CIS 505: Software Systems
OS Overview -- System Calls and

Signals

Insup Lee Y3
Department of Computer and Information Science
University of Pennsylvania

CIS 505, Spring 2007

1

Selected Readings

= Some early systems

o E. W. Dijkstra, "The Structure of the THE
Multiprogramming System," Communications of the
ACM, Vol. 11, No. 5, May 1968, pp. 341-346.

o D. M. Ritchie and K. Thompson, "The UNIX Time-
sharing System," Bell System Technical Journal, Vol.
57, No. 6, 1978, pp. 1905-1929.

o D. M. Ritchie, "The Evolution of the Unix Time-
sharing System," Bell System Technical Journal, Vol.
63, No. 6, Part 2, October 1984, pp. 1577-1593.

Brief review on basic OS concepts

= What is an OS?
= System calls

= Signals

= Processes

= Threads

= Scheduling

A Typical Computer System

CPU Memory

Programs and data

Operating System Software

~ ¢ 5 5
il

0S e \(\4/ (1@ \ Jgork

Apps =
Data What is an 0S?

CPU

What Is an OS?

“Code” that:

= Sits between programs & hardware
= Sits between different programs
= Sits betweens different users

But what does it do?

What Is an 0S?

Resources
= Allocation
= Protection
= Reclamation
= Virtualization

Services

= Abstraction

= Simplification
= Convenience
= Standardization

Makes computers simpler

What Is an OS?

Resources
= Allocation Finite resources
= Protection

= Reclamation

Competing demands
= Virtualization Examples:
= CPU
= Memory
= Disk
= Network

What Is an OS?

Resources
= Allocation
= Protection
= Reclamation
= Virtualization

You can’t hurt me
| can’t hurt you

Implies some degree of
safety & security

What Is an OS?

Resources
= Allocation
= Protection
= Reclamation

The OS gives and
The OS takes away
= Virtualization Voluntary at run time
Implied at termination
Involuntary
Cooperative

What Is an 0S?

Resources
= Allocation
= Protection
= Reclamation
= Virtualization

lllusion of infinite, private
resources

Memory versus disk
Timeshared CPU

More extreme cases
possible (& exist)

OS Service Examples

= System calls: file open, close, read and write
Control the CPU so that users won’t stuck by running
while (1) ;
= Protection:
o Keep user programs from crashing OS
o Keep user programs from crashing each other
= Read time of the day

System calls

= A mechanism for user programs to obtain OS

services

= |s it a procedure call?

System calls

= A mechanism for user programs to obtain OS
services

= |s it a procedure call?
o User can’t access kernel mode memory
o Kernel can access user memory

= Kernel runs in privileged mode

>> kernel vs. OS, why privileged?

Kernel =? OS

= Kernel — “heart” of the operating system

o Minimum set of mechanisms with universal applicability
= Operating system — usually includes more

o Various libraries

o Support programs

The Unix “Onion”

Applications

User and Kernel
boundary

Why a Privileged Mode?

= Special Instructions
o Mapping, TLB, etc
o Device registers
o |I/O channels, etc.
= Mode Bits
o Processor features
= Device access

Protection Issues

= |/O protection
o Prevent users from performing illegal I/Os
= Memory protection
o Prevent users from modifying kernel code and data structures

= CPU protection
o Prevent a user from using the CPU for too long

Support in Modern Processors: User < Kernel

An interrupt or exception (INT)

T~

Kernel (privileged) mode
»Regular instructions
» Access user-mode memory

User mode
»Regular instructions
» Access user-mode memory

A special instruction (IRET)

User vs. System Mode

— case i-call

. System
“trap” 1: l:| (or kernel)
fo —— memory

0.S. Al
n: code for read $

trap n / User Program

(text)

Special mode-bit set in PSW register:
mode-bit =0 => user program executing
mode-bit =1 => system routine executing
Privileged instructions possible only when mode-bit = 1!

System call

= User prospective
o Similar to function call
o But runs in kernel mode
= Difference from library routines?

System Calls

User (O]
Mode bit =0 Mode bit =1
B 4 o
Application Library (O] Device
Program Routine Routine Controller
R | |
System TRAP Special
AT' | Instructions
Software Hardware

Steps in System Call

= User program pushes parameters to read on stack

= User program executes CALL instruction to invoke library
routine read in assembly language

= Read routine sets up the register for system call number

= Read routine executes TRAP instruction to invoke OS

= Hardware sets the mode-bit to 1, saves the state of the
executing read routine, and transfers control to a fixed
location in kernel

= Kernel code, using a table look-up based on system call
number, transfers control to correct system call handler

Steps in System Call (cont)

= OS routine copies parameters from user stack, sets up
device driver registers, and executes the system call using
privileged instructions

= OS routine can finish the job and return, or decide to
suspend the current user process to avoid waiting

= Upon return from OS, hardware resets the mode-bit

= Control transfers to the read library routine and all
registers are restored

= Library routine terminates, transferring control back to
original user program

= User program increments stack pointer to clear the
parameters

Memory allocation functions

Sbrk(size)

o Increase size of heap by size
Malloc(size)

o Allocate size byte on heap

Both allocates memory
= Which is a system call?

Memory allocation functions

Sbrk — allocates “pages” — hw protection

Programs use malloc() — fine grained

Kernel doesn’t care about small allocs
o Allocates pages to library
o Library handles malloc/free

Which is a System Call and Why

read(int d, void *buf, size_t nbytes)

fread(void *ptr, size_t size, size_t nmemb, FILE *stream)

= Both do the same thing, right?
= Buffered read

Library Benefits
= Call overhead
o Chains of alloc/free don’t go to kernel
= Flexibility — easy to change policy
o Fragmentation
o Coalescing, free list management
= Easier to program

Feedback to the Program

= System calls and libraries are programs to OS
= What about other direction?

o Various exceptional conditions

o General information, like screen resize
= When would this occur?

Answer: signals

Polling Versus Interrupts
= Polling

o Check “constantly”

o Wastes resources — why?

o Simpler design
= Interrupts

o Controller free to do other work

o More mechanism needed

When Are They Appropriate?
= Polling
o Low cost systems
o Low-delay environments
o High-performance systems
o Example: Real-time systems
= Interrupts
o Multiprogrammed systems
o Power-conscious environments

Why Interrupts for Syscalls?

= Interrupts have to exist
o Hardware communication (IRQs)
o Must be delivered to OS
o Have to be in privileged mode

= Software interrupts for syscalls
o Same infrastructure
o Similar requirements

Interrupts and Exceptions

= Interrupt Sources
o Hardware (by external devices)
o Software: INT n

= Exceptions
o Program error: faults, traps, and aborts
o Software generated: INT 3, to debugger
o Machine-check exceptions

Signals
= Notification mechanism to program
o Used by OS/hardware to alert program
o Asynchronous — like an interrupt
= What can program do?
o Default action (signal-specific)
o Ignore it
o Perform some other action
= Man: signal, sigprocmask

Some Signals

SIGHUP terminate process terminal line hangup

SIGINT terminate process interrupt program

SIGILL create core image illegal instruction

SIGFPE create core image floating-point exception

SIGKILL terminate process kill program

SIGSEGV create core image segmentation violation

SIGPIPE terminate process write on a pipe with no reader
SIGALRM terminate process real-time timer expired

SIGURG discard signal urgent condition present on socket
SIGSTOP stop process stop (cannot be caught or ignored)
SIGCONT discard signal continue after stop

