What is Security?

- Dictionary Definition: protection or defense against attack, interference, espionage, etc.
- Computer Security Classification:
 - Confidentiality (or Secrecy)
 - Protecting against unauthorized data disclosure and ensuring the authenticity of the data’s source
 - Integrity
 - Preventing unauthorized data modification
 - Availability (or Necessity)
 - Preventing data delays or denials (removal)

Goals of Security

DATA

Confidentiality

DATA

Integrity

DATA

Availability

Source: GUNTER

Terminology

- Vulnerability (weakness/defects that can be exploited)
 - Ill-chosen passwords
 - Software bugs
 - Communication without encryption
 - Incorrect set-ups
- Attack (ways of exploiting vulnerability)
 - Password crackers
 - Viruses and worms
 - Denial of service
- Intruders (adversaries that try to attack)
 - Terrorists
 - Espionage
 - Hackers
Security Goals

- **Data Confidentiality**
 - Keep data and communication secret
 - Privacy of personal financial/health records, etc.
 - Military and commercial relevance

- **Data Integrity**
 - Protect reliability of data against tampering
 - Can we be sure of the source and content of information?

- **System Availability**
 - Data/resources should be accessible when needed
 - Protection against denial of service attacks

Security threats

- Interception
- Interruption
- Modification
- Fabrication

Security Policy

- Security policy is a written statement describing what assets are to be protected and why, who is responsible, which behaviors are acceptable or not.

- The policy addresses
 - Physical security
 - Network security
 - Access authorizations
 - Virus protection
 - Disaster recovery

Specific Elements of a Security Policy

- Authentication
 - Who is trying to access the site?
- Access Control
 - Who is allowed to logon and access the site?
- Secrecy
 - Who is permitted to view selected information
- Data integrity
 - Who is allowed to change data?
- Audit
 - What and who causes selected events to occur, and when?
Security mechanisms

- Encryption
- Authentication
- Authorization
- Auditing

The News

Exploit for Vulnerability in Microsoft Internet Explorer

BBC used to entice cyber victims

People are being warned about scams using fake e-mails containing links to malicious software. Cyber criminals are using the new technology to send a secretly disabled file to Microsoft's Internet Explorer.

If users click on the link, they are taken to a fake website that steals credit card and personal information.

February 27, 2006

Cyberthieves Silently Copy Your Passwords as You Type

Exploit for Vulnerability in Apple Safari Browser

US-CERT is aware of publicly available exploit code for a vulnerability in Apple Safari web browser. The Apple Safari browser will automatically open certain "safe" files, such as scripts, images, and archive files. A user simply needs to click on a malicious link in an e-mail or on a web page to allow the exploit code to run.

February 23, 2006

Some Statistics ...

- It is estimated that PC Viruses cost businesses approximately $55 Billion in damages in 2003
- Sapphire/Slammer SQL worm required roughly 10 minutes to spread worldwide making it by far the fastest worm to date.
- 3780 Software vulnerabilities reported in 2004

Stats from www.cert.org and www.securitystats.com

Software Vulnerabilities

- Everyday we read about new software vulnerabilities in the news
- On 2nd April, 2005:
 - Microsoft Windows HTML Help ActiveX Control Cross-Domain Vulnerability
 - Multiple Denial of Service Vulnerabilities in Cisco IOS
 - Multiple Vulnerabilities in Microsoft Windows Components

- Visit www.cert.org for the latest
More Analysis...

Stats from http://nvd.nist.gov/

Design Errors
Race Conditions
Configuration Errors
Input Validation Errors

Vulnerability Statistics

Risk analysis

- Countermeasures are procedures, either physical or logical, that recognize, reduce, or eliminate a threat.

![Risk management model](image)

What do we mean by security?

- What is a secure program?
- What is computer security?

When is a program secure?

- When it does exactly what it should?
 - Not more.
 - Not less.

- But how do we know what a program is supposed to do?
 - Somebody tells us? (But do we trust them?)
 - We write the code ourselves? (But what fraction of the software you use have you written?)
When is a program secure?

- 2nd try: A program is secure when it doesn’t do something it shouldn’t.
- Easier to specify a list of “bad” things:
 - Delete or corrupt important files
 - Crash my system
 - Send my password over the Internet
 - Send threatening e-mail to the present posing as me
 - How do you specify all “bad” things?
- And… what if most of the time the program doesn’t do bad things, but occasionally it does? Is it secure?

Claim: Perfect security does not exist.
- Security vulnerabilities are the result of violating an assumption about the software (or, more generally the entire system).
- Corollary: As long as you make assumptions, you’re vulnerable.
- And: You always need to make assumptions!

Example: Buffer overflows
- Assumption (by programmer) is that the data will fit in the buffer.
- This leads to a vulnerability: Supply data that is too big for the buffer (thereby violating the assumptions)
- Vulnerabilities can be exploited by an attack.

When is a program secure enough?

- Security is all about tradeoffs
 - Performance
 - Cost
 - Usability
 - Functionality
- The right question is: how do you know when something is secure enough?
 - Still a hard question
 - Requires understanding of the tradeoffs involved

Is Internet Explorer 6 secure enough?
- Depends on context

Attacks

- **OS Security**
 - Trapdoors, Trojan Horse, Buffer Overflow and its solutions

- **Network Security**
 - Worms, Morris internet worm
 - Viruses
 - Kinds of viruses (Replication and Payload views)
 - Bootstrap Viruses, Melissa macro virus, Antivirus Techniques
How to think about tradeoffs?

- What is it that you are trying to protect?
 - Music collection vs. nuclear missile design data
- How valuable is it?
- In what way is it valuable?
 - Information may be important only to one person (e.g., private email or passwords)
 - Information may be important because it is accurate and reliable (e.g., bank’s accounting information)
 - A computer system may be important because of a service it provides (e.g., Google’s web servers)

Security Techniques

- Cryptography
 - Can ensure confidentiality and integrity
 - Typically used for authentication
- Firewalls, passwords, access control
 - Authorization mechanisms
- Java bytecode verifier
 - Memory safety against malicious/defective code

Downloaded software

- Sandboxing: encapsulate programs in a box but be liberal on what to accept
 - Java sandbox confines Java applet actions to a security model-defined set of rules
 - Rules apply to all untrusted applets, applets that have not been proven secure
- Verification: analyze code before executing but then minimize runtime checks
 - Proof-carrying code
- Certification: trust someone else to analyze code and execute with no checking
 - Signed Java applets contain embedded digital signatures which serve as a proof of identity

Java-MaC (Monitoring and Checking)

[Kim, Viswanathan, Kannan, Lee, Sokolsky, FMSD 2004]
Design of the MaC Languages

- Must be able to reason about both time instants and information that holds for a duration of time in a program execution.
 - Events and conditions are a natural division, which is also found in other formalisms such as SCR.
 - Conditions, which are true or false for a finite duration of time (e.g., is variable x >5?)
 - Events, which are either present or absent at some instant of time (e.g., is the control right now at the end of method f?).
- Need temporal operators combining events and conditions in order to reason about traces.

Logical Foundation

\[C := c | \text{defined}(C) | [E_1, E_2] | \neg C | C_1 \vee C_2 | C_1 \wedge C_2 \]

\[E := e | \text{start}(C) | \text{end}(C) | E_1 \vee E_2 | E_1 \wedge E_2 | \]

- Conditions interpreted over 3 values: true, false and undefined.
- \([., .)\) pairs a couple of events to define an interval.
- \text{start} and \text{end} define the events corresponding to the instant when conditions change their value.

The MaC languages

- PEDL: abstraction
- MEDL: abstract transformation
- SADL: feedback

Run-time state:
- method call
- object state
- local variables

Abstract state:
- events
- conditions

Java-MaC Framework

- Java Bytecode
- PEDL
- MEDL
- SADL
- Instrumentor
- MaC Compilers
- Event Recognizer
- Checker
- Steerer
- MaC Verifiers

CIS 505, Spring 2007 Security 25
CIS 505, Spring 2007 Security 26
CIS 505, Spring 2007 Security 27
CIS 505, Spring 2007 Security 28
Similar techniques, different purposes

- Check security policy
 - Security automata, edit automata
 - Model-Carrying Code (MCC)
- Intrusion detection
 - Extract from the target program to ensure that the program has not been tampered
 - Signature-based approach

Must not allocate more than n

PEDL

```plaintext
export event mallocCall;

mommeth int malloc(int);

event mallocCall = start(malloc(int));
```

MEDL

```plaintext
import event mallocCall;

import action halt;

var int memory;

alarm violateMemoryPolicy = end(memory < 1000);

mallocCall -> {   // value(mallocCall,0) returns arg of malloc()
  memory' = memory + value(mallocCall,0);
}

violateMemoryPolicy -> { invoke(halt); }
```

SADL

```plaintext
steering action halt = // exit before next malloc() call
  (call System.exit(); ) before call malloc(int);
```

Security Policy in Security/Edit Automata

Example (modified from [BLW02]): Limit the amount of memory that an application can allocate for itself

Property: application must not allocate memory more than n

![Automata Diagram]

Model-Carrying Code (MCC)

- How can we run untrusted code on our machine?
 - Untrusted code comes with a model of its security-relevant behavior
 - Users have their own security policies
 - Employ two types of checking
- Static checking: to ensure that untrusted program’s model respects user’s security policy
 - Use model checking to check that Beh(Model) are in Beh(Policy)
- Run-time checking: to ensure that program behaves as specified by model
 - Use runtime checking with
 - Model is a specification (Automata)
 - Events are system calls
Security Techniques

- **Protection from Covert channels**
 - Shielding the computer to prevent interception and subsequent interpretation of electromagnetic radiation

- **Social aspects of security**
 - Controlling who is allowed to make changes to a computer system (both its hardware and software)

- **Physical aspects of security**
 - Laptop theft at UC Berkeley

Some Possible Scenarios

- Alice buys a book from Bob’s book store.
- Inter-corporate trading for Charlie’s Plastic Company.
- Daisy electronic market.
- …

Alice Buys a Book

- Alice shops for a book on the internet using WWW.
- She finds the desired book from Bob’s book store and makes the order using a web form provided by Bob’s.
- Bob confirms that the order really comes from Alice’s.
- She sends her credit card number, suitably encrypted.
- The book is delivered through UPS.
Inter-Corporate Trading

- Charlie’s Plastic Makers is a medium-sized company in Canada with long-established requirements for high-quality plastic which it buys from Plasticorp.
- Plasticorp aims to reduce costs of customer transactions by using secure messaging with its regular customers.
- Origin and confidentiality of all correspondence must be ensured.

Daisy’s Electronic Market

- Daisy is an entrepreneurial small businessperson who works from her home basement.
- She buys items from suppliers willing to do business wholly electronically, repackages them, and sells them through a WWW storefront.
- Effective marketing of the web page and very low overhead provide Daisy’s competitive edge.

What are the issues?

- **Accountability** -- Security relevant activities on a system can be traced to individuals who may be held responsible for their actions
- **Availability** -- System resources are safeguarded from tampering and are available for authorized users at the time and in the format needed
- **Access Control** -- Access to the system resources is limited to authorized individuals, entities, or processes
- **Confidentiality** -- Information is not accessed by or disclosed to unauthorized individuals, entities, or processes
- **Identification and Authentication** -- Verification that the originator of a transaction is the originator
- **Integrity** -- Information is not undetectably altered or destroyed by an unauthorized person or process
- **Non-repudiation** -- Undeniable proof of participation by the sender and/or receiver in a transaction
- **Privacy** -- individual rights to nondisclosure