper makes the following contributions:

• We discuss the overhead accumulation problem and the
insufficiency of the WCET inflation method (Section III).

• We present a compositional overhead account method
(Section IV) and introduce an overhead-aware schedu-
lability test for components (Section V).

• We propose an overhead-aware representation for com-
ponent interfaces and the corresponding interface com-
putation method (Section VI).

• We illustrate the applicability and benefits of overhead-
aware analysis with an extensive evaluation of randomly
generated workloads on a realistic platform. The eval-
uation results show that the computed interfaces are
safe in practice, and that they can help reduce resource
bandwidth up to a factor of five compared to a baseline
approach which inflates tasks’ WCETs. (Section VII).

II. BACKGROUND

This section describes the system model and the background
required for our analysis in the coming sections.
System model. The system consists of a tree of components
that are scheduled hierarchically. Each internal vertex of
the tree represents a composite component, whose children
are its sub-components. Each leaf represents an elementary
component, which is a finite set of tasks in the system. Each
component has its own scheduler, such as Earliest Deadline
First (EDF) or Rate Monotonic (RM), that schedules its sub-
components (tasks). All tasks are periodic tasks with explicit
hard deadlines. Each task ⌧

i

is defined by ⌧

i

= (p

i

, e

i

, d

i

),
where p

i

is the period, e

i

is the WCET, d

i

is the relative
deadline, and 0 < e

i

 d

i

 p

i

.
Resource models. We use the explicit deadline resource
model (EDP) for part of our interface representation because
it is simple and offers a good tradeoff between accuracy and
efficiency. (However, our method can easily be incorporated
into other resource models in a similar fashion.) An EDP
is defined by � = (⇧,⇥,�), where ⇧ is the period, ⇥ is
the budget, and � is the deadline. This represents a resource
supply that provides ⇥ units of resources within � time units,
with this pattern repeating every ⇧ time units. The bandwidth
of the EDP is defined by ⇥/⇧. We say that an EDP is
(bandwidth) optimal for a component iff it has the smallest

bandwidth among all EDPs that can feasibly schedule the tasks
within the component.

The amount of the resource provided by a resource model
R is captured by the supply bound function of R, denoted
by sbf

R

(t), which specifies the minimum number of resource
units that R is guaranteed to provide over any time interval of
length t, for all t � 0. The SBF of an EDP is given by [15]:

sbf�(t) =

(
y⇥+max

�
0, t� x� y⇧

, if t � ��⇥

0, otherwise
(1)

where x = ⇧ + � � 2⇥ and y = b t�(��⇥)
⇧ c. We call x

the blackout interval of �. We note that an SBF can also be
used as a resource interface; in which case, the supply bound
function of an SBF is the SBF itself.
Schedulability analysis without platform overheads. Let
C be a component with a workload ⌧ = {⌧1, ⌧2, · · · , ⌧n},
where ⌧

i

= (p

i

, e

i

, d

i

) is either a periodic task or an EDP
interface of a subcomponent of C. The request bound function
(RBF) of ⌧

i

is given by rbf
⌧i(t) = d t

pi
ee

i

for all 1 i n.
Under a fixed-priority (FP) scheduling algorithm, such as Rate
Monotonic (RM) or Deadline Monotonic (DM), the RBF of
the i highest-priority tasks of C is given by [21]:

rbf
C,i

(t) =

X

1ki

rbf
⌧k(t), 81 i n,

where ⌧

i

has higher priority than ⌧

j

if i < j. Under EDF, the
demand bound function (DBF) of C is given by:

dbf
C

(t) =

nX

i=1

✓j
t+ p

i

� d

i

p

i

k
e

i

◆
.

The next two lemmas state the schedulability condition of C,
assuming no resource overheads [15]:

Lemma 1. A component C is schedulable under an FP
scheduling algorithm by a resource model R iff

8 1 i n, 9t 2 [0, d

i

] s.t. sbf
R

(t) � rbf
C,i

(t). (2)

Lemma 2. A component C is schedulable under EDF by a
resource model R iff sbf

R

(t) � dbf
C

(t) for all 0 < t LCM,
where LCM is the least common multiple of p

i

for all ⌧
i

in C.

Based on the above schedulability tests, an EDP interface of
a component can be computed efficiently using the algorithms
proposed in [15]. Due to space constraints, we refer the readers
to [15] for the details.

III. MOTIVATING EXAMPLE

Next, we present an example that illustrates the overhead
accumulation problem and the issues that can arise with
existing compositional analysis methods in practice when
platform overheads are neglected. For this example, we focus
on task release interference.

Real-time jobs are typically released using timer interrupts
(for periodic tasks) or other interrupt routines (for aperiodic
tasks) [11]. We use the term release ISR to denote the
processing of an interrupt service routine that releases a job.
On a realistic platform, such release ISRs take non-zero time
and need to be serviced by the kernel as soon as they arrive [8],
[11].

Example of invalid analysis results due to overhead.
Consider a component C

root

that has two subcomponents, C1

and C2, where C1 has the workload {⌧1} and C2 has the
workload {⌧2, . . . , ⌧51}. All components schedule their tasks
(subcomponents) under EDF. The timing parameters of the
tasks are ⌧1 = (5, 4, 5) and ⌧2 = · · · = ⌧51 = (500, 1, 500),
where the time unit is milliseconds (ms). Each release ISR
takes up to 0.020 ms, which is a typical value in practice [11].

By applying the existing interface computation techniques
for EDP (c.f. Section II), we obtain the interfaces I1 =

(5, 4, 5), I2 = {10, 1, 10} and I

root

= {5, 4.5, 5}. Since the
bandwidth of I

root

is 0.9, this system is deemed to be schedu-
lable. However, in practice this system is not schedulable
because of the scenario shown in Fig. 1.

...

τ1

τ2

τ51

...

0 1 2 3 4 5 6

deadline missed

component C1

component C2

release ISRs

τ1

ISR1 ... ISR51

Fig. 1: A counterexample for the schedulability of C
root

.

In this scenario, the ideal release times of ⌧1 and ⌧2 are
0, and each ⌧

i

is ideally released 0.001 ms after ⌧

i�1 for all
i > 2. In this case, although ⌧1 is effectively released at time
0.020, it has to wait for the system to finish processing all
the release ISRs in the second component. As a result, it can
only start its execution at time 1.020 and finish at time 5.020.
Hence, ⌧1 misses its deadline.

Why is WCET inflation not sufficient? Intuitively, it may
seem that a simple solution is to inflate the WCETs of each
task by the execution time of one release ISR. However,
even with inflated WCETs, the above system is still deemed
schedulable by the analysis. Inflation is unsafe because it does
not account for the release interference by other tasks’ release
ISRs: for instance, the task ⌧1 in Fig. 1 is delayed by the
release ISRs of all the other tasks in the system. Even if we
inflate the task WCET by the total execution time of all the
release ISRs, we may still underestimate the resource needs
because a job of a task ⌧

i

may be delayed by multiple release
ISRs of multiple jobs of ⌧

j

if p

i

is much larger than p

j

. We
also observe that the release interference overheads accumulate
as the number of tasks in system increases.

It would be safe to inflate the WCET of each task by the to-
tal execution time of all release ISRs that can delay that task’s
execution; however, this cannot be done in the compositional
setting. In this setting, the timing information of the tasks
within one component is unavailable to the other components;
thus, the tasks’ WCETs and the components’ interfaces would
need to be recomputed as more tasks (components) are added
into the system. This is not possible with current CSA methods
because the interfaces do not contain any task-level details
or information about overhead. Recomputing the interfaces of
components at all levels of the scheduling hierarchy is not
desirable because it increases the complexity of the analysis
and diminishes the efficiency benefits of CSA.

IV. OVERHEAD ACCOUNTING

In this section, we first identify the different types of platform
overheads, and then we show how to overcome the problem
that was described in the previous section.

A. Overview

The overheads that a job may experience during its lifetime
include the following:

• Release ISR (�

rel

): The maximum time needed to add
a released job to the ready queue;

• Schedule function (�

sch

): The maximum time the sched-
uler needs to select the highest-priority job to execute;

• Context switch (�

cxs

): The maximum time the processor
needs to switch from one job to another.

• Cache-related preemption (�

CRPD

i

): The maximum time
needed to recover the cache affinity of a job after it has
been preempted by a task ⌧

i

. (When a job resumes its
execution after being preempted, some or all cache blocks
of its working set may have been evicted from cache and
may need to be reloaded to recover the cache affinity.)

• Tick (�

tick

, p

tick

): The maximum time needed to execute
the tick function, which is invoked with period p

tick

.
• Other interrupts: Time needed to handle other types of

interrupts, e.g., network interrupts.
Types of overheads. We group the overheads that affect a
task’s response time in a compositional scheduling system into
two categories. The first category consists of overheads that
cannot be accounted for by inflating the tasks’ WCETs. It
includes the release interference overheads, i.e., the overhead
a task experiences due to the execution of release ISRs, and
overheads due to other interrupts. In this paper, we consider
only the release interference overheads, but other types of
interrupts can be accounted for in a similar way, provided that
their worst-case execution times and a bound on the number
of interrupts are known. The second category consists of the
remaining types of overheads, which can be accounted for by
inflating the tasks’ WCETs. We call them inflatable overheads.

In the following, we describe our method for accounting
inflatable overheads. Non-inflatable overhead accounting will
be discussed in Section VI.

B. Accounting for inflatable overheads

To account for inflatable overheads, we extend the accounting
technique proposed by Brandenburg et al. [11] for use with
compositional scheduling. The original method from [11]
cannot be applied directly for two reasons: First, it assumes
that the number of tasks in the entire system is known a priori;
as was discussed earlier, this is not the case in our setting
because a component has no knowledge of other components.
Second, the original method assumes a constant bound �

CRPD

on the cache-related preemption overhead for each task. This is
unsafe in the compositional analysis setting because the cache-
related preemption delay of each task depends on its working
set size and preemption points, which can change when tasks
or components are added to, or removed from, the system.

We extend the method from [11] in two ways: we account
for the release interference separately (c.f. Section VI),

rather than simply inflating the WCET, and we introduce a
method for quantifying the cache-related preemption overhead
(CRPD) of each task, which can be done independently of
other tasks. Below, we first describe how inflatable overheads
can be quantified based on the events that cause them.

CPU

(a) Overhead related to a release event

!rel !sch !cxs ei

(a) Release event related overhead.

!sch !cxs !CRPD ei

(b) Overhead related to a preemption event
(b) Preemption event related overhead.

Fig. 2: Overheads related to release and preemption events.

Overhead related to release events. The timeline of a task’s
release event is illustrated in Fig. 2(a). ⌧

i

’s overhead includes
its own release overhead, scheduling overhead, and context-
switch overhead. Although it is possible to include ⌧

i

’s own
release ISRs as part of this overhead, this leads to a pessimistic
analysis because we need to include it in the (non-inflatable)
release-interference overhead as well. Hence, we only account
for the scheduling and the context switch here; thus, the
overhead related to release events is:

�

relEv

= �

sch

+�

cxs (3)

This overhead is included once in each job’s WCET (since
every job is released exactly once).
Overhead related to preemption events. This overhead is
illustrated in Fig. 2(b). When a preemption happens, we refer
to the higher-priority task ⌧

i

as the preempting task and to the
lower-priority task ⌧

j

as the preempted task. When ⌧

i

finishes
its execution, the scheduler is invoked to resume ⌧

j

, which
results in a scheduling overhead and a context switch. Further,
the system needs to reload any cache blocks of ⌧

j

that have
been evicted from the cache during the execution of ⌧

i

, which
results in a cache-related preemption overhead. Since a job of
⌧

i

only preempts ⌧

j

exactly once, we include the preemption-
related overhead into the WCET of ⌧

i

; the overhead can be
computed as:

�

preEv

= �

sch

+�

cxs

+�

CRPDi (4)

The CRPD overhead of ⌧

i

can be quantified based on the
evicting cache block (ECB) of ⌧

i

. Here, a memory cache
block is called an ECB of ⌧

i

if it can be accessed during the
execution of ⌧

i

[1]. Let BRT be the time needed to reload one
cache block from the main memory to the cache, and |ECB

i

|
be the number of evicting cache blocks of ⌧

i

. Then, the CRPD
overhead can be bounded based solely on ⌧

i

as below.
�

CRPDi BRT⇥ |ECB
i

| (5)

Note that the above bound can be determined separately
for each task ⌧

i

, so it can be used within a compositional
analysis, where the details of tasks in other components are
not known a priori.
Tick overhead. Due to the execution of the tick function, the
system loses �

tick time units every p

tick

time units. Thus,
the effective WCET of each task ⌧

i

with a given WCET e

i

,
without considering other types of overheads, is given by [9]:

e

0
i

= d e

i

p

tick

��

tick

ep
tick

(6)

Inflated WCET. Based on the above equations, the inflated
WCET of a task ⌧

i

can be computed by:

e

0
i

= dei +�

relEv

+�

preEv

p

tick

��

tick

ep
tick

(7)

V. OVERHEAD-AWARE SCHEDULABILITY ANALYSIS OF
COMPONENTS

In this section, we extend the existing component schedulabil-
ity analysis (see Lemmas 1 and 2) to account for the platform
overheads a component may experience. We first present the
schedulability analysis in the presence of inflatable overheads
only, and then we introduce our method for capturing the
release interference overheads.

In the following, we consider a component C = h⌧, Ai
with a workload ⌧ = {⌧1, . . . , ⌧n} and scheduling algorithm
A, where each ⌧

i

= (p

i

, e

i

, d

i

,) is a periodic task (or a task
corresponding to an interface of a subcomponent of C). Let e0

i

be the inflated WCET of ⌧
i

, which is computed using Eq. (7).
Further, let ⌧

0
= {⌧ 01, . . . , ⌧ 0n}, where ⌧

0
i

= (p

i

, e

0
i

, d

i

). We
call ⌧

0 the inflated workload of C. Recall that e

0
i

includes
the overheads due to the inflatable overheads, which include
overheads caused by release events, preemption events and
ticks (c.f. Section IV).

Lemma 3. (Inflatable Overhead-Aware Schedulability Test)
A component C = h⌧, Ai is schedulable by a resource R in
presence of inflatable overheads if its inflated workload ⌧

0 is
schedulable by R under A when there are zero overheads.

Proof: The lemma is established based on the overhead
accounting technique in Section IV. Recall that the inflated
WCET, e0

i

, is computed based on the maximum values �

relEv,
�

preEv and �

tick of the overheads caused by release events,
preemption events and ticks for each ⌧

i

, respectively.
Therefore, the total execution time of ⌧

i

in presence of
these overheads is no more than e

0
i

. Hence, we imply that
if ⌧ 0

i

is schedulable under A by the resource R assuming zero
overheads, then ⌧

i

is also schedulable under the overheads
caused by the release events, preemption events and ticks.
In other words, ⌧ is schedulable in presence of inflatable
overheads if ⌧ 0 is schedulable assuming zero overheads.

Release interference overhead. Recall that release interfer-
ence overhead is the delay a task experiences due to the
execution of the release ISRs of the tasks in the system.

These release ISRs have the

τ
release

ISRs

FP

higher-priority lower-priority

EDF

Fig. 3: Modeling release
interference overheads.

highest priority, and thus they can
delay the execution of any task
in the system. When multiple re-
lease ISRs arrive at the same time,
the system executes them one by
one in an arbitrary order.1

Our approach is to capture the
execution of the release ISRs and
the execution of the workload ⌧

of a component C using a compositional scheduling analogy.
As is illustrated in Fig. 3, the release ISRs can be seen as
the workload within a higher-priority component, and the
workload ⌧ forms the lower-priority component. The system’s

1This is the case for most common platforms [9]. Note that although some
systems, e.g., LITMUS [12], execute release ISRs that arrive at the same time
in group, the worst-case interference still occur when the release ISRs arrive
an epsilon time one after another.

resources are always allocated to the release ISR component
before they are given to the workload component. Within the
workload component, the tasks are scheduled as usual by C’s
scheduler, e.g., EDF in Fig. 3.

Based on the above modeling approach, we can determine
the total release interference overheads a component
experiences due to the release ISRs of its tasks based
on the resource requests of these ISRs. We call this the
intra-component release interference overhead.

Lemma 4. The intra-component release interference overhead
of a workload ⌧ is bounded by the resource request bound
function (RBF) of the release ISRs of the tasks in ⌧ , given by

rbf ISR
⌧

(t) =

X

⌧i2⌧

rbf ISR
⌧i

(t), with rbf ISR
⌧i

(t) = d t

p

i

e�rel

,

where �

rel is the maximum execution time of a release ISR.

Proof: Since every job release creates one release ISR, the
maximum number of release ISRs of task ⌧

i

over any interval
of length t is d t

pi
e. Since each release ISR requires a maximum

of �

rel execution time units, the total amount of resources
requested by the release ISRs of ⌧

i

is rbf ISR
⌧i

(t) = d t

pi
e�rel.

As a result, the total amount of resources requested by the
release ISRs of all tasks in ⌧ over an interval of length ⌧

is rbf ISR
⌧

(t) =

P
⌧i2⌧

rbf ISR
⌧i

(t). Since the release ISRs have
higher priority than any other task in the component, rbf ISR

⌧

(t)

is also the resource interference that the tasks in ⌧ experience
due to their release ISRs. This proves the lemma.

The next two lemmas state the schedulability analysis for a
component considering release interference overheads.

Lemma 5. (Release Interference-Aware Schedulability Test)
A component C = h⌧, Ai is schedulable by a resource R in
presence of intra-component release interference overhead if
it is schedulable by a resource R

0 in the absence of overhead,
where R

0 has a supply bound function equal to

sbf
R

0
(t) = sbfrem

R,⌧

(t)

def

= max

0t

0t

�
sbf

R

(t

0
)� rbf ISR

⌧

(t

0
)

.

Proof: Since the resource provided by R is first given to the
release ISRs, the amount of resources available for executing
⌧ is the remaining amount of resources after processing all
the release ISRs. From Lemma 4, the amount of resources
requested by the release ISRs over any interval of length t is
at most rbf ISR

⌧

(t). Therefore, after processing the ISRs over
any interval of length t, there are at least sbf

R

(t)� rbf ISR
⌧

(t)

resources remaining. In addition, the amount of remaining
resources over any interval of length t is always larger than, or
equal to, the amount of remaining resources over an interval of
length t

0, for all 0 t

0 t. Hence, sbfrem
R,⌧

(t) is the minimum
remaining resource after processing the release ISRs over an
interval of length t, which is also the amount of resources
available to the tasks ⌧ over an interval of length t. Thus,
the tasks in ⌧ are scheduled in presence of intra-component
release interference overheads if they are schedulable by a
resource R

0 with a supply bound function equal to sbfrem
R,⌧

(t)

when assuming no overheads.
The next corollary follows directly from Lemma 5 and the

analysis under zero overheads in Lemmas 1 and 2.

Corollary 6. The release interference-aware schedulability
conditions for a component with workload ⌧ using a resource
R for EDF and FP are given as follows.

• FP: 8 1 i n 9t 2 [0, d

i

] s.t. sbfrem
R,⌧

(t) � rbf
C,i

(t).
• EDF: 8 0 < t LCM

⌧

, sbfrem
R,⌧

(t) � dbf
C

(t), where
LCM

⌧

is the least common multiple of p
i

for all ⌧
i

2 ⌧ .

The overhead-aware schedulability analysis can now be de-
rived based on the inflatable overhead-aware analysis and the
release interference-aware test, which is given by Theorem 7.
This theorem is a direct result of Lemmas 3 and 5.

Theorem 7. (Overhead-aware Schedulability Test) A com-
ponent C = h⌧, Ai is schedulable by a resource R in the
presence of platform overheads if the inflated workload ⌧

0

is schedulable under A by a resource R

0 in the absence of
overheads, where the SBF of R0 is equal to sbfrem

R,⌧

(t).

VI. OVERHEAD-AWARE INTERFACES AND INTERFACE
COMPUTATION

This section describes our proposed compositional analysis
method, which is based on the overhead-aware schedulability
tests from the previous section. We begin by discussing
the ISR amortization problem in deadline-sensitive interface
models, such as EDP and PRM, which necessitates a new
representation and computation method for the interface.

A. Challenge: ISR amortization problem

Based on the component overhead-aware schedulability test
in Section V, it may seem possible to use an existing resource
model, such as the EDP or the PRM model, to encapsulate
the total resource requirements of both the tasks and their
overheads. Alternatively, one could try to capture the release
interference overhead (e.g., the release ISRs in Fig. 3) with a
separate EDP or PRM model. However, using such resource
models to capture the release interference overhead is unsafe,
as illustrated by the following example.

ISR amortization under deadline-sensitive interfaces. Con-
sider a component C with a workload ⌧ =

�
⌧1 =

(5, 4, 5); ⌧2 = · · · = ⌧51 = (500, 1, 500)

, which is scheduled

under EDF. Let �

rel

= 0.02. (All times are in ms.) In this
example, we consider only the release ISRs and assume that
there are no other types of overheads.

By Corollary 6, the above component is unschedulable by
a fully available processor (i.e., sbf

R

(t) = t) in presence
of release interference overheads. (Note that the worst-case
response time of ⌧1 is 5.020, since it incurs a maximum release
interference overhead of 51 ⇥ 0.020 = 1.02 ms.) However,
if we abstract each of the tasks’ resource demands and the
intra-component release interference overheads into an EDP,
we obtain �

⌧

= (5, 4.5, 4.5) and �

ISR

= (1, 0.006, 1). Since
these two interfaces are schedulable under FP, the system is
deemed schedulable, which is incorrect. The same situation
happens if we use other deadline-sensitive resource interfaces,
such as PRM or SBF.

The flaw in the above analysis based on EDP abstraction
comes from the ISR amortization, which is caused by the

interface deadline. When all release ISRs are invoked at t = 0,
they are executed immediately and will keep the processor
busy until t = 0.02 ⇤ 51 = 1.02. However, when the resources
requested by the release ISRs (captured by rbfISR

⌧

(t) in
Lemma 4) are encapsulated in an EDP model, the request is
amortized to 0.006 time units that need to be completed within
every time unit. This effectively enables the processor to
execute the jobs in ⌧ that have been effectively released. Since
tasks do not experience the full release interference overhead,
they still make their deadlines in this example. In other words,
when the release ISRs are included in an EDP resource
model, the implicit assumption is that the release ISRs can
be scheduled/delayed, which is impossible in practice.

Note that for task execution, deadline-sensitive resource
models are a natural way to capture the tasks’ resource
demands, since a task ⌧

i

= (p

i

, e

i

, d

i

) meets its deadline as
long as every job of ⌧

i

can be given e

i

time units within
d

i

time units from the instant it is released. Although the
release ISRs of ⌧

i

are also invoked every p

i

time units and
require up to �

rel time units each, they cannot be delayed
by a task’s execution, and their deadlines are unavailable (and
ambiguous). In other words, the deadline-sensitive resource
model is not a good fit for release ISRs – regardless of how
the resource deadline or the period are chosen.

B. Overhead-aware interface representation

Our approach is to capture the overhead-aware resource re-
quirements of the component using a dual-interface represen-
tation. Given a component C = h⌧, Ai with a workload ⌧ and
scheduling algorithm A, an overhead-aware interface of C is
given by hI

⌧

, I

ISR

i, where:
• I

⌧

is a resource model that captures the resource re-
quirements of the tasks in ⌧ , taking into consideration
inflatable overheads;

• I

ISR

is a resource model that captures the (non-inflatable)
intra-component release interference overheads.

Since the inflatable overheads can be accounted for by the
inflated WCETs of the tasks in ⌧ , which can be scheduled, I

⌧

can be any deadline-sensitive resource interface (e.g., PRM,
EDP, SBF). For ease of presentation, we use an EDP resource
model to represent I

⌧

. On the other hand, due to the ISR
amortization problem discussed above, we cannot represent
I

ISR

using a deadline-sensitive resource model. Instead, we
represent it as a request bound function (RBF), which corre-
sponds naturally to the resource requests of the ISRs. Thus,
an interface of C is given by hI

⌧

, I

ISR

i where I

⌧

is an EDP
model and I

ISR

is an RBF. We refer to this representation as
the hEDP, RBFi interface model.

C. Generating interfaces for elementary components

Given an elementary component C = h⌧, Ai, with workload
⌧ =

�
⌧1, . . . , ⌧n

and scheduling algorithm A (which can be

EDF, RM or DM), where each ⌧

i

= (p

i

, e

i

, d

i

) is an explicit
deadline periodic task, the overhead-aware interface of C can
be computed based on the overhead-aware schedulability test
in Theorem 7, using the following procedure:

• Step 1. Compute the inflated WCET e

0
i

of each task ⌧

i

2
⌧ to account for the inflatable overheads, using Eq. (7).

• Step 2. Generate a bandwidth-optimal EDP interface
�

⌧

0
= (⇧,⇥,�) that can feasibly schedule the inflated

workload ⌧

0
= {(p1, e01, d1), . . . , (pn, e0n, dn)} under the

scheduling algorithm A, using the algorithms presented
in [15].

• Step 3. Compute the request bound function rbf ISR
⌧

(t) that
bounds the intra-component release interference over-
heads of the workload ⌧ , using Lemma 4.

• Step 4. The overhead-aware interface of C is given by
I

C

= hI
⌧

, I

ISR

i, where I

⌧

= �

⌧

0 and I

ISR

(t) = rbf ISR
⌧

(t).
The next lemma states the feasibility of the interfaces com-
puted with the above procedure. It is derived directly from the
correctness of the overhead-aware schedulability test (Theo-
rem 7) and the feasibility of the EDP interface in the zero-
overhead setting [15].

Lemma 8. The overhead-aware interface I

C

= hI
⌧

, I

ISR

i
obtained in Step 4 is a feasible interface for C – i.e., if I

⌧

and
I

ISR

are schedulable by a resource R under the schedulability
test in Theorem 7, then the component C is schedulable under
the same resource R in the presence of platform overheads.

Example 1. Consider C = h⌧, EDF i, with ⌧ =

{(10, 2, 10); (10, 1, 10); (20, 1, 20); (20, 5, 20)}. We assume
that the WCETs of the tasks in ⌧ have been inflated, and that a
release ISR takes up to 0.02 time units. The overhead-aware
interface of C is given by I

C

= h(⇧ = 10,⇥ = 6,� =

6), rbf
C

i where

rbf
C

(t) = 0.02

�
d t

10

e+ d t

10

e+ d t

20

e+ d t

20

e
�
= 0.04

�
d t

10

e+ d t

20

e
�
.

D. Interface composition

The interface of a composite component can be computed by
pointwise composing the interfaces of their subcomponents. To
establish this, we first consider the execution of a composite
component, illustrated Fig. 4(a). In this example, C is com-
posed of C1 and C2, which are scheduled under EDF, where
C1 = h⌧1, EDF i and C2 = h⌧2, DMi. In the presence of
release interference overheads, the resources available to C

are always first allocated to the release ISRs of the tasks in
both C1 and C2, and the remaining resources are available
for executing the tasks ⌧1 and ⌧2. This is illustrated in the
figure by a higher-priority release ISRs component C

ISR

and
the lower-priority task component C

tasks

.

C1 + C2

release ISRs

FP

EDF

τ1
EDF

τ2
DM

EDF

C1
EDF

C2
DM

〈 I
ISR ⊕ IISR , Iτ ⊕

EDF
 Iτ 〉

1 2 1 2

〈I
ISR , Iτ 〉1 1

...

(a) Execution on the platform: (b) Interface composition

 C1 = 〈τ1,EDF〉; C2 = 〈τ2,DM〉

CISR Ctasks

higher-priority lower-priority

〈I
ISR , Iτ 〉2 2

Fig. 4: Overhead-aware interface composition.

The computation of C’s interface is illustrated by Fig. 4(b).
In the figure, the interfaces of C1 and C2 are given by
hI1

ISR

, I

1
⌧

i and hI2
ISR

, I

2
⌧

i, respectively. Since the tasks of C1 and
C2 are scheduled within the lower-priority component C

tasks

as in the ideal case when there is no overhead (see Fig. 4(a)),
we can compute their resource requirements by composing I

1
⌧

and I

2
⌧

under EDF scheduling. The release ISRs of both C1 and
C2 are processed within the higher-priority component C

release

as soon as they arrive. Therefore, their resource requests can
be computed by composing the release ISR interfaces, I

1
ISR

and I

2
ISR

. The next theorem generalizes the above observation:

Theorem 9. Let C = hW = {C1, ..., Cn

}, Ai, where the
interface of C

i

is hIi
⌧

, I

i

ISR

i, for all 1 i n. Then
I

C

= hI
⌧

, I

ISR

i is a feasible overhead-aware interface of C,
where

• I

⌧

is a (feasible) composition of I1
⌧

, I2
⌧

, . . . , I

n

⌧

under the
scheduling algorithm A, assuming there are no platform
overheads; and

• I

ISR

=

P
n

i=1 I
i

ISR

.

When I

i

⌧

is an EDP resource model, the composition can
be computed efficiently under EDF and DM scheduling, using
the technique presented in [15].

Proof: The correctness of the theorem is based on two
observations. First, by the definition of I

⌧

, if the interface I

⌧

is
schedulable by a resource R when there is no overhead, then
all the interfaces I

i

⌧

are also schedulable by R when there is
no overhead. Since each I

i

⌧

includes the inflatable overheads,
if I

⌧

is schedulable by R when there is no overhead, the tasks
in C

i

are schedulable in the presence of inflatable overheads
if we assume zero release interference overhead.

Second, by definition, Ii
ISR

is the RBF of the release ISRs
of C

i

. Since all the release ISRs are scheduled by the system
as soon as they arrive (see the component C

ISR

in Fig. 4), the
amount of resources requested by all the release ISRs of the
subcomponents, C1 to C

n

, over any interval of length t, is
bounded by

P
n

i=1 I
i

ISR

(t). In other words, I
ISR

is the RBF of
the release interference overheads of C.

If we combine the above observations, we can conclude that
all C is schedulable by a resource R considering platform
overheads if I

⌧

and I

ISR

are schedulable by R according to
the overhead-aware schedulability test in Theorem 7.

VII. EVALUATION

To evaluate the effectiveness of the proposed overhead-aware
compositional analysis, we performed simulations using ran-
domly generated workloads. We had three main objectives for
our evaluation: (1) Validate the accuracy of the overhead-aware
analysis and evaluate its relative performance on a realistic
platform (against a baseline approach and an existing analysis
that ignores overheads); (2) study the effect of task parameters
on the platform overheads; and (3) evaluate the performance
of our method in terms of resource bandwidth savings against
a baseline approach.

Baseline approach: The approach we used as a baseline
for our evaluation accounts for overheads by inflating each
task’s WCET by all types of overheads, including the release

interference overheads. Since a release ISR is a timer interrupt,
we followed the interrupt accounting technique from [11].
The release interference overhead each task experiences was
computed as

e

rel

i

=

X

⌧j2⌧

d pi
p

j

e�rel

,

where �

rel is the maximum value of one release ISR (c.f.
Section IV). The inflated WCET e

00
i

of each task was computed
as e

00
i

= e

0
i

+e

rel

i

, where e

0
i

is the WCET that already includes
other types of overheads; this is computed using Eq. (7).
We then applied the existing compositional analysis for EDP
interfaces [15] on the inflated WCETs. Note that this baseline
approach is safe, but it requires that every component be aware
of the details of all tasks in the system.

A. Experimental setup

Workload. Our evaluation was performed on a set of
synthetic real-time workloads. Each workload contained a set
of randomly generated periodic task sets, with task periods
uniformly distributed between 110ms and 1100ms (which is
the same as the experiment in [20]). The tasks’ deadlines
are equal to their periods. The tasks’ utilizations follow a
uniform distribution within the range [0.02%,0.5%] and three
bimodal distributions, where the utilizations were distributed
uniformly over either [0.02%,0.5%] or [0.5%,10%], with
respective probabilities of 8/9 and 1/9 (light), 6/9 and 3/9

(medium), and 4/9 and 5/9 (heavy)2. Since each overhead
value is typically much smaller than a task’s WCET, small
task utilization values were used to obtain more tasks per
task set (so as to better observe the effects of the overheads).
Each generated workload was then distributed uniformly into
a set of components of a two-level scheduling hierarchy. Each
component’s scheduling algorithm was chosen to be either
EDF or DM.
Overhead value measurement. For the theoretical analysis,
we used the maximum observed value for each type of
overhead, based on measurements on our experimental
platform using the feather trace tool from LITMUS [10].
To be conservative, we measured the overheads using large
task sets with 1000 tasks each. The obtained values were
�

rel

= 13.727µs, �

sch

= 36.565µs, �

cxs

= 86.917µs,
p

tick

= 1ms, �tick

= 4.727µs, and �

CRPDi
= 139.12µs for

all tasks ⌧

i

.
Experimental platform. Our platform evaluation was
performed on the RT-Xen 0.3 platform [32] on a Dell Optiplex-
980 quad-core processor, using the same experimental setup as
in [20]. Since our analysis does not consider the components’
release and preemption overheads, we pinned the Domain
0 to Core 0 and all the guest domains to Core 1 to avoid
these overheads in our experiment. Each component in the
scheduling hierarchy was then mapped to a guest domain.
Hence, all tasks ran on the same processor, which is consistent
with our analysis setting.

2The distribution probabilities are similar to the ones used in [9]

Evaluation method. For each generated workload, we com-
puted the component interfaces using three different ap-
proaches: 1) our overhead-aware interface computation from
Section VI, 2) the baseline accounting method that was de-
scribed above, and 3) the conventional EDP interface computa-
tion [15], which ignores overheads. We then analyzed the com-
ponents’ schedulability and computed the resource bandwidth
required to feasibly schedule each component in the hierarchy
for each of the three methods. For the baseline accounting
and the conventional EDP analysis methods, which use EDP
interfaces, the resource bandwidth required by an interface
is the same as the interface’s bandwidth. For our overhead-
aware analysis method, which uses hEDP, RBFi interfaces, we
computed the minimum-bandwidth EDP resource model that
can feasibly schedule the interface based on the schedulability
test in Theorem 7 and the supply bound function of an EDP
model (c.f. Section II).

We also simulated the same workloads on RT-Xen [20] and
measured the deadline miss ratio for each of the three methods.
Each domain corresponds to a component in a workload,
and its budget is assigned to be the theoretically calculated
resource bandwidth required by the component’s interface.

B. Results

Performance in theory vs. in practice. For this experiment,
we generated a set of workloads with workload utilizations
ranging from 0.1 to 1.1, with a step of 0.1. Each workload
contained 25 independently generated task sets; the task uti-
lizations were uniformly distributed, as described earlier. We
then computed the fraction of schedulable task sets for each
workload in theory (according to the schedulability test) and
in practice (according to the measurements on the RT-Xen
platform).

Task set utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c
ti

o
n

 o
f

sc
h

e
d

u
la

b
le

 t
a

sk
 s

e
ts

Task utilization: uniform distribution in [0.02%, 0.5%]

[3] EDP[1] Baseline [2] Overhead-aware

[3x] EDP/RT-Xen[2x] Overhead-aware/RT-Xen[1x] Baseline/RT-Xen

[3x]

[3][2][1]

[2x][1x]

Fig. 5: Fraction of schedulable task sets vs. workload utiliza-
tion.

Fig. 5 shows the fraction of schedulable task sets with re-
spect to workload utilization for the three analysis approaches.
The dotted lines represent the theoretical values and the solid
lines represent the measured values. We observe the following
from the evaluation results:

Correctness of our overhead-aware analysis: The experi-
mental results confirm that our overhead analysis can correctly
estimate the resource requirements of the system in practice.
As is shown in Fig. 5, the fraction of schedulable task

0 100 200 300 400 500 600

0.2

0.4

0.6

0.8

1.0

[3] EDP[1] Baseline [2] Overhead-aware

[3x] EDP/RT-Xen[2x] Overhead-aware/RT-Xen[1x] Baseline/RT-Xen

Task set size

F
ra

c
ti

o
n

 o
f

sc
h

e
d

u
la

b
le

ta
sk

 s
e

ts

Task utilization: uniform distribution in [0.02%, 0.5%]

[3x]

[3][2][1]

[2x][1x]

Fig. 6: Fraction of schedulable task sets vs. task-set size.

sets computed theoretically using our overhead-aware analysis
always safely upper-bounds the actual schedulable fraction
observed on the platform. We note that, since our analysis
estimates the resource needs based on the worst-case scenario,
there are some task sets that are deemed unschedulable but
may still be schedulable in practice.

Invalidity of EDP analysis results: We observe that the EDP
analysis method (which ignores platform overheads) signifi-
cantly underestimates the components’ resource requirements
and leads to many task sets missing their deadlines when
they are run on the platform. This is visible in Fig. 5, where
the theoretical values for the schedulable fraction fall strictly
above the measured ones. For example, although all task
sets are predicted to be schedulable for the workload with
0.9 utilization, all of them are in fact unschedulable when
scheduled on the platform under the computed interfaces.

Pessimism of the baseline approach: Although our results
confirm that the baseline approach is safe, they also show that
it is overly pessimistic. Since the baseline approach overes-
timates the resource overheads, it predicts that only a small
fraction of task sets is schedulable, although more task sets
can in fact be scheduled (see Fig. 5). We also note the effect
of this pessimism in practice: since the baseline approach
overestimates the resource requirements of components, the
resource budgets given to higher-priority components are
larger than necessary; therefore, the lower-priority components
may not get sufficient budgets, and their tasks are more likely
to miss their deadlines. As a result, the number of task sets that
are schedulable decreases, as is confirmed by the measured
fraction of the baseline approach in Fig. 5.

In short, our overhead-aware analysis performs best
compared to the other two approaches in terms of accuracy
and resource utilization in both theory and practice.

Impact of the number of tasks on overheads. Since the
release interference overheads can accumulate as the number
of tasks in the system increases, we quantified the impact of
the number of tasks on schedulability as follows: we varied
the number of tasks per task set, here called the task-set size,
from 10 to 510, with an increment step of 50; for each task-
set size, we generated a workload that consisted of 50 task
sets, using the uniform task utilization distribution. We then
derived the fraction of schedulable task sets in the workload,
computed theoretically and measured on RT-Xen platform, for
each of the three analysis approaches.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

EDPBaseline Overhead-aware

Task set utilization

F
ra

c
ti

o
n

 o
f

sc
h

e
d

u
la

b
le

 t
a

sk
 s

e
ts Task utilization: bimodal distribution in

[0.02%, 0.5%] (8/9) and [0.5%, 10%] (1/9)

0

0.2

0.4

0.6

0.8

1

(a) Bimodal-light distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Task set utilization

F
ra

c
ti

o
n

 o
f

sc
h

e
d

u
la

b
le

 t
a

sk
 s

e
ts Task utilization: bimodal distribution in

[0.02%, 0.5%] (6/9) and [0.5%, 10%] (3/9)

0

0.2

0.4

0.6

0.8

1

EDPBaseline Overhead-aware

(b) Bimodal-medium distribution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

Task set utilizationF
ra

c
ti

o
n

 o
f

sc
h

e
d

u
la

b
le

 t
a

sk
 s

e
ts Task utilization: bimodal distribution in

[0.02%, 0.5%] (4/9) and [0.5%, 10%] (5/9)

EDPBaseline Overhead-aware

(c) Bimodal-heavy distribution

Fig. 7: Fraction of schedulable task sets with different task utilizations.

0 5 10 15 20 25

EDPBaseline Overhead-aware

R
e

s
o

u
rc

e
 b

a
n

d
w

id
th

Task set utilization = 0.2

0.2

0.4

0.6

0.8

1

Task set index

(a) Low load: task set utilization = 0.2

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

EDPBaseline Overhead-aware

R
e

s
o

u
rc

e
 b

a
n

d
w

id
th

Task set utilization = 0.7

Task set index

(b) High load: task set utilization = 0.7

2

3

4

5

6

7

0 5 10 15 20 25

EDPBaseline Overhead-aware

R
e

s
o

u
rc

e
 b

a
n

d
w

id
th

Task set utilization = 1.0

Task set index

(c) Overload: task set utilization = 1.0

Fig. 8: Resource bandwidth requirements under different load situations.

As is shown in Fig. 6, the fraction of schedulable tasks
decreases for all approaches as the number of tasks in the
system increases. However, our approach again outperforms
the baseline approach: with our approach, the fraction of
schedulable task sets remains at 100% until the number
of tasks reaches 210, whereas the fraction of the baseline
approach falls to 0% when the number of tasks reaches 160.
The main reason for this is that our method provides a more
accurate estimate of the resource overheads, and can thus
achieve a much tighter schedulability test.

Impact of task utilization. We also evaluated the effect
of task utilization distribution on the platform overheads.
Fig. 7 shows the fraction of schedulable task sets under
three different bimodal distributions (c.f. Section VII-A).
We observed that, as the task’s utilization distribution
was changed from bimodal-light to bimodal-medium to
bimodal-heavy, the difference in the schedulable ratios of
the three analysis methods became smaller. This is because
the number of tasks in the system decreases as the tasks’
utilization increases, and this results in less platform overhead.

Resource bandwidth savings. Fig. 8(a–c) shows the resource
bandwidth that each task set requires with each of the three
approaches, for three different utilization values: U = 0.2
(low load), U = 0.7 (high load) and U = 1.0 (overload).
The graphs show that our overhead-aware analysis consistently
outperforms the baseline approach in terms of bandwidth sav-
ings. For example, the interfaces computed using the baseline
approach required on average 2.4, 3.3, and 5 times the resource
bandwidth our interfaces required in the low-load, high-load
and overload scenarios, respectively. Similarly, in the high-

load scenario, all the task sets were deemed unschedulable
by the baseline analysis (their interface bandwidths exceeded
1), even though they were schedulable. At the same time,
the resource bandwidths required by the different task sets
with the same utilization under our accounting method were
approximately the same, in contrast to those of the baseline
approach. This illustrates that our accounting method is less
dependent on the tasks’ timing parameters than the baseline
approach. Note that, in the absence of overhead, the interfaces
always require less resource bandwidth, but, as shown earlier,
they are not safe in practice.

VIII. RELATED WORK

Several compositional schedulability analysis techniques have
been developed (see e.g., [4], [7], [15], [24], [28]); however,
they focus primarily on improving the theoretical analysis
tradeoffs between interface representation and interface com-
putation. Although theoretical overhead, i.e., the resource
overhead caused by the interface abstraction, is a well-known
problem and by now is relatively well-understood [13], [16],
[20], platform overheads are typically ignored in existing CSA
theories.

The gap between theory and practice of CSA has also been
recognized and addressed via platform supports for compo-
sitional scheduling, such as on VxWorks [6], µC/OS-II [30],
and virtualization [20], [33] platforms. Hierarchical scheduling
for closed systems has also been implemented on several OS
kernels (e.g. [14], [26], [31]). These implementations offer
some solutions to platform-related issues, such as server design
and quantization. Platform overheads have also been studied

through measurements [2], [33], but they have not yet been
incorporated into the interface model and interface computa-
tion. Although Behnam et al. [6] considers release overheads
in the response time analysis, the method in [6] cannot be
applied to compositional systems, since it assumes that all the
task information is given a priori. In addition, the work in [23]
accounts for components’ context switching overheads in the
selection of the components’ interfaces; however, it does not
consider overheads that a job experiences during its lifetime,
which is a focus of our work.

A closely related line of work is developing overhead
accounting techniques for closed systems. Most notably, Bran-
denburg [9] has proposed an elegant method for accounting
various sources of platform overheads. Our work extends
the original method from [11] for use with open systems
and to enable incremental interface analysis. Our work also
leverages existing work on cache effects analysis [1], [5]
for the computation of the cache-related preemption delay
(CRPD). Note that, unlike ours, these works focus on cache
effects and on closed systems. Also in the closed setting,
Harbour and Palencia [19] models release interferences as
tasks’ release jitters, and it uses the maximum jitter values
for the worst-case response time analysis. The method in [19]
cannot be applied to a compositional setting, however, since
it is not possible to obtain a safe bound on the jitter of a task
that is caused by release ISRs of other components (which are
not known a priori).

IX. CONCLUSION

We have presented an overhead-aware compositional analysis
technique for real-time systems. Our technique accounts for
platform overheads in the component interfaces, and thus en-
ables a safe application of compositional scheduling theories in
practice. We have described a method for accounting different
types of platform overheads in an open system, as well as
a new overhead-aware schedulability test for components. We
have also introduced an interface model that captures the over-
head information in a succinct manner, and its accompanying
interface computation methods. Our evaluation on synthetic
workloads shows that, unlike existing analysis theories, our
theoretical interfaces are safe in practice, and compared to a
baseline approach based on WCET inflation, our analysis can
help reduce resource bandwidth by up to a factor of five.

Considering platform overheads in compositional analysis
theory is crucial to guaranteeing correct timing behaviors
of compositional scheduling systems in practice. Since the
proposed overhead-aware interfaces cleanly separate inflatable
from non-inflatable overheads, it seems feasible to extend
them to the multicore setting. An interesting area for future
work is to leverage multicore resource models, such as the
multiprocessor periodic resource model [16], for the inflatable
overheads while extending the release interference overhead
accounting method to non-inflatable overheads on a multicore
platform. We also plan to perform an extensive evaluation
of the overhead-aware interfaces on a range of processor
platforms and to conduct case studies in the automotive and
avionic domains (e.g., ARINC software [3]).

REFERENCES
[1] S. Altmeyer, R. I. Davis, and C. Maiza. Improved cache related pre-

emption delay aware response time analysis for fixed priority pre-
emptive systems. Real-Time Systems, 48(5):499–526, Sep. 2012.

[2] M. Åsberg, T. Nolte, S. Kato, and R. Rajkumar. ExSched: An external
cpu scheduler framework for real-time systems. In RTCSA, 2012.

[3] Avionics Electronic Engineering Commitee. Avionics Application Soft-
ware Standard Interface: Part 1 - Required Services (ARINC Specifica-
tion 653P1-3), Nov. 2010.

[4] S. Baruah and N. Fisher. Component-based design in multiprocessor
real-time systems. In ICESS, 2009.

[5] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Cache-related
preemption and migration delays: Empirical approximation and impact
on schedulability. In OSPERT, 2010.

[6] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril. Towards
hierarchical scheduling on top of VxWorks. In OSPERT, 2008.

[7] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: A synchronization
protocol for hierarchical resource sharing in real-time open systems. In
EMSOFT, 2007.

[8] D. Bovet and M. Cesati. Understanding The Linux Kernel. Oreilly &
Associates Inc, 3 edition, 2005.

[9] B. B. Brandenburg. Scheduling and Locking in Multiprocessor Real-
Time Operating Systems. PhD thesis, The University of North Carolina
at Chapel Hill, 2011.

[10] B. B. Brandenburg and J. H. Anderson. Feather-trace: A light-weight
event tracing toolkit. In OSPERT, 2007.

[11] B. B. Brandenburg, H. Leontyev, and J. H. Anderson. An overview
of interrupt accounting techniques for multiprocessor real-time systems.
Journal of Systems Architecture, 57(6):638–654, Jun. 2011.

[12] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson. LITMUS RT: A testbed for empirically comparing real-time
multiprocessor schedulers. In RTSS, 2006.

[13] S. Chen, L. T. X. Phan, J. Lee, I. Lee, and O. Sokolsky. Removing ab-
straction overhead in the composition of hierarchical real-time systems.
In RTAS, 2011.

[14] M. Danish, Y. Li, and R. West. Virtual-CPU scheduling in the Quest
operating system. In RTAS, 2011.

[15] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using EDP resource models. In RTSS, 2007.

[16] A. Easwaran, I. Shin, and I. Lee. Optimal virtual cluster-based
multiprocessor scheduling. Real-Time Systems, 43(1):25–59, Sep. 2009.

[17] X. Feng and A. Mok. A model of hierarchical real-time virtual resources.
In RTSS, 2002.

[18] N. Fisher and F. Dewan. Approximate bandwidth allocation for compo-
sitional real-time systems. In ECRTS, 2009.

[19] M. G. Harbour and J. C. Palencia. Response time analysis for tasks
scheduled under edf within fixed priorities. In RTSS, 2003.

[20] J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I. Lee, C. Lu, and
O. Sokolsky. Realizing compositional scheduling through virtualization.
In RTAS, 2012.

[21] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic scheduling
algorithm: Exact characterization and average case behavior. In RTSS,
1989.

[22] H. Leontyev and J. H. Anderson. A hierarchical multiprocessor band-
width reservation scheme with timing guarantees. Real-Time Systems,
43(1):60–92, Sep. 2009.

[23] G. Lipari and E. Bini. Resource partitioning among real-time applica-
tions. In ECRTS, 2003.

[24] G. Lipari and E. Bini. A framework for hierarchical scheduling on
multiprocessors: From application requirements to run-time allocation.
In RTSS, 2010.

[25] J. W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition, 2000.

[26] G. Parmer and R. West. HIRES: A system for predictable hierarchical
resource management. In RTAS, 2011.

[27] L. T. X. Phan, I. Lee, and O. Sokolsky. Compositional analysis of
multi-mode systems. In ECRTS, 2010.

[28] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In RTSS, 2003.

[29] D. L. Sun, Z. Deng, J. W. -S, and L. J. Sun. Dynamic scheduling of
hard real-time applications in open system environment. 1996.

[30] M. M. H. P. van den Heuvel, R. J. Bril, J. J. Lukkien, and M. Behnam.
Extending a HSF-enabled open-source real-time operating system with
resource sharing. In OSPERT, 2010.

[31] Y. Wang and K. Lin. The implementation of hierarchical schedulers in
the RED-Linux scheduling framework. In ECRTS, 2000.

[32] S. Xi, J. Lee, C. Lu, C. D. Gill, S. Chen, L. T. X. Phan, O. Sokolsky,
and I. Lee. RT-Xen: Real-time virtualization based on hierarchical
scheduling. http://sites.google.com/site/realtimexen/.

[33] J. Yang, H. Kim, S. Park, C. Hong, and I. Shin. Implementation of
compositional scheduling framework on virtualization. In SIGBED Rev.,
2011.

