
1

1

CIS 505: Software Systems

Lecture Note on Remote Procedure Call

Insup Lee

Department of Computer and Information Science

University of Pennsylvania

Spring 2007

CIS 505, Spring 2007 RPC 2

Layered Protocols (1)

Figure 4-1. Layers, interfaces, and protocols
in the OSI model.

CIS 505, Spring 2007 RPC 3

Layered Protocols (2)

Figure 4-2. A typical message as it appears on the
network.

CIS 505, Spring 2007 RPC 4

Middleware Protocols

Figure 4-3. An adapted reference model
for networked communication.

2

CIS 505, Spring 2007 RPC 5

A brief history

DP (Distributed Processes) - Language support

for distributed programming, Per Brinch Hansen

in 1978

Birrell and Nelson in 1980, based on work done

at Xerox PARC.

Similar idea used in RMI, CORBA or COM

standards

Core of many client-server systems

Transparency is the goal!

CIS 505, Spring 2007 RPC 6

Remote procedure call

A remote procedure call makes a call to a

remote service look like a local call

o RPC makes transparent whether server is local or

remote

o RPC allows applications to become distributed

transparently

o RPC makes architecture of remote machine

transparent

CIS 505, Spring 2007 RPC 7

Clients and Servers

A common model for structuring distributed

computation

Server

o A program (or collection of programs) that provide

some service, e.g., file service, name service, …

o The server may exist on one or more nodes.

Client

o A program that uses the service.

CIS 505, Spring 2007 RPC 8

Client-server interaction

client server
“binds” to

server
registers with

name service

3

CIS 505, Spring 2007 RPC 9

Client-server interaction

client server
“binds” to

server

sends request

registers with

name service

receives request

action

sends response

CIS 505, Spring 2007 RPC 10

Types of Communication

Figure 4-4. Viewing middleware as an intermediate
(distributed) service in application-level communication.

CIS 505, Spring 2007 RPC 11

The Problem with Messages

Messages are flexible, but

They are not a natural programming model

o Programmers have to worry about message formats

o messages must be packed and unpacked

o messages have to be decoded by server to figure out

what is requested

o messages are often asynchronous

o they may require special error handling functions

CIS 505, Spring 2007 RPC 12

Procedure Call

A more natural way to communicate

o every programming language supports it

o semantics are well defined and understood

o natural for programmers to use

Basic idea: define a server as a module that

exports a set of procedures that can be called

by client programs.

call

return

Client Server

4

CIS 505, Spring 2007 RPC 13

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack before the call
to read (fd,buf,nbytes)

b) The stack while the called procedure is active

CIS 505, Spring 2007 RPC 14

(Remote) Procedure Call

Use procedure call as a model for distributed

communication.

Many issues:

o how do we make this invisible to the programmer?

o what are the semantics of parameter passing?

o how is binding done (locating the server)?

o how do we support heterogeneity (OS, arch.,

language)

o etc.

CIS 505, Spring 2007 RPC 15

Remote Procedure Call

Goal – make RPC look as much like local PC as

possible.

Uses computer/language support.

There are 3 components on each side:

o a user program (client or server)

o a set of stub procedures

o RPC runtime support

CIS 505, Spring 2007 RPC 16

RPC Stubs

A client-side stub is a procedure that looks to

the client as if it were a callable server

procedure.

A server-side stub looks to the server as if it’s a

calling client.

The stubs send messages to each other to

make RPC happen.

5

CIS 505, Spring 2007 RPC 17

RPC Call Structure (1)

call foo(x,y)

proc foo(a,b) call foo(x,y)

proc foo(a,b)

 begin foo...

 end foo

client

program

client

stub

RPC

runtime
RPC

runtime

server

stub

server

program

Call

client makes

local call to

stub proc.

stub builds msg

packet, inserts

params

runtime sends

msg to remote

node

server is

called by

its stub

stub unpacks

params and

makes call

runtime

receives msg

and calls stub

call foo

send msg

call foo

msg received

CIS 505, Spring 2007 RPC 18

RPC Return Structure (2)

call foo(x,y)

proc foo(a,b) call foo(x,y)

proc foo(a,b)

 begin foo...

 end foo

client

program

client

stub

RPC

runtime
RPC

runtime

server

stub

server

program

return

client continues

stub unpacks

msg, returns

to caller

runtime

receives msg,

calls stub

server proc

returns

stub builds

result msg

with output

args

runtime

responds

to original

msg

return

msg received

return

send msg

CIS 505, Spring 2007 RPC 19

Stub Generation

Server program defines the server’s interface

using an interface definition language (IDL)

o Define names, parameters, and types

A stub compiler reads the IDL and produces two

stub procedures for each server procedure

o The server program links it with the server-side stubs.

o The client program links with the client-side stubs.

CIS 505, Spring 2007 RPC 20

RPC Marshalling

The packing of procedure parameters into a

message packet.

The RPC stubs call type-specific procedures to

marshall (or unmarshall) all of the parameters to

the call.

Representation needs to deal with byte ordering

issues (big-endian versus little endian), strings

(some CPUs require padding), alignment, etc

6

CIS 505, Spring 2007 RPC 21

Passing Value Parameters

Steps involved in doing remote computation through RPC

2-8

CIS 505, Spring 2007 RPC 22

Representation Conversion during Passing Value

Parameters

a) Original message on the Pentium

b) The message after receipt on the SPARC

c) The message after being inverted. The little numbers in boxes
indicate the address of each byte

CIS 505, Spring 2007 RPC 23

RPC Parameter passing

By value

By reference

Size limit?

CIS 505, Spring 2007 RPC 24

Parameter Specification and Stub Generation

a) A procedure

b) The corresponding message.

7

CIS 505, Spring 2007 RPC 25

RPC Binding

The process of connecting the client and server

The server, when it starts up, exports its

interface, identifying itself to a network name

server .

The client, before issuing any calls, imports the

server, which causes the RPC runtime to lookup

the server through the name service and contact

the requested server to setup a connection.

The import and export are explicit calls in the

code.

CIS 505, Spring 2007 RPC 26

Writing a Client and a Server

The steps in writing a client and a server in DCE RPC.

2-14

CIS 505, Spring 2007 RPC 27

Binding a Client to a Server

Client-to-server binding in DCE.

2-15

CIS 505, Spring 2007 RPC 28

Transparencies in RPC

A remote procedure call makes a call to a

remote service look like a local call

o RPC makes transparent whether server is local or

remote

o RPC allows applications to become distributed

transparently

o RPC makes architecture of remote machine

transparent

8

CIS 505, Spring 2007 RPC 29

Stubs: obtaining transparency

Compiler generates from API stubs for a procedure on
the client and server

Client stub
o Marshals arguments into machine-independent format

o Sends request to server

o Waits for response

o Unmarshals result and returns to caller

Server stub
o Unmarshals arguments and builds stack frame

o Calls procedure

o Server stub marshalls results and sends reply

CIS 505, Spring 2007 RPC 30

RPC vs. PC

3 properties of distributed computing that make

achieving transparency difficult:

o Memory access

Pointers are local to address space

How to implement pass by reference?

o Latency

Orders of magnitude larger than PCs

o Partial failures

CIS 505, Spring 2007 RPC 31

Partial failures

In local computing:

o if machine fails, application fails

In distributed computing:

o if a machine fails, part of application fails

o one cannot tell the difference between a machine

failure and network failure

How to make partial failures transparent to

client?

CIS 505, Spring 2007 RPC 32

Strawman solution

Make remote behavior identical to local

behavior:

o Every partial failure results in complete failure

You abort and reboot the whole system

Many catastrophic failures

o You wait patiently until system is repaired

Clients block for long periods

System might not be able to recover

9

CIS 505, Spring 2007 RPC 33

Real solution: break transparency

Expose RPC properties to client, since you

cannot hide them

Application writers have to decide how to deal

with partial failures

Which invocation semantics to provide?

CIS 505, Spring 2007 RPC 34

Request-reply

client server
sends request

reply

Partial Failures: what and when can fail?

CIS 505, Spring 2007 RPC 35

Invocation semantics

Maybe
o Don’t know, or once

At least once:
o Don’t know, or at least once

At most once
o Don’t know, or once

Exactly-once
o Impossible in practice

Zero or once
o Transactional semantics

At-most-once most practical
o But different from PC

CIS 505, Spring 2007 RPC 36

Maybe

Add timeout

o One request is sent

o Timeout

What’s wrong with this?

10

CIS 505, Spring 2007 RPC 37

Overcoming lost packets

client server

sends request

retransmit

Timeout!

reply
A = a + 1

CIS 505, Spring 2007 RPC 38

At least once

Successful return

o Executed at lease once.

Only for idempotent functions, or need to

suppress/compensate duplicated executions

CIS 505, Spring 2007 RPC 39

At most once

Suppress duplicated requests

Client

o Each request has an unique id

Server

o Saves request results

CIS 505, Spring 2007 RPC 40

Cost of fault-tolerant version

client server
sends request

11

CIS 505, Spring 2007 RPC 41

Overcoming lost packets

client server
sends request

retransmit

ack for request duplicate request:

ignored

Timeout!

CIS 505, Spring 2007 RPC 42

Overcoming lost packets

client server
sends request

retransmit

ack for request

reply

Timeout!

CIS 505, Spring 2007 RPC 43

Overcoming lost packets

client server
sends request

retransmit

ack for request

reply

ack for reply

Timeout!

CIS 505, Spring 2007 RPC 44

Costs in fault-tolerant version?

Acks are expensive.

o Try and avoid them, e.g., if the reply will be sent

quickly suppress the initial ack

Retransmission is costly.

o Try and tune the delay to be “optimal”

For big messages, send packets in bursts and

ack a burst at a time, not one by one

12

CIS 505, Spring 2007 RPC 45

Big packets

client server
sends request

as a burst

ack entire burst

reply

ack for reply

CIS 505, Spring 2007 RPC 46

RPC versus local procedure call

Restrictions on argument sizes and types

New error cases:

o Bind operation failed

o Request timed out

o Argument “too large” can occur if, e.g., a table grows

Costs may be very high

... so RPC is actually not very transparent!

CIS 505, Spring 2007 RPC 47

RMI for Distributed Objects

An object could be a program or a data object

A program object can invoke an operation on some

other kind of object if it knows its type and has a handle

on an instance of it.

RMI (Remote Method Invocation)

Each object has:

o Type

o Interface

o “state”

o Server location

o Unique handle or identifier

CIS 505, Spring 2007 RPC 48

Distributed objects

host a

object storage

server

host b

13

CIS 505, Spring 2007 RPC 49

Pass by reference in RMI

Objects can be declared remote

Pointers to remote objects are passed in RMI

Garbage Collection of Distributed Objects

RMI Lease based protocol

o Remote reference is valid for a limited time

o Client has to renew lease.

