
1

1

CIS 505: Software Systems

OS Overview -- CPU Scheduling

Insup Lee

Department of Computer and Information Science

University of Pennsylvania

CIS 505, Spring 2007

CIS 505, Spring 2007 CPU Scheduling 2

CPU SCHEDULING

How can OS schedule the allocation of CPU cycles to
processes/threads to achieve “good performance”?

Overview of topics
o Issues in scheduling

o Basic scheduling algorithms

First-come First-served

Round Robin

Shortest Job First

Priority based

o Scheduling in Unix

o Real-time scheduling (Priority Inheritance)

CIS 505, Spring 2007 CPU Scheduling 3

Scheduling Issues

Application Profile:
o A program alternates between CPU usage and I/O

o Relevant question for scheduling: is a program compute-bound
(mostly CPU usage) or I/O-bound (mostly I/O wait)

Multi-level scheduling (e.g., 2-level in Unix)
o Swapper decides which processes should reside in memory

o Scheduler decides which ready process gets the CPU next

When to schedule
o When a process is created

o When a process terminates

o When a process issues a blocking call (I/O, semaphores)

o On a clock interrupt

o On I/O interrupt (e.g., disk transfer finished, mouse click)

o System calls for IPC (e.g., up on semaphore, signal, etc.)

CIS 505, Spring 2007 CPU Scheduling 4

Scheduling Issues

Is preemption allowed?
o Non-preemptive scheduler does not use clock interrupts to stop a

process

What should be optimized?
o CPU utilization: Fraction of time CPU is in use

o Throughput: Average number of jobs completed per time unit

o Turnaround Time: Average time between job submission (or command
issue) and completion

o Waiting Time: Average amount of time a process is ready but waiting

o Response Time: in interactive systems, time until the system responds
to a command

o Response Ratio: (Turnaround Time)/(Execution Time) -- long jobs
should wait longer

CIS 505, Spring 2007 CPU Scheduling 5

Scheduling Issues

Different applications require different optimization

criteria

o Batch systems (throughput, turnaround time)

o Interactive system (response time, fairness, user

expectation)

o Real-time systems (meeting deadlines)

Overhead of scheduling

o Context switching is expensive (minimize context switches)

o Data structures and book-keeping used by scheduler

What’s being scheduled by OS?

o Processes in Unix, but Threads in Linux or Solaris

CIS 505, Spring 2007 CPU Scheduling 6

Basic Scheduling Algorithm: FCFS

FCFS - First-Come, First-Served

o Non-preemptive

o Ready queue is a FIFO queue

o Jobs arriving are placed at the end of queue

o Dispatcher selects first job in queue and this job

runs to completion of CPU burst

Advantages: simple, low overhead

Disadvantages: inappropriate for interactive

systems, large fluctuations in average

turnaround time are possible.

2

CIS 505, Spring 2007 CPU Scheduling 7

Example of FCFS

Workload (Batch system)
Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

FCFS schedule:

 | Job 1 | Job 2 | Job 3 |

 0 24 27 30

Total waiting time: 0 + 24 + 27 = 51

Average waiting time: 51/3 = 17

Total turnaround time: 24 + 27 + 30 = 81

Average turnaround time: 81/3 = 27

CIS 505, Spring 2007 CPU Scheduling 8

SJF - Shortest Job First

Non-preemptive
Ready queue treated as a priority queue based on smallest CPU-
time requirement

• arriving jobs inserted at proper position in queue
• dispatcher selects shortest job (1st in queue) and runs to completion

Advantages: provably optimal w.r.t. average turnaround time
Disadvantages: in general, cannot be implemented. Also,
starvation possible!
Can do it approximately: use exponential averaging to predict
length of next CPU burst
==> pick shortest predicted burst next!

CIS 505, Spring 2007 CPU Scheduling 9

Example of SJF

Workload (Batch system)
Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

SJF schedule:
 | Job 2 | Job 3 | Job 1 |

 0 3 6 30

Total waiting time: 6 + 0 + 3 = 9

Average waiting time: 3

Total turnaround time: 30 + 3 + 6 = 39

Average turnaround time: 39/3 = 13

SJF always gives minimum waiting time and turnaround

time

CIS 505, Spring 2007 CPU Scheduling 10

Exponential Averaging

 n+1 = tn + (1) n

n+1 : predicted length of next CPU burst

tn : actual length of last CPU burst

n : previous prediction

 = 0 implies make no use of recent history

(n+1 = n)

 = 1 implies n+1 = tn (past prediction not used).

 = 1/2 implies weighted (older bursts get less and

less weight).

CIS 505, Spring 2007 CPU Scheduling 11

 RR - Round Robin

Preemptive version of FCFS

Treat ready queue as circular

o arriving jobs are placed at end

o dispatcher selects first job in queue and runs until

completion of CPU burst, or until time quantum
expires

o if quantum expires, job is again placed at end

CIS 505, Spring 2007 CPU Scheduling 12

Example of RR

Workload (Batch system)
Job 1: 24 units, Job 2: 3 units, Job 3: 3 units

RR schedule with time quantum=3:
 | Job 1 | Job 2 | Job 3 | Job 1 |

 0 3 6 9 30

Total waiting time: 6 + 3 + 6 = 15

Average waiting time: 5

Total turnaround time: 30 + 6 + 9 = 45

Average turnaround time: 15

RR gives intermediate wait and turnaround time
(compared to SJF and FCFS)

3

CIS 505, Spring 2007 CPU Scheduling 13

Properties of RR

Advantages: simple, low overhead, works for interactive
systems

Disadvantages:
o if quantum is too small, too much time wasted in context switching

o if too large (i.e., longer than mean CPU burst), approaches FCFS

Typical value: 20 – 40 msec

Rule of thumb: Choose quantum so that large majority
(80 – 90%) of jobs finish CPU burst in one quantum

RR makes the assumption that all processes are equally
important

CIS 505, Spring 2007 CPU Scheduling 14

 HPF - Highest Priority First

General class of algorithms ==> priority

scheduling

Each job assigned a priority which may change

dynamically

May be preemptive or non-preemptive

Key Design Issue: how to compute priorities?

CIS 505, Spring 2007 CPU Scheduling 15

Multi-Level Feedback (FB)

Each priority level has a ready queue, and a time quantum

process enters highest priority queue initially, and (next) lower queue with each timer

interrupt (penalized for long CPU usage)

bottom queue is standard Round Robin

process in a given queue are not scheduled until all higher queues are empty

CIS 505, Spring 2007 CPU Scheduling 16

FB Discussion

I/O-bound processes tend to congregate in higher-level queues. (Why?)

This implies greater device utilization

CPU-bound processes will sink deeper (lower) into the queues.

Large quantum occasionally versus small quanta often

Quantum in top queue should be large enough to satisfy majority of I/O-
bound processes

Can assign a process a lower priority by starting it at a lower-level queue

Can raise priority by moving process to a higher queue, thus can use in
conjunction with aging

To adjust priority of a process changing from CPU-bound to I/O-bound,
can move process to a higher queue each time it voluntarily relinquishes
CPU.

CIS 505, Spring 2007 CPU Scheduling 17

UNIX Scheduler

CIS 505, Spring 2007 CPU Scheduling 18

Process Scheduling in Unix

Based on multi-level feedback queues

Priorities range from -64 to 63 (lower number means higher
priority)

Negative numbers reserved for processes waiting in kernel mode
o (that is, just woken up by interrupt handlers)

o (why do they have a higher priority?)

Time quantum = 1/10 sec (empirically found to be the longest
quantum that could be used without loss of the desired response
for interactive jobs such as editors)
o short time quantum means better interactive response

o long time quantum means higher overall system throughput since
less context switch overhead and less processor cache flush.

Priority dynamically adjusted to reflect
o resource requirement (e.g., blocked awaiting an event)

o resource consumption (e.g., CPU time)

4

CIS 505, Spring 2007 CPU Scheduling 19

Unix CPU Scheduler

Two values in the PCB

o p_cpu: an estimate of the recent CPU use

o p_nice: a user/OS settable weighting factor (-20..20) for flexibility;

default = 0; negative increases priority; positive decreases priority

A process' priority calculated periodically

priority = base + p_cpu + p_nice

and the process is moved to appropriate ready queue

CPU utilization, p_cpu, is incremented each time the system clock

ticks and the process is found to be executing.

p_cpu is adjusted once every second (time decay)

o Possible adjustment: divide by 2 (that is, shift right)

o Motivation: Recent usage penalizes more than past usage

o Precise details differ in different versions (e.g. 4.3 BSD uses current

load (number of ready processes) also in the adjustment formula)

CIS 505, Spring 2007 CPU Scheduling 20

Example (exercise)

Suppose p_nice is 0, clock ticks every 10msec, time quantum is 100msec, and
p_cpu adjustment every sec

Suppose initial base value is 4. Initially, p_cpu is 0

Initial priority is 4.

Suppose scheduler selects this process at some point, and it uses all of its
quantum without blocking. Then, p_cpu will be 10, priority recalculated to 10, as
new base is 0.

At the end of a second, p_cpu, as well as priority, becomes 5 (more likely to
scheduled)

Suppose again scheduler picks this process, and it blocks (say, for disk read)
after 30 msec. p_cpu is 8

Process is now in waiting queue for disk transfer

At the end of next second, p_cpu is updated to 4

When disk transfer is complete, disk interrupt handler computes priority using a
negative base value, say, -10. New priority is -6

Process again gets scheduled, and runs for its entire time quantum. p_cpu will
be updated to 14

CIS 505, Spring 2007 CPU Scheduling 21

 Summary of Unix Scheduler

Commonly used implementation with multiple priority
queues

Priority computed using 3 factors
o PUSER used as a base (changed dynamically)

o CPU utilization (time decayed)

o Value specified at process creation (nice)

Processes with short CPU bursts are favored

Processes just woken up from blocked states are
favored even more

Weighted averaging of CPU utilization

Details vary in different versions of Unix

