CIS 505: Software Systems
OS Overview -- CPU Scheduling

Insup Lee %
Department of Computer and Information Science
University of Pennsylvania

CIS 505, Spring 2007

CPU SCHEDULING

= How can OS schedule the allocation of CPU cycles to
processes/threads to achieve “good performance”?

= Overview of topics
o Issues in scheduling
o Basic scheduling algorithms
« First-come First-served
* Round Robin
* Shortest Job First
¢ Priority based
o Scheduling in Unix
o Real-time scheduling (Priority Inheritance)

Scheduling Issues

= Application Profile:
o A program alternates between CPU usage and I/O
o Relevant question for scheduling: is a program compute-bound
(mostly CPU usage) or I/0-bound (mostly /O wait)
= Multi-level scheduling (e.g., 2-level in Unix)
o Swapper decides which pr should reside in memory
o Scheduler decides which ready process gets the CPU next
= When to schedule
o When a process is created
o When a process terminates
o When a process issues a blocking call (I/O, semaphores)
o On a clock interrupt
o On I/O interrupt (e.g., disk transfer finished, mouse click)
o System calls for IPC (e.g., up on semaphore, signal, etc.)

Scheduling Issues

= |s preemption allowed?
o Non-preemptive scheduler does not use clock interrupts to stop a
process
= What should be optimized?
o CPU utilization: Fraction of time CPU is in use
o Throughput: A g ber of jobs pleted per time unit
o Turnaround Time: Average time between job submission (or command
issue) and completion
o Waiting Time: Average amount of time a process is ready but waiting
o Response Time: in interactive systems, time until the system responds
to a command
o Response Ratio: (Turnaround Time)/(Execution Time) -- long jobs
should wait longer

Scheduling Issues

= Different applications require different optimization
criteria
o Batch systems (throughput, turnaround time)

o Interactive system (response time, fairness, user
expectation)

o Real-time systems (meeting deadlines)
= Overhead of scheduling
o Context switching is expensive (minimize context switches)
o Data structures and book-keeping used by scheduler
= What's being scheduled by OS?
o Processes in Unix, but Threads in Linux or Solaris

Basic Scheduling Algorithm: FCFS

= FCFS - First-Come, First-Served

o Non-preemptive

o Ready queue is a FIFO queue

0 Jobs arriving are placed at the end of queue

o Dispatcher selects first job in queue and this job

runs to completion of CPU burst

Advantages: simple, low overhead
Disadvantages: inappropriate for interactive
systems, large fluctuations in average
turnaround time are possible.

05, Spring 200 CPU Scheduling

Example of FCFS

Workload (Batch system)
Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

= FCFS schedule:

| Job1 | Job 2 | Job 3 |
0 24 27 30

Total waiting time: 0 + 24 + 27 = 51

= Average waiting time: 51/3 = 17

Total turnaround time: 24 + 27 + 30 = 81
= Average turnaround time: 81/3 = 27

SJF - Shortest Job First

Non-preemptive
Ready queue treated as a priority queue based on smallest CPU-
time requirement

* arriving jobs inserted at proper position in queue

+ dispatcher selects shortest job (1st in queue) and runs to completion

Advantages: provably optimal w.r.t. average turnaround time
Disadvantages: in general, cannot be implemented. Also,
starvation possible!

Can do it approximately: use exponential averaging to predict
length of next CPU burst

==> pick shortest predicted burst next!

Example of SJF

Workload (Batch system)
Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

= SJF schedule:
] Job2 | Job3 | Job1l |
0 3 6 30

= Total waiting time: 6 +0+3 =9

* Average waiting time: 3

= Total turnaround time: 30 + 3 + 6 = 39
= Average turnaround time: 39/3 = 13

SJF always gives minimum waiting time and turnaround
time

Exponential Averaging

Tp= @t (1= a)7,

= T,,,: predicted length of next CPU burst
= t,: actual length of last CPU burst
= 7, previous prediction

= a=0implies make no use of recent history
(Tnoi - Tn)
= a=1implies 7,,, = t, (past prediction not used).
= a=1/2 implies weighted (older bursts get less and
less weight).

RR - Round Robin

= Preemptive version of FCFS
= Treat ready queue as circular
o arriving jobs are placed at end

o dispatcher selects first job in queue and runs until
completion of CPU burst, or until time quantum
expires

o if quantum expires, job is again placed at end

done, /O req.
— oo |

timer interrupt

Example of RR

Workload (Batch system)
Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

= RR schedule with time quantum=3:
] Job 1] Job2 | Job 3 | Job 1 1
0 3 6 9 30
Total waiting time: 6 + 3+ 6 =15
= Average waiting time: 5
Total turnaround time: 30 + 6 + 9 = 45
= Average turnaround time: 15

= RR gives intermediate wait and turnaround time
(compared to SJF and FCFS)

CPU Scheduling 1

Properties of RR

= Advantages: simple, low overhead, works for interactive
systems
Disadvantages:
o if quantum is too small, too much time wasted in context switching
o if too large (i.e., longer than mean CPU burst), approaches FCFS
Typical value: 20 - 40 msec
* Rule of thumb: Choose quantum so that large majority
(80 — 90%) of jobs finish CPU burst in one quantum
* RR makes the assumption that all processes are equally
important

HPF - Highest Priority First

= General class of algorithms ==> priority
scheduling

= Each job assigned a priority which may change
dynamically

= May be preemptive or non-preemptive

= Key Design Issue: how to compute priorities?

Multi-Level Feedback (FB)

= M: 10

R i time quantum
" o increases
(. as
[M-—1: 12 priority level
— desreases
C -
:l o: 100 I
(< >

Each priority level has a ready queue, and a time quantum

process enters highest priority queue initially, and (next) lower queue with each timer
interrupt (penalized for long CPU usage)

bottom queue is standard Round Robin
process in a given queue are not scheduled until all higher queues are empty

FB Discussion

= 1/O-bound processes tend to congregate in higher-level queues. (Why?)

= This implies greater device utilization

= CPU-bound processes will sink deeper (lower) into the queues.

= Large quantum occasionally versus small quanta often

* Quantum in top queue should be large enough to satisfy majority of /O-
bound processes

= Can assign a process a lower priority by starting it at a lower-level queue

= Can raise priority by moving process to a higher queue, thus can use in
conjunction with aging

= To adjust priority of a process changing from CPU-bound to I/O-bound,
éagumove process to a higher queue each time it voluntarily relinquishes

UNIX Scheduler
Highest
P, : A I
-4 Waiting for disk 1O O waiting
-3 Waiting for disk butfer in kernel mode
2| Waitng for terminal input
-1 | Waiting for terminal output =D
o Waiting for child to exist
o User priority 0
1 User priority 1 o
Process waiting
2 User priority 2 In user mode
3 User priority 3 —
] : A
Lowest -
priosty Process queved

on priority level 3

Process Scheduling in Unix

= Based on multi-level feedback queues
Priorities range from -64 to 63 (lower number means higher
priority)
= Negative numbers reserved for processes waiting in kernel mode
o (thatis, just woken up by interrupt handlers)
o (why do they have a higher priority?)
= Time quantum = 1/10 sec (empirically found to be the longest
quantum that could be used without loss of the desired response
for interactive jobs such as editors)
o short time quantum means better interactive response
o long time quantum means higher overall system throughput since
less context switch overhead and less processor cache flush.

= Priority dynamically adjusted to reflect
o resource requirement (e.g., blocked awaiting an event)
o resource consumption (e.g., CPU time)

05, Spring 2001 CPU Scheduling 1

Unix CPU Scheduler

= Two values in the PCB
0 p_cpu: an estimate of the recent CPU use
o p_nice: a user/OS settable weighting factor (-20..20) for flexibility;
default = 0; negative increases priority; positive decreases priority
= A process' priority calculated periodically
priority = base + p_cpu + p_nice
and the process is moved to appropriate ready queue
= CPU utilization, p_cpu, is incremented each time the system clock
ticks and the process is found to be executing.
= p_cpu is adjusted once every second (time decay)
o Possible adjustment: divide by 2 (that is, shift right)
o Motivation: Recent usage penalizes more than past usage

o Precise details differ in different versions (e.g. 4.3 BSD uses current
load (number of ready processes) also in the adjustment formula)

Example (exercise)

= Suppose p_nice is 0, clock ticks every 10msec, time quantum is 100msec, and
p_cpu adjustment every sec

* Suppose initial base value is 4. Initially, p_cpu is 0

= Initial priority is 4.

= Suppose scheduler selects this process at some point, and it uses all of its
quantum without blocking. Then, p_cpu will be 10, priority recalculated to 10, as
new base is 0.

= Atthe end of a second, p_cpu, as well as priority, becomes 5 (more likely to
scheduled)

« S again picks this and it blocks (say, for disk read)
after 30 msec. p_cpu is 8

= Process is now in waiting queue for disk transfer

* Atthe end of next second, p_cpu is updated to 4

= When disk transfer is complete, disk interrupt handler computes priority using a
negative base value, say, -10. New priority is -6

» Process again gets scheduled, and runs for its entire time quantum. p_cpu will
be updated to 14

Summary of Unix Scheduler

= Commonly used implementation with multiple priority
queues

= Priority computed using 3 factors
o PUSER used as a base (changed dynamically)
o CPU utilization (time decayed)
o Value specified at process creation (nice)
= Processes with short CPU bursts are favored

= Processes just woken up from blocked states are
favored even more

= Weighted averaging of CPU utilization
= Details vary in different versions of Unix

5. Spring 200 CPU Scheduling

