
ISSN 1055-1425

January 1997

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

The Shift Programming Language
and Run-time System for Dynamic
Networks of Hybrid Automata

UCB-ITS-PRR-97-7
California PATH Research Report

Akash Deshpande
Aleks Göllü
Luigi Semenzato

The Shift Programming Language and Run-time System

for Dynamic Networks of Hybrid Automata

Akash Deshpande, Aleks G�oll�u and Luigi Semenzato�

fakash,gollu,luigig@eecs.berkeley.edu
Department of Electrical Engineering and Computer Sciences

University of California at Berkeley, Berkeley, CA 94720

Abstract

Shift is a programming language for describing dynamic networks of hybrid automata. Such

systems consist of components which can be created, interconnected and destroyed as the system

evolves. Components exhibit hybrid behavior, consisting of continuous-time phases separated by

discrete-event transitions. Components may evolve independently, or they may interact through

their inputs, outputs and exported events. The interaction network itself may evolve.

We believe that the Shift model o�ers the proper level of abstraction for describing complex

applications such as automated highway systems, air tra�c control systems, robotic shop
oors,

coordinated submarines and other systems whose operation cannot be captured easily by con-

ventional models.

We have implemented a compiler for translating a Shift program to a C program, and

we have implemented the Shift run-time system for obtaining an executable program. The

executable program, when run, simulates the design speci�ed in the Shift source program.

1 Introduction

Shift is a programming language for describing dynamic networks of hybrid automata. Such
systems consist of components which can be created, interconnected and destroyed as the system
evolves. Components exhibit hybrid behavior, consisting of continuous-time phases separated by
discrete-event transitions. Components may evolve independently, or they may interact through
their inputs, outputs and exported events. The interaction network itself may evolve.

The Shift model was motivated by our need for tools that support dynamically recon�gurable
hybrid systems. Our primary application was the speci�cation and analysis of di�erent designs
for automatic control of vehicles and highway systems. [21] We needed to capture the behavior of
vehicles, sensors, actuators, communication devices and controllers in a structured and modular
speci�cation. [3, 4] Models for these components were to be provided by di�erent groups of experts
and then integrated in di�erent ways for comparative analysis. From our previous experience in
modeling [13, 7], analysis [18, 2, 10] and implementation [5, 8], we adopted the hybrid systems
approach for modeling the system components. Since spatial relationships between vehicles change
as they move, our application displayed a dynamically changing network of interactions between
system components.

We investigated several system description frameworks [17, 11, 12, 6, 14, 16, 20, 22] and some of
their real-time extensions, but found none that suited our needs su�ciently well. Most support only

�Currently at VXtreme, Inc., 701 Welch Road, Bldg C., Palo Alto, CA 94304. E-mail: luigi@vxtreme.com.

1

static con�gurations of system components and mainly provide discrete event behavior description
with limited real-time extensions. However, we needed to describe models with switched di�erential
equations (such as a vehicle with automatic gear shift) and coordinated behaviors (such as com-
municating controllers). Standard simulation tools such as Matlab or MatrixX, while suitable for
numerical integration of �xed sets of di�erential equations, are di�cult to use in applications with
rapidly changing sets of di�erential equations (due to component creation and deletion), complex
stopping conditions (such as existential queries on the state of the world), and complex program
logic (such synchronous compositions of state machines).

The hybrid systems approach [1] satis�ed our needs for component modeling but not for model-
ing dynamically recon�gurable interactions between components. Most general-purpose program-
ming languages support dynamic recon�gurability. But the abstraction facilities in general-purpose
programming languages such as C or C++ would not allow us to write simple, concise descriptions
of our designs. Shift was designed to remedy this situation by providing both high-level system
abstractions and the
exibility of programming languages.

The goal of Shift is to be easy to learn and use. We strived to keep the language design simple
and small. Shift has only one number type (corresponding to the C double type), no functions
(although it can use external functions written in C) and it has no memory management primitives,
relying on garbage collection in its implementation. In spite of its simplicity, Shift programs are
surprisingly powerful yet compact. This is because of the high-level system abstractions provided by
Shift, including di�erential equations, state transitions and synchronous compositions, all within
the framework of dynamic networks of hybrid automata.

While our immediate application concerned vehicles and highways, we believe that the Shift
model o�ers the proper level of abstraction for describing complex applications in general, including
air tra�c control systems, robotic shop
oors, coordinated submarines and other systems whose
operation cannot be captured easily by conventional models.

In section 2, we describe a simpli�ed version of the Shift model. We discuss the models of
a type, a component and the world and give the formal semantics of the model. In section 3, we
describe the main features of the Shift language|states, inputs, outputs, di�erential equations and
algebraic de�nitions, discrete states and state transitions|and provide two examples illustrating
these features. In section 4, we describe the run-time environment for simulating Shift programs;
in particular, we describe the algorithm for determining synchronized transitions.

2 The Shift Model

The model presented in this section is austere and simpli�ed: the language provides facilities for
structured programming. In the Shift model, the world W consists of a set of hybrid components

h1; : : : ; hw:
W = fh1; : : : ; hwg:

Each component h is in a particular con�guration Ch, and collectively these determine the con�g-
uration of the world:

CW = (Ch1 ; : : : ; Chw):

The world evolves in a sequence of phases. During each phase, time
ows while the con�guration
of the world remains �xed. In the transition between phases, time stops and the set of components
in the world and their con�gurations are allowed to change.

Each component has both continuous-time dynamics and discrete-event dynamics which depend
on the con�guration of the world. Components obey continuous-time dynamics within each phase
and discrete-event dynamics in phase transitions.

2

2.1 Type Description

The components are organized into types according to their prototypical behaviors. The type
description mechanism in the Shift language permits the declaration of inputs, outputs and aux-
iliary state variables and provides several programming conveniences. In this section, we describe
a simpli�ed Shift model for the description of a type. In this simpli�ed model, a type is the tuple

H = (q 2 Q; Q �nite,|the discrete state variable,

x = (x1; : : : ; xn); with each xi 2 R;|the continuous state variables,

C = (C0; : : : ; Cm); with each Ci � W;|the con�guration state variables

L = fl1; : : : ; lpg;|the event labels

F = fFq j q 2 Qg|the
ows, and

T|the transition prototypes.)

To be accurate, the discrete states of H should be referred to as QH , and similarly for the other
elements in the type description. We drop the subscript where it is obvious from context.

We assume that the cardinality of C0 is �xed, while for i = 1; : : : ; m, Ci may have a di�erent
number of elements in di�erent phases. C0 can be thought of as the set of single-valued references
to other components, and each Ci; i = 1; : : : ; m can be thought of as a set-valued reference to other
components in the world. Shift provides constructs for structuring and accessing the con�guration
state C; we assume that these constructs have been \
attened" to yield C in the form shown
here. Shift imposes type restrictions on the de�nition of these variables; we ignore these in the
presentation of the model.

Each type is a prototypical hybrid automaton AH with Q as its discrete states. In each discrete
state q 2 Q, Fq de�nes the
ow of each continuous variable xi either as a di�erential equation or
as an algebraic de�nition. These de�nitions, respectively, take the form

_xi = Fi;q(x; xC0
) or

xi = Fi;q(x; xC0
):

Here, xC0
denotes the vector obtained by listing the continuous variables of all elements of C0. We

require that there be no cyclic dependencies between algebraically de�ned variables.
T is a �nite set of tuples of the form

� = (q; q0; g; E; a)

where q; q0 2 Q are respectively the from and to states of �, g is a guard predicate, E is a set of
event labels and a is an action that alters the state of the world. The guard predicate takes one of
two forms:

1. g(x; xC0
) or

2. 9c 2 Ci g(x; xc; xC0
); 1 � i � m.

In the second form, multiple quanti�ers are permitted (with obvious modi�cations of the form), and
the quanti�ers may be negated. The quanti�ed variables may be used in the action a.1 Informally,
for � to be taken, the guard must evaluate to true.

Each event label in E takes one of four forms:
1It may not always be meaningful to use a quanti�ed variable in an action. For example, in a guard of the form

6 9c 2 C1 g(: : :), c carries no meaningful information that can be used in the action.

3

1. l, with l 2 L;

2. c : l, with c 2 C0 and l an event label in the type of c;

3. 9c 2 Ci c : l, with 1 � i � m and l an event label in the type of c (the quanti�ed variable
may be used in the action a); and

4. 8c 2 Ci c : l, with 1 � i � m and l an event label in the type of c.

The event labels place synchronization constraints on the world. Informally, a transition with the
label c : l can be taken if and only if c takes a transition with the label l. The constraint extends
naturally to labels with quanti�ed variables.

In Shift, an \internal" transition, that is a transition which does not synchronize with others,
is speci�ed by leaving E empty. As a mathematical convenience, we assume that such internal
transitions are labeled �.

The action a is a map from x, xC0
and any variables in the guard or event labels to (x; C). It

has the direct e�ect of resetting the continuous state and the con�guration of the component. The
action may also create new components and initialize them. In Shift, actions may also reset the
inputs of components in C0.

2.2 Component Description

A component h of type H assigns, at each time, values to its state variables (q; x; C). Associated
to h is a hybrid automaton Ah derived from the prototypical automaton AH using the values of C.
The discrete states of Ah are the same as the discrete states of AH|i.e., Q.

The transitions of Ah, denoted Th, are obtained by transforming the transition prototypes of
AH into an equivalent set of simpler transitions. The transformation rules are given here for the
purpose of explaining the model|they are not actually used in the implementation of the Shift

run-time system.

� A transition prototype with a guard in the form 9c 2 C g(xh; xc; xC0
) yields jCj transitions,

one for each component c 2 C, with guards g(xh; xc; xC0
).

� An event label l in the transition prototype is replaced by the event label h : l in the transition.

� An event label c : l in the transition prototype is retained without change in the transition.

� A transition prototype with an event label in the form 9c 2 C c : l yields jCj transitions, one
for each c 2 C, with event label c : l.

� A transition prototype with an event label in the form 8c 2 C c : l yields one transition with
jCj event labels, one for each c 2 C, labeled c : l.

A transition prototype with multiple existential quanti�ers in the guards or event labels yields one
transition for each element in the cross product of the domains of those variables.

Finally, we assume that Th contains a trivial self-looping transition (q; True; ;; I; q) for each
q 2 Q, where I is the identity function. Such a transition is not actually speci�ed in Shift; we
introduce it as a mathematical convenience.

Let events(Ah) be the set of all events appearing on the transitions of Ah:

events(Ah) = [t2ThEt:

4

2.3 World Description

Now we describe the hybrid automaton AW associated to the world. The set of discrete states of
AW is the cross product QW = Qh1 � � � � � Qhw . Similarly, the set of continuous states of AW

is the cross product of the sets of continuous states of the components in W . The dynamics of
the continuous state variables are governed by the
ows de�ned in the component automata. The
transitions TW of AW are tuples � = (�1; : : : ; �w) with each �i 2 Thi . Let

events(�) = [�iE�i :

TW satis�es the following condition: � 2 TW if and only if

1. events(�) 6= ;|i.e., not all transitions are trivial,

2. events(�i) = events(�) \ events(Ahi) for each i|i.e., events taken by each component are
exactly the events taken by the world that are of interest to that component, and

3. 6 9�0
2 TW such that events(�0) is a strict subset of events(�)|i.e., � is minimal.

The guard associated to � 2 TW is the conjunction of the guards of the component transitions in
�:

g� = ^ig�i :

The action associated to � is the parallel execution of the actions of the component transitions in
�|i.e., each map a�i is evaluated using the state of the world just before the transition.

Our model performs synchronous composition of multiple automata. Our choice of this de�ni-
tion of world transitions rested on a tradeo� between ease of use and e�ciency of implementation.
An alternative would be to describe pair-wise cause-e�ect relationships between the transitions of
di�erent components. [9, 15] Programs written using the synchronous composition approach can be
exponentially smaller than those written using cause-e�ect relationships. However, the algorithm
for determining world transitions in the synchronous composition approach is exponentially more
complex than the corresponding algorithm for the cause-e�ect synchronization approach. Thus, we
preferred ease of use over e�ciency of implementation. Cause-e�ect synchronizations can also be
described in Shift using symbol-valued input-output connections.

2.4 World Semantics

Let
� = [� 00; �1]; [�

0

1; �2]; [�
0

2; �3]; : : : ; �
0

0 = 0 and 8i (�i = � 0i and �i+1 � � 0i)

be a �nite or in�nite sequence of intervals of R+ or an initial segment of it. Associated to each
interval [� 0i ; �i+1], is a world automaton AW (i). The semantics of the world are given over traces
(�; s) where

s = (q0; x0;�0); : : : ; (qi; xi;�i); : : :

where qi 2 QW (i), xi : [�
0

i ; �i+1]! RnW (i) and �i 2 TW (i).
A trace (�; s) is a run of the world i� the following conditions hold.

1. Initialization. AW (0) is constituted from the appropriately initialized set of initial components
in the world.2

2
Shift provides a mechanism for initiating the world by creating and initializing components at the start of the

execution of a Shift program.

5

2. Continuous evolution. For each i, 8t 2 (� 0i ; �i+1),

_xj;hk(t) = F(j;hk);(qi;hk)(xhk(t); xC0(hk)
(t)) if xj;hk is di�erentially de�ned, and

xj;hk(t) = F(j;hk);(qi;hk)(xhk(t); xC0(hk)
(t)) if xj;hk is algebraically de�ned.

3. Discrete evolution. At each boundary point �i = � 0i

(a) qi = q�i and x(�i) satis�es the guard g�i|i.e., �i is enabled at �i, and

(b) qi+1 = q0�i and for each component k, xhk (�
0

i) = a�i;k(x(�i))|i.e., the state of each com-
ponent is reset according to that component's transition. The side-e�ects of each action
are realized by creating new components as indicated by the actions and initializing
them using x(�i).

(c) AW (i+ 1) is constituted from the set of components in the world after �i is taken.

3 The Shift Language

This section describes the main features of the Shift language and relates them to the model in
section 2. Sections 3.1 and 3.2 give examples illustrating the features of the Shift language. The
Shift reference manual [19] describes the Shift syntax.

Shift provides two native data types|number and symbol, and it provides mechanisms for
de�ning additional types. Variables of type number have piecewise constant or piecewise continu-
ous real-valued time traces. The latter variables are declared to be of type continuous number.
Variables of type symbol have piecewise constant symbol-valued time traces.

Shift provides three mechanisms for de�ning additional types: set, array and type. A variable
of type set(T), where T is a native or user-de�ned type, contains a set of elements of type T. A
variable of type array(T) contains a one-dimensional array of elements of type T.

A component prototype is de�ned by the Shift type declaration. This is similar to the C
struct declaration. The equivalent of C structure members are the inputs, outputs, and states

of a Shift type. These are the continuous state variables x and the con�guration variables C in
the model. Thus one can write:

type Car {

input continuous number throttle;

output continuous number position, velocity, acceleration;

state continuous number fuel_level;

Car car_in_front;

Controller controller;

...

}

Dividing the continuous state from the model into inputs, outputs, and state in the language allows
for more structured programming. Shift de�nes the circumstances in which variables of each kind
may be used. For instance, state variables are not visible outside the component, and the input
variables of a component may only be de�ned by another component.

A component type declaration also speci�es the component's continuous and discrete behavior.
This is done through additional syntactic constructs called clauses, each starting with a meaningful
keyword.

6

The discrete clause de�nes the possible values for q (the component's discrete state variable)
and associates a set of di�erential equations and algebraic de�nitions to each discrete state. For
instance:

type Car {

...

flow default {

position' = velocity;

velocity' = acceleration;

}

discrete

accelerating { acceleration = 3; },

cruising { velocity = 30; },

braking { acceleration = -5; };

...

}

Groups of common equations can be given a name through the flow clause. The special
ow name
default de�nes the default behavior of a set of variables in all states. In the example, the cruising
state rede�nes velocity, which becomes algebraically de�ned (as a constant in this case) instead
of di�erentially de�ned (as the integral of the acceleration).

Transitions between states are de�ned in the transition clause, as in the following example.

type Car {

...

transition

accelerating -> cruising {}

when velocity >= 30,

cruising -> braking {}

when position(car_in_front) - position < 5;

...

}

The example uses the state variable car_in_front containing a reference to another Car, whose
relative position is used in deciding when to apply brakes.

Transitions are labeled by a (possibly empty) set of event labels. These labels allow transitions
to synchronize with each other. Suppose that we wish the car to brake when a roadside controller
signals an emergency. This can be speci�ed with the transition

cruising -> braking { controller:emergency }

The de�nition of the Controller type must include an exported event, emergency, and at least
one transition that triggers it.

type Controller {

...

export emergency;

transition

7

normal -> panic_mode { emergency }

when <some critical condition>;

...

}

Some other clauses provided by Shift are do, setup, global and function. The do clause asso-
ciates actions to transitions. The setup clause de�nes the component's initializations, input-output
connections and externally de�ned event synchronizations. The global clause de�nes global vari-
ables and the function clause declares external functions.

Shift types may be organized in an inheritance hierarchy. A subtype is required to conform to
its supertype's interface by declaring a superset of inputs, outputs and exported events.

The following examples illustrate the main features of Shift.

3.1 The Particle Example

In this example, a particle source creates particles at the rate of one per second and places them
at the beginning of a 1000m track. The speed of the particles is initialized from the speed posted
by the track monitor. The particles travel down the track and exit when they reach the end,
notifying the track monitor of their exit. The track monitor updates its posted speed based on the
exit speeds of particles. At externally provided time intervals, the monitor commands all particles
between 500m and 1000m to raise their speeds by 10%. Figure 1 illustrates this example.

0 500 1000

Track

Particles

Monitor

Source

raise
speed

notify
exit

Figure 1: Particles-Source-Monitor

3.1.1 The Particle Type

The prototypical behavior of particles is shown in Figure 2. Each particle has a continuously varying

firstHalf secondHalf exit

x’ = speed x’ = speed

x >=
 500

x >=
 1000

raise
speed

notify
exit

add self to
the second
half particles

remove self
from the second
half particles

raise speed
by 10%

stop

Figure 2: Particle

position along the track, given by the real-valued state variable x. Each particle has a real-valued

8

piecewise constant output variable speed. The default
ow of the particle is given by the equation

_x = speed:

The particle has three discrete states, firstHalf, secondHalf and exit, indicating that the particle
is in firstHalf when x < 500, in secondHalf when 500 � x < 1000 and in exit when x � 1000.
This behavior is not automatic but must be programmed. The particle's
ow in the exit state
is stop, a Shift keyword, which assigns the rate 0 to all continuously changing variables. A
\stopped" component that is unreachable and unable to participate in any world transition is, in
e�ect, deleted from the world.

The particle exports two events, raiseSpeed and notifyExit, which may be used for synchro-
nization by other components in the system.

The particle transitions from firstHalf to secondHalf on an internal event when x >= 500.
As a part of this transition, it adds itself to the globally de�ned set secondHalfParticles. The
particle loops in secondHalf on the event raiseSpeed, raising its speed by 10%. The particle
transitions from secondHalf to exit on the event notifyExit when x >= 1000, removing itself
from the set secondHalfParticles.

The Shift description of the particle type is given below.

type Particle

{

state continuous number x;

output number speed;

flow default { x' = speed };

discrete

firstHalf,

secondHalf,

exit stop;

export raiseSpeed, notifyExit;

transition

firstHalf -> secondHalf {}

when x >= 500

do {

secondHalfParticles := secondHalfParticles + {self};

};

secondHalf -> secondHalf {raiseSpeed}

do {

speed := 1.1*speed;

};

secondHalf -> exit {notifyExit}

when x >= 1000

do {

secondHalfParticles := secondHalfParticles - {self};

};

}

3.1.2 The Source Type

The prototypical behavior of a source is shown in Figure 3. It has a continuously varying real-valued

9

start

x’ = 1

x >= 1 create particle
reset x to 0

Figure 3: Source

state variable x that measures the elapsed time from the last transition. It has a state variable
monitor of type Monitor, which is a link to the track monitor.

The source has one discrete state start in which the
ow speci�cation is

_x = 1:

The source loops in start on an internal event when x >= 1, creating a new particle whose speed
is initialized from the monitor's output, and resetting the timer x to 0. The Shift description of
the source type is given below.

type Source

{

state continuous number x;

Monitor monitor;

discrete start { x' = 1 };

transition

start -> start {}

when x >= 1

do {

create(Particle, speed := speed(monitor));

x := 0;

};

}

3.1.3 The Monitor Type

The prototypical behavior of a monitor is shown in Figure 4. It has a continuously varying real-
valued state variable x that counts down the time to the next raiseSpeed broadcast. It has a
real-valued output speed.

The monitor has one discrete state, start, in which the
ow is

_x = �1:

It loops in start synchronously with exactly one particle in the set secondHalfParticles on the
event notifyExit, and it updates its speed output to be the average of its old speed and the
speed of the exiting particle. It loops in start synchronously with exactly all particles in the set
secondHalfParticles on the event raiseSpeed when x � 0, and it resets x to the next broadcast
time using an externally de�ned function nextBroadcastTime(). The Shift description of the
monitor type is given below.

10

start

x’ = -1

secondHalfParticles:raiseSpeed(all)

secondHalfParticles:notifyExit(one:p)

update speed
based on speed
of exiting particle p

x <= 0
reset x by calling
external function

Figure 4: Monitor

type Monitor

{

output number speed;

state continuous number x;

discrete start { x' = -1 }

transition

start -> start {secondHalfParticles:notifyExit(one:p)}

do {

speed := 0.5*(speed + speed(p));

};

start -> start {secondHalfParticles:raiseSpeed(all)}

when x <= 0

do {

x := nextBroadcastTime();

};

}

3.1.4 External Function Declaration

The externally de�ned function nextBroadcastTime() is declared within the Shift program as
follows.

function nextBroadcastTime() -> number;

3.1.5 Global Variables

The program has three global variables: monitor, initialized to a component of type Monitor,
source, initialized to a component of type Source and secondHalfParticles, a set of particles,
initialized to the empty set. The Shift description of these global variables is given below.

global Monitor monitor

:= create(Monitor, speed := 100, x := nextBroadcastTime());

global Source source := create(Source, monitor := monitor);

global set(Particle) secondHalfParticles := {};

11

A Shift program begins execution by initializing global variables. The components created as
part of this initialization begin exercising their dynamical behavior as soon as all global variables
are initialized. In this example, the source would create the �rst particle after one time unit, and
the monitor would execute raiseSpeed when the initially speci�ed next broadcast time elapses.

3.2 Vehicle-Roadway Environment Processor Example

In this section, we display fragments of a Shift program for the Vehicle-Roadway Environment
Processor (VREP). VREP computes the position of a vehicle by integrating the vehicle's speed.
The vehicle's position is maintained in two coordinate frames: a global Euclidean reference frame
and a road reference frame.

Let _pT be the vehicle's linear speed in its body coordinate frame and let R be a skew-symmetric
matrix derived from its rotational speeds (its exact form is shown below). Let pTg be the vehicle's

position in the global frame and let pTr be its position in the road frame. Let Mvg be the 3 � 3
unitary matrix which gives the rotational alignment of the vehicle body coordinate frame to the
global coordinate frame and let Mrg be the corresponding matrix for the road frame at the vehicle's
location. Let C;O;G and B be 3�3 matrices derived from the road's curvature, orientation, grade
and banking (their exact forms are shown below). Then, the equations of motion are given as
follows.

_pg = _pMvg

_pr = _pMvgM
T
rgC

_Mvg = RMvg

Mrg = OGB

3.2.1 VREP Input-Output Speci�cations

The VREP takes as input the vehicle's linear and rotational speeds in the body coordinate frame.
The Shift description of these inputs and outputs are shown below.

type VREP // Vehicle Roadway Environment Processor

{

input

continuous number xDot, yDot, zDot; // longitudinal, lateral and vertical speeds

continuous number wx, wy, wz; // roll, pitch and yaw speeds

output

continuous number gxp, gyp, gzp; // global x, y and z positions

Section section; Segment segment; Lane lane;

// the vehicle's section, segment and lane on the highway

continuous number rxp, ryp, rzp, lyp; // road x, y and z positions; lane y position

continuous number vgam11, ..., vgam33; // vehicle-global alignment matrix

continuous number rgam11, ..., rgam33; // road-global alignment matrix

...

}

12

3.2.2 VREP Flow Equations

The Shift description of the VREP
ow equations is shown below. Shift permits only scalar
equations. However, dynamical equations are often written most conveniently in matrix form. The
mat2scalar �lter associated to the Shift tool-set translates matrix equations into scalar form by
performing the matrix operations. The �lter performs addition, subtraction, multiplication and
transposition.

type VREP

{

...

flow cruising {

/* $mat2scalar

|vgam11 vgam12 vgam13|

|gxp gyp gzp|' = |xDot yDot zDot|*|vgam21 vgam22 vgam23|

|vgam31 vgam32 vgam33|;

|rxp ryp rzp|' = |xDot yDot zDot| *

|vgam11 vgam12 vgam13| |rgam11 rgam12 rgam13|~ |1/(1+ryp*curvature) 0 0|

|vgam21 vgam22 vgam23|*|rgam21 rgam22 rgam23| *| 0 1 0|

|vgam31 vgam32 vgam33| |rgam31 rgam32 rgam33| | 0 0 1|;

|vgam11 vgam12 vgam13|' | 0 wz -wy| |vgam11 vgam12 vgam13|

|vgam21 vgam22 vgam23| = |-wz 0 wx|*|vgam21 vgam22 vgam23|

|vgam31 vgam32 vgam33| | wy -wx 0 | |vgam31 vgam32 vgam33|;

|rgam11 rgam12 rgam13| | ccos scos 0| | cgs 0 sgs| |1 0 0 |

|rgam21 rgam22 rgam23| = |-scos ccos 0|*| 0 1 0 |*|0 cbs sbs|

|rgam31 rgam32 rgam33| | 0 0 1| |-sgs 0 cgs| |0 -sbs cbs|;

$end-mat2scalar */

ccos = cos(orientation(segment) - rxp*curvature(segment));

scos = sin(orientation(segment) - rxp*curvature(segment));

cgs = cos(grade(segment));

sgs = sin(grade(segment));

cbs = cos(banking(segment));

sbs = sin(banking(segment));

}

...

}

3.2.3 Sample VREP Transition

The VREP provides several transitions to maintain the position of the vehicle on the road structure|
for example, recognizing whether the vehicle has crossed lane, section and segment boundaries,
collided with road barriers and blocks or run o� the road.

13

We display a representative transition for updating the vehicle's lane. The VREP transitions
from cruise to cruise on the event updateLaneRight when the vehicle's o�set from the lane
center, lyp, is more than half the lane width, there is no barrier on the right edge of the vehicle's
lane, there is a lane to the right and there is no barrier on the left edge of that lane. (The
symbol-valued side variable of a barrier takes valued $Right and $Left.)

The action associated to this transition consists of a define block and a do block. In the Shift
semantics, the statements in the do block of a transition (indeed, of all synchronized transitions)
are executed in parallel|i.e., the right hand sides and destinations of all statements are evaluated
before any assignments are made to those destinations. The statements in the define block are
executed sequentially before the do block is executed. Variables de�ned in the define block are
visible from the do block of that transition. The define block proves useful to eliminate common
subexpressions in the statements of the do block, and to create and initialize new components in a
sequential order. In the following example, the temporary variable lr is a common subexpression
in the two statements in the do block.

type VREP

{

...

transition

cruise -> cruise {updateLaneRight}

when

lyp > 0.5*width(lane) and

not (exists br in barriers(lane) :

(side(br) = $Right and startXOffset(br) <= rxp and

endXOffset(br) >= rxp)) and

if laneRight(lane) = nil then false else

not (exists bl in barriers(laneRight(lane)) :

(side(bl) = $Left and startXOffset(bl) <= rxp and

endXOffset(bl) >= rxp))

define {

lr := laneRight(lane);

}

do {

lyp := -0.5*width(lr) + lyp - 0.5*width(lane);

lane := lr;

};

...

}

4 The Shift Run-time Environment

A Shift program is executed by alternating between the \continuous" and \discrete" steps. In the
continuous step, all di�erentially de�ned variables are integrated simultaneously using the fourth-
order Runge-Kutta numerical integration algorithm. Since all continuous variables are integrated
simultaneously, Shift yields more accurate results than simulators that perform component-wise
integration using piecewise constant approximations of interacting components.

During the continuous step, the state of the world is examined periodically for enabled world
transitions using the synchronization algorithm described in section 4.1. When an enabled tran-

14

sition is found, the discrete step is executed by \taking" the transition. The run-time system
takes transitions as soon as they are enabled. The Shift language and semantics permit but do
not require the as-soon-as semantics in the implementation, and programs written with such an
assumption may not work correctly under other implementations of Shift.

4.1 The Synchronization Algorithm

In this section, we describe the algorithm that searches for an enabled world transition in the
model of section 2. The Shift run-time system handles set-valued event references without actually
expanding them (see section 2.2).

Since a component transition with a false guard cannot be a part of the world transition, the
algorithm considers transitions with true guards only.

4.1.1 De�nitions

Let (c; h : l) denote a reference to the event (h : l) in some transition of component c. If c = h,
(h : l) is a local event of c; otherwise it is an external event of c.

Assume that the set of components are ordered and the transitions within a component are also
ordered.

De�ne externalSynchronization(h : l) = fc j h : l is an external event of cg .
The algorithm uses two stacks, the search stack and the backtracking stack. Elements on the

search stack are event references of the form (c; h : l). The search stack keeps track of event
references for which the algorithm has not yet selected transitions. Elements on the backtracking
stack are of the form (c; d; e; s; b), where c is a component, d is a transition in c, e is an event, s
is the size of the search stack when the element is pushed on the backtracking stack, and b is a
boolean. A transition or component is said to be active if it is on the backtracking stack. When
pushing an active component on the backtracking stack, b is set to old, and otherwise it is set to
new. The backtracking stack keeps track of the selected transitions.

The algorithm uses a global variable, failed, which, when true, indicates that a world transition
cannot be found. The algorithm uses the following operations.

pushSearch(z), pushBacktrack(z)|pushes z on the search stack or the backtracking stack.

pushSearchExpand(c; d; a)| c is a component, d is a transition in c, a is an event. pushSearchExpand
executes the following operations:

foreach h : l in external events of d f
if h : l 6= a f

pushSearch(h; h : l);
g

foreach c : l in local events of d f
foreach h in externalSynchronization(c : l) f

pushSearch(h; c : l);
g

g

z = popSearch(), z = popBacktrack()|pops the search stack or the backtrack stack in z.

searchSize()|returns the number of elements on the search stack.

15

1 (c; d) = nextWorldTransition();
2 pushSearchExpand(c; d; 0);
3 pushBacktrack((c; d; 0; 0; new));
4 failed = false;
5 mark();

Table 1: The Initialization Operations

1 while not (searchSize() = 0 or failed) f
2 searchStep();
3 mark();
4 g

Table 2: The Main Loop of the Algorithm

clearSearch(i)|pops elements o� the search stack until there are only i elements left.

active(h)|returns the active transition of component h if any, 0 otherwise.

nextWorldTransition(c; d)|returns the component, transition pair after (c; d) in the world; re-
turns 0 if there is no such transition.

nextComponentTransition(h; d; a)|returns the next transition d0 in component h after d that
satis�es a 2 Ed0 ; returns 0 if there is no such transition.

mark()|prints the state of the search and backtracking stacks.

4.1.2 The Algorithm

The algorithm consists of initializations, given in Table 1, followed by the main loop, given in Table
2. At the end of the algorithm loop, if the search has not failed, the backtracking stack contains
the nontrivial transitions of the world transition.

The operations searchStep() and backtrack() used by the algorithm are described in Tables 3
and 4, respectively.

4.2 Example Run of the Synchronization Algorithm

To illustrate the algorithm consider a world with four components a; b; c and, d. Let a have one
transition t1 with two external events b : x and d : z. Let b have two transitions t1 and t2. Let
t1 have one local event b : x and one external event d : w. Let t2 have one local event b : x and
one external event d : z. Let c have one transition t1 with one local event c : y. Let d have two
transitions t1 and t2. Let t1 have one local event d : w. Let t2 have one local event d : z. Let all
components be in the source state of these transitions.

The states of the search and backtracking stacks at each mark() point of the algorithm are
given in Table 5. The �rst column is used as an index, the second column shows the backtracking
stack and the third column shows the search stack. We discuss some representative parts of the
algorithm.

The algorithm picks the transition (a1; t1) as the �rst transition in the world. The status of
the search and backtracking stacks at the end of the initialization has index 1 in Table 5.

16

1 (c; h : l) = popSearch();
2
3 dactive = active(c);
4 if not dactive f dnext = nextComponentTransition(c; 0; h : l); g
5 if dactive and h : l 2 Edactive f

6 pushBacktrack((c; dactive; h : l; searchSize(); old));
7 g

8 else if dactive and (h : l 62 Edactive or not dnext)f
9 pushSearch(c; h : l);
10 backtrack();
11 g

12 else f

13 pushBacktrack((c; dnext; h : l; searchSize(); new));
14 pushSearchExpand(c; dnext; h : l);
15 g

Table 3: The searchStep() Operation

The �rst call to searchStep() pops the element (b; b : x) o� the search stack. Since component
b is not active and has a transition with event b : x lines 13 and 14 of searchStep() are executed.
The status of the search and backtracking stacks after these operations has index 2.

After several searchStep() operations we obtain the search and backtracking stacks with index
5. At this point the searchStep() pops the element (d; d : z) o� the search stack. Since component
d is active with transition t1 and since d : z 62 Et1, lines 9 and 10 of searchStep() are executed. Line
10 invokes the backtrack() operation, which pops the element (b; t1; d : w; 1; F) o� the backtracking
stack. Since this is not a new element, lines 4, 5, and 6 of backtrack() are executed. The status of
the search and backtracking stacks at line 5 of backtrack() has index 6.

At the end of the search (index 14) the three transitions on the backtracking stack are (a; t1),
(b; t2), and (d; t2). The world transition is constructed by adding the trivial transition in component
c.

4.3 Characteristics of the Algorithm

The proof of the correctness of the search algorithm is beyond the scope of this paper. It consists
of two parts. The �rst part proves that the world transition constructed by the algorithm indeed
satis�es the conditions in section 2.3. The second part proves that the algorithm is exhaustive and
if it fails there are indeed no world transitions.

In the worst case, the space requirement of the algorithm is O(w) and its time requirement is
O(exp(w)), where w is the number of components in the world.

5 Conclusion

We described the Shift programming language and run-time environment for dynamic networks of
hybrid automata. We presented the Shift models of a type, a component and the world and gave
the formal semantics of the model. We described the main features of Shift, such as states, inputs,
outputs, di�erential equations and algebraic de�nitions, discrete states and state transitions, and
illustrated them using examples. We described the run-time environment for simulating Shift

programs and gave the algorithm for determining synchronized transitions.

17

1 (c; d; h : l; searchIndex; newElem) = popBacktrack();
2
3 if not newElem f

4 pushSearch(c; h : l);
5 mark();
6 backtrack();
7 g

8 else f

9 clearSearch(searchIndex);
10 if h : l 6= 0 f
11 dnext = nextComponentTransition(c; d; h : l);
12 if not dnext f

13 pushSearch((c; h : l));
14 mark();
15 backtrack();
16 g

17 else f

18 pushBacktrack((c; dnext; h : l; searchSize(); new));
19 pushSearchExpand(c; dnext; h : l);
20 g

21 g

22 else f

23 (cnext; dnext) = nextWorldTransition(c; d);
24 if ((cnext, dnext) = 0)f
25 failed = true;
26 g

27 else f
28 pushBacktrack((cnext; dnext; 0; 0; T));
29 pushSearchExpand(c; d; 0);
30 g

31 g

32 g

Table 4: The backtrack Operation

18

1
(a,t1,0,0,T) (b,b:x)

(d,d:z)

2
(b,t1,b:x,1,T) (a,b:x)
(a,t1,0,0,T) (d,d:w)

(d,d:z)

3
(a,t1,b:x,2,F) (d,d:w)
(b,t1,b:x,1,T) (d,d:z)
(a,t1,0,0,T)

4
(d,t1,d:w,1,T) (b,d:w)
(a,t1,b:x,2,F) (d,d:z)
(b,t1,b:x,1,T)
(a,t1,0,0,T)

5
(b,t1,d:w,1,F) (d,d:z)
(d,t1,d:w,1,T)
(a,t1,b:x,2,F)
(b,t1,b:x,1,T)
(a,t1,0,0,T)

6
(d,t1,d:w,1,T) (b,d:w)
(a,t1,b:x,2,F) (d,d:z)
(b,t1,b:x,1,T)
(a,t1,0,0,T)

7
(a,t1,b:x,2,F) (d,d:w)
(b,t1,b:x,1,T) (d,d:z)
(a,t1,0,0,T)

8
(b,t1,b:x,1,T) (a,b:x)
(a,t1,0,0,T) (d,d:w)

(d,d:z)

9
(b,t2,b:x,1,T) (a,b:x)
(a,t1,0,0,T) (d,d:z)

(d,d:z)

10
(a,t1,b:x,2,F) (d,d:z)
(b,t2,b:x,1,T) (d,d:z)
(a,t1,0,0,T)

11
(d,t2,d:z,1,T) (b,d:z)
(a,t1,b:x,2,F) (a,d:z)
(b,t2,b:x,1,T) (d,d:z)
(a,t1,0,0,T)

12
(b,t2,d:z,2,F) (a,d:z)
(d,t2,d:z,1,T) (d,d:z)
(a,t1,b:x,2,F)
(b,t2,b:x,1,T)
(a,t1,0,0,T)

13
(a,t1,d:z,1,F) (d,d:z)
(b,t2,d:z,2,F)
(d,t2,d:z,1,T)
(a,t1,b:x,2,F)
(b,t2,b:x,1,T)
(a,t1,0,0,T)

14
(d,t2,d:z,0,F) fg

(a,t1,d:z,1,F)
(b,t2,d:z,2,F)
(d,t2,d:z,1,T)
(a,t1,b:x,2,F)
(b,t2,b:x,1,T)
(a,t1,0,0,T)

Table 5: The State of the Search and Backtracking Stacks

19

We have implemented a compiler for translating a Shift program to a C program, and we have
implemented the Shift run-time system for obtaining an executable program. The executable
program, when run, simulates the design speci�ed in the Shift source program.

Shift is being used as a system description, integration and simulation environment in the
Automated Highway Systems project of the National AHS Consortium. It is also being used at
Porto University for describing and simulating coordinated submarine maneuvers for ocean weather
pro�ling.

Acknowledgements

The authors thank Marco Antoniotti, Datta Godbole, Michael Kourjanski, Raja Sengupta, Joseph
Sifakis, Joao Sousa, D. Swaroop, Pravin Varaiya, Daniel Wiesman and Sergio Yovine for stimu-
lating discussions and valuable comments, insights and contributions. This project was funded
by the California PATH program of the University of California at Berkeley and by the National
Automated Highway Systems Consortium.

References

[1] R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho. Hybrid Automata: An Algorithmic Ap-
proach to the Speci�cation and Veri�cation of Hybrid Systems. In Hybrid Systems, LNCS 736,
Springer-Verlag, 1993, pp. 209-229.

[2] A. Deshpande and P. Varaiya. Viable Control of Hybrid Systems. In Hybrid Systems II, LNCS
999, Springer-Verlag. 1995.

[3] A. Deshpande, D. Godbole, A. G�oll�u, L. Semenzato, R. Sengupta, D. Swaroop and P. Varaiya.
Automated Highway System Tool Interface Format. California PATH Technical Report (draft).
24 January 1996.

[4] A. Deshpande, D. Godbole, A. G�oll�u, P. Varaiya. "Design and Evaluation Tools for Automated
Highway Systems." In DIMACS 1995 and in Hybrid Systems III, LNCS, Springer-Verlag, 1996.

[5] F. Eska�, Delnaz Khorramabadi, and P. Varaiya, An Automatic Highway System Simulator.
In Transpn. Res.-C Vol. 3, No. 1, pp. 1-17, 1995.

[6] Estelle { A Formal Description Technique Based on Extended State Transition Model. ISO9074,
1988

[7] D. Godbole, J. Lygeros, E. Singh, A. Deshpande and E. Lindsey. Design and Veri�cation
of Communication Protocols for Degraded Modes of Operation of AHS. In Conference on

Decision and Control. 1995.

[8] A. G�oll�u. Object Management Systems. PhD Thesis, UC Berkeley 1995.

[9] A. G�oll�u, P. Varaiya. \Dynamic Networks of Hybrid Automata", Fifth Annual Conference on

AI, Simulation, and Planning in High Autonomy Systems, pp. 244-251, Gainesville, Florida.
1994.

[10] J. Haddon, D. Godbole, A. Deshpande and J. Lygeros. Veri�cation of Hybrid Systems: Mono-
tonicity in the AHS Control System. In DIMACS. 1995.

20

[11] C.A.R. Hoare. Communicating Sequential Processes, Prentice/Hall International, 1985

[12] G.P. Hong and T.G. Kim. The DEVS Formalism: A Framework for Logical Analysis and
Performance. In Fifth Annual Conference on AI, Simulation, and Planning in High Autonomy

Systems, pp. 170-278, Gainesville, Florida. 1994.

[13] A. Hsu, F. Eska�, S. Sachs, P. Varaiya. Protocol Design for an Automated Highway System.
In Discrete Event Dynamic Systems: Theory and Applications 2, (1993): 183{206.

[14] Kemal Inan and Pravin Varaiya. Finitely Recursive Process Models for Discrete Event Systems.
In IEEE Trans. Auto. Control, vol. AC-33, no. 7, pp. 626-639, July 1988.

[15] R. Kurshan. Computer-Aided Veri�cation of Coordinating Processes: The Automata-Theoretic

Approach. Princeton University Press, 1994.

[16] LOTOS { A Formal Description Technique Based on the Temporal Ordering of Observational

Behavior. ISO8807, 1XS989

[17] R.Milner. A Calculus of Communicating Systems, Springer-Verlag, 1980

[18] A. Puri and P. Varaiya, Driving safely in smart cars. In American Control Conference,
pp. 3597{3599, 1995.

[19] L. Semenzato, A. Deshpande and A. G�oll�u. Shift Reference Manual. California PATH Technical
Report (draft). 28 June 1996.

[20] Speci�cation and Description Language SDL. International Telecommunications Union-T

Rec.Z.100 1988.

[21] P. Varaiya. Smart cars on smart roads: problems of control. In IEEE Trans. Automatic Control,
vol. 38, No. 2, 1993.

[22] Bernard Zeigler.Multifaceted modeling and discrete event simulation. Academic Press, London,
Orlando, 1984.

21

