
1

1

CIS 505: Software Systems

OS Overview -- Processes and Threads

Insup Lee
Department of Computer and Information Science

University of Pennsylvania

CIS 505, Spring 2007

CIS 505, Spring 2007 Processes & Threads 2

Processes

 What is process?
o Program in execution

 Why need multiple
processes?
o Overlap between I/O and

computation
o Time sharing
o Multiple CPU allocations

CIS 505, Spring 2007 Processes & Threads 3

Control flow of a Web server

Read File
Send Data

Accept
Conn

Read
Request

Find
File

Send
Header

end

CIS 505, Spring 2007 Processes & Threads 4

Blocking steps

Read File
Send Data

Accept
Conn

Read
Request

Find
File

Send
Header

end

Network Blocking

Disk Blocking

CIS 505, Spring 2007 Processes & Threads 5

Event-driven programming
 “reactive” environments

o Windowing systems
o Network aware programs
o Device drivers

 What is an event? Some kind of notification
o Interrupts
o Signals
o Polling (via poll/select/etc)
o Callback (via function pointer)

 Good performance
o No processes!

 Lots of “if then else”
 So why processes/threads?

CIS 505, Spring 2007 Processes & Threads 6

Contents of a process

 A process includes
o An address space (code, data)
o A resource container (OS resource, accounting)
o A “thread of control”, which defines where the process is

currently executing (basically, PC, registers, and stack)

2

CIS 505, Spring 2007 Processes & Threads 7

Process Snapshot

Static data

Code

Dynamic data

Free space

Stack

CPU

(Virtual) Memory

PSW

Program Counter

Stack Pointer

CIS 505, Spring 2007 Processes & Threads 8

Process State Transition

Running

BlockedReady

Sc
he

du
ler

dis

pa
tch W

ait for

resource

Resource becomes
available

Create
a process

terminate

CIS 505, Spring 2007 Processes & Threads 9

The Fork System Call

 The fork() system call creates a "clone" of the
calling process.

 Identical in every respect except
o the parent process is returned a non-zero value (namely, the

process id of the child)
o the child process is returned zero.

 The process id returned to the parent can be
used by parent in a wait or kill system call.

CIS 505, Spring 2007 Processes & Threads 10

Snapshots after fork()

Static data

Code

Dynamic data

Free space

Stac
k

CPU

(Virtual) Memory

PSW for parent

Program Counter

Stack Pointer

Child pid Parent

Static data

Code

Dynamic data

Free space

Stac
k

CPU

(Virtual) Memory

PSW for child

Program Counter

Stack Pointer

 0 Child

CIS 505, Spring 2007 Processes & Threads 11

.

.

.

.

.

.

...

.

.

.

Copy-On-Write

 Child’s virtual address space
uses the same page mapping
as parent’s

 Make all pages read-only
 Make child process ready
 On a read, nothing happens
 On a write, generates an

access fault
o map to a new page frame
o copy the page over
o restart the instruction

Parent process

Child process

r
r

...

r
r

Page table

Page table

Physical
pages

CIS 505, Spring 2007 Processes & Threads 12

Example using fork

 1. #include <unistd.h>
 2. main(){
 3. pid_t pid;
 4. printf(“Just one process so far\n”);
 5. pid = fork();
 6. if (pid == 0) /* code for child */
 7. printf(“I’m the child\n”);
 8. else if (pid > 0) /* code for parent */
 9. printf(“The parent, child pid =%d\n”,
10. pid);
11. else /* error handling */
12. printf(“Fork returned error code\n”);
13. }

3

CIS 505, Spring 2007 Processes & Threads 13

Sample Question

 main(){
 int x=0;
 fork();
 x++;
 printf(“The value of x is %d\n”,
x);

 }
What will be the output?

CIS 505, Spring 2007 Processes & Threads 14

Spawning Applications

 fork() is typically used in conjunction with exec (or
variants)

pid_t pid;
if ((pid = fork()) == 0) {
 /* child code: replace executable image */
 execv("/usr/games/tetris", "-easy")
} else {
 /* parent code: wait for child to terminate */
 wait(&status)
}

CIS 505, Spring 2007 Processes & Threads 15

exec System Call

 A family of routines, execl, execv, ..., all eventually make a call
to execve.

 execve(program_name, arg1, arg2, ..., environment)

• text and data segments of current process replaced with those of
program_name

• stack reinitialized with parameters
• open file table of current process remains intact
• the last argument can pass environment settings
• as in example, program_name is actually path name of

executable file containing program

 Note: unlike subroutine call, there is no return after this call.
That is, the program calling exec is gone forever!

CIS 505, Spring 2007 Processes & Threads 16

Parent-Child Synchronization

 exit(status) - executed by a child process when it wants
to terminate. Makes status (an integer) available to
parent.

 wait(&status) - suspends execution of process until
some child process terminates
o status indicates reason for termination
o return value is process-id of terminated child

 waitpid (pid, &status, options)
o pid can specify a specific child
o Options can be to wait or to check and proceed

CIS 505, Spring 2007 Processes & Threads 17

Process Termination
 Besides being able to terminate itself with exit, a process can be

killed by another process using kill:
o kill(pid, sig) - sends signal sig to process with process-id pid. One

signal is SIGKILL (terminate the target process immediately).

 When a process terminates, all the resources it owns are
reclaimed by the system:
o “process control block” reclaimed
o its memory is deallocated
o all open files closed and Open File Table reclaimed.

 Note: a process can kill another process only if:
o it belongs to the same user
o super user

CIS 505, Spring 2007 Processes & Threads 18

How shell executes a command

 when you type a command, the shell forks a clone of itself
 the child process makes an exec call, which causes it to stop

executing the shell and start executing your command
 the parent process, still running the shell, waits for the child

to terminate

fork wait

exitexec Required job

Parent shell

Child

4

CIS 505, Spring 2007 Processes & Threads 19

UNIX Process Control

 UNIX provides a number of system and library calls
for process control including:
o fork - used to create a new process
o execve - to change the program a process is executing
o exit - used by a process to terminate itself normally
o abort - used by a process to terminate itself abnormally
o kill - used by one process to kill or signal another
o wait - to wait for termination of a child process
o sleep - suspend execution for a specified time interval
o getpid - get process id
o getppid - get parent process id

CIS 505, Spring 2007 Processes & Threads 20

Why Threads?

● Multitasking OS can do more than one thing
concurrently by running more than a single
process

● Processes can do several things concurrently be
running more than a single thread

● Each thread is a different stream of control that
can execute its instructions independently.

● Ex: A program (e.g., Browser) may consist of
the following threads:

● GUI thread
● I/O thread
● computation

CIS 505, Spring 2007 Processes & Threads 21

Single vs. Multi threaded

CIS 505, Spring 2007 Processes & Threads 22

Processes vs. Threads

 A process includes
o An address space (code, data)
o A resource container (OS resource, accounting; e.g., file

descriptors, memory map)
o A “thread of control”, which defines where the process is

currently executing (basically, PC, registers, and stack)

 Threads
o Separate the concepts of a “thread of control” from the rest of

the process
o A thread has its own

◆ Stack Pointer (SP), Program Counter (PC)
◆ All the other resources are shared by all threads of that process,

including open files, virtual address space, child processes

CIS 505, Spring 2007 Processes & Threads 23

Two Approaches to Threads

o User-level threads
o Kernel-support threads

Thread

0

Thread

1

Thread

2

Thread

3

Thread

4

Thread

5

Thread

0

Thread

1

Thread

2

Thread

3

Thread

4

Thread

5

Run Time system
Kernel Kernel

User
Space

User
Space

CIS 505, Spring 2007 Processes & Threads 24

User vs. Kernel Threads

 Thread management
done by user-level library

 Examples
- POSIX Pthreads
- Mach C-threads
- Solaris threads

 Supported by the kernel

 Examples
- Windows 95/98/NT/2000

 - Solaris
- Tru64 UNIX
- Linux

5

CIS 505, Spring 2007 Processes & Threads 25

User vs. Kernel-Level Threads

 Question
o What is the difference between user-level and kernel-level

threads?
 Discussions

o When a user-level thread is blocked on an I/O event, the
whole process is blocked

o A context switch of kernel-threads is expensive
o A smart scheduler (two-level) can avoid both drawbacks

CIS 505, Spring 2007 Processes & Threads 26

Implementing Threads in User Space

A user-level threads package

CIS 505, Spring 2007 Processes & Threads 27

User-Level Threads

• The run-time support system for threads is entirely in user space.
• The threads run on top of a run-time system, which is a collection of

procedures that manage threads.
• As far as the OS is concerned, it is a single (threaded) process.
• Threads can be implemented on an OS that does not support

thread (as a library package in user space to do threads
management)

• Each process can have its own customized scheduling algorithm.

CIS 505, Spring 2007 Processes & Threads 28

Implementing Threads in the Kernel

A threads package managed by the kernel

CIS 505, Spring 2007 Processes & Threads 29

Kernel-supported Threads

• No run-time system is needed.
• For each process, the kernel has a table with one entry

per thread, for thread’s registers, state, priority, and
other information.

• All calls that might block a thread are implemented as
system calls, at considerably greater cost than a call to a
run-time system procedure.

• When a thread blocks, the kernel can run either another
thread from the same process, or a thread from a
different process.

CIS 505, Spring 2007 Processes & Threads 30

User-level vs. Kernel-supported Threads

 Assume:
o Process A has one thread and Process B has 100 threads.
o Each process receives the same number of time slices.

 User-level Thread:
o A thread in process A runs 100 times as fast as a thread in

process B.
o One blocking system call blocks all threads in process B.

 Kernel-supported Threads:
o Process B receives 100 times the CPU time than process A.
o Switching among the thread is more time-consuming because the

kernel must do the switch.
o Process B could have 100 system calls in operation concurrently.

6

CIS 505, Spring 2007 Processes & Threads 31

Processes and Threads
 A UNIX Process is

o a running program with
o a bundle of resources (file descriptor table,

address space)
 A thread has its own

o stack
o program counter (PC)
o All the other resources are shared by all threads

of that process. These include:
◆ open files
◆ virtual address space
◆ child processes

CIS 505, Spring 2007 Processes & Threads 32

Typical Thread API

 Creation
o Create, Join

 Mutual exclusion
o Acquire (lock), Release (unlock)

 Condition variables
o Wait, Signal, Broadcast

CIS 505, Spring 2007 Processes & Threads 33

POSIX Threads

● IEEE POSIX created a standard for
threads to ease porting of threaded
applications

● Commonly called “pthreads”
● User-level thread implementation
● Other thread APIs (i.e., Solaris threads,

Linux threads) use similar semantics

CIS 505, Spring 2007 Processes & Threads 34

Thread Creation

 POSIX standard API for multi-threaded
programming

 A thread can be created by pthread_create call
 pthread_create (&thread, 0, start, args)

ID of new thread is returned in this variable

used to define thread attributes (e.g., Stack size)
0 means use default attributes

Name/address of the routine
where new thread should begin executing

Arguments passed to start

CIS 505, Spring 2007 Processes & Threads 35

Example: When are threads useful?

Remote
User

rlogin
Local

Applications

ri

ro li

lo

CIS 505, Spring 2007 Processes & Threads 36

Sample Code

typedef struct { int i, o } pair;

rlogind (int ri, ro, li, lo) {

 pthread_t in_th, out_th;

 pair in={ri,lo}, out={li,ro};

 pthread_create(&in_th,0, incoming, &in);

 pthread_create(&out_th,0, outgoing, &out);

}

Note: 2 arguments are packed in a structure

Problem: If main thread terminates, memory for in and out structures
may disappear, and spawned threads may access incorrect memory
locations
If the process containing the main thread terminates, then all
threads are automatically terminated, leaving their jobs unfinished.

7

CIS 505, Spring 2007 Processes & Threads 37

Ensuring main thread waits…

typedef struct { int i, o } pair;

rlogind (int ri, ro, li, lo) {

 pthread_t in_th, out_th;

 pair in={ri,lo}, out={li,ro};

 pthread_create(&in_th,0, incoming, &in);

 pthread_create(&out_th,0, outgoing, &out);

 pthread_join(in_th,0);

 pthread_join(out_th,0);

}

CIS 505, Spring 2007 Processes & Threads 38

Thread Termination

 A thread can terminate
o by executing pthread_exit, or
o By returning from the initial routine (the one specified at the time

of creation)

 Termination of a thread unblocks any other thread that’s
waiting using pthread_join

 Termination of a process terminates all its threads

CIS 505, Spring 2007 Processes & Threads 39

Example: Hello World
void *print_message(void *ptr);

void main (void)
{
 pthread_t thread1, thread2;
 /* create first thread */
 if (pthread_create(&thread1, NULL, print_message, (void*) "Hello")) {
 perror(”pthread_create : can't create thread 1");
 exit(-1);
 }
 /* create second thread */
 if (pthread_create(&thread2, print_message, (void*) "World")) {
 perror(”pthread_create : can't create thread 2");
 exit(-2);
 }
 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);
 exit(0);
}

CIS 505, Spring 2007 Processes & Threads 40

Example: Hello World (continued)

Here’s the function that gets executed by each thread:
void *print_message(void *ptr)
{
 char *msg = (char *) ptr;

 printf("%s ", msg);
 return NULL;
}

What’s the output of the program?
 There is no unique answer since the output depends

on how the thread scheduler schedules the individual
threads.

CIS 505, Spring 2007 Processes & Threads 41

Synchronization issues

● the threads execute concurrently
● there is no guarantee that the first thread reaches its
printf statement prior to the second thread

● without the pthread_join, the parent thread may
execute the exit statement prior to either of the threads
reaching its printf statement.
This would terminate the entire process including the two child

threads without anything being printed!

✦ Never rely on the timing of the thread scheduler!

09/29/98CIS 505, Spring 2007 Processes & Threads 42

Thread Synchronization with Semaphores

int sem_init(sem_t *sem, int pshared,
 unsigned int value)

sem_init initializes the semaphore pointed to by sem to
count.

if pshared is nonzero, then the semaphore is shared
 between processes.

8

CIS 505, Spring 2007 Processes & Threads 43

Semaphores operations (continued)

● int sem_wait(sem_t *sem)
blocks until the semaphore count pointed to by sem is greater
than zero and then atomically decrements the count.

● int sem_trywait(sema_t *sem)
atomically decrements the count pointed to by sem, if the count
is greater than zero

What the difference?
With sem_wait if the lock is already zero, the process
will block until it becomes zero. sem_trywait will
return if the semaphore is already locked

CIS 505, Spring 2007 Processes & Threads 44

Semaphores operations (continued)

● int sem_post(sem_t *sem)
atomically increments the count of the
semaphore pointed to by sem. If there are any
threads blocked on the semaphore, one will
be unblocked.

● int sem_destroy(sema_t *sem)
destroys any state associated with the
semaphore pointed to by sem.

CIS 505, Spring 2007 Processes & Threads 45

Improved Hello World program

void *print_message(void *ptr);
sem_t world, barrier;

void main (void)
{
 pthread_t thread1, thread2;
 sem_init(&world, 1, NULL, NULL);
 sem_init(&barrier, 0, NULL, NULL);

 if (pthread_create(&thread1, NULL, print_message, (void*) "Hello”)) {
 perror("thread_create : can't create thread 1");
 exit(-1);
 }
 sem_wait(&world);

 /* to be continued ... */

CIS 505, Spring 2007 Processes & Threads 46

Improved Hello World (continued)

 /* ... continued */
 if (thr_create(NULL, 0, print_message, (void*) "World", 0L, &thread2))
 exit(-2);
 sema_wait(&barrier);
 sema_wait(&barrier); /* this ensures that both threads have printed */
 exit(0);
}
void *print_message(void *ptr)
{
 char *msg = (char *) ptr;
 printf("%s ", msg);
 sema_post(&world);
 sema_post(&barrier);
 return NULL;
}

CIS 505, Spring 2007 Processes & Threads 47

Deadlock

Thread 1
sem_wait(&s1);
 sem_wait(&s2);
 /* critical section */
 sem_post(&s2);
sem_post(&s1);

Thread 2
sem_wait(&s2);
 sem_wait(&s1);
 /* critical section */
 sem_post(&s1);
sem_post(&s2);

When programming with threads we have to be careful to
avoid deadlock

CIS 505, Spring 2007 Processes & Threads 48

Dining Philosophers

 Philosophers eat/think
 Eating needs 2 forks
 Pick one fork at a time
 How to prevent deadlock

9

CIS 505, Spring 2007 Processes & Threads 49

The Dining Philosopher Problem
• Five philosopher spend their lives thinking + eating.
• One simple solution is to represent each chopstick by a semaphore.
• Down (i.e., P) before picking it up & up (i.e., V) after using it.
 var fork: array[0..4] of semaphores=1

philosopher i
 repeat

 down(fork[i]);
 down(fork[i+1 mod 5]);
 ...
 eat
 ...
 up(fork[i]);
 up(fork”[i+1 mod 5]);
 ...
 think
 ...
 forever

• Is deadlock possible?

