
1

CIS 505: Software Systems

Lecture Note on Multicasting

Insup Lee

Department of Computer and Information Science

University of Pennsylvania

CIS 505, Spring 2007

CIS 505, Spring 2007 mutlicast 2

Reliable multicast

Multicast – group communication

States or replicas should be a deterministic

function of their initial states and the sequence

of operations applied to them.

Message should be delivered to all members in

a process group.

Latency and scalability?

CIS 505, Spring 2007 mutlicast 3

Basic Reliable-Multicasting Schemes

A simple solution to reliable multicasting when all
receivers are known and are assumed not to fail

a) Message transmission

b) Reporting feedback

CIS 505, Spring 2007 mutlicast 4

Nonhierarchical Feedback Control

Several receivers have scheduled a request for

retransmission, but the first retransmission request leads

to the suppression of others.

2

CIS 505, Spring 2007 mutlicast 5

Hierarchical Feedback Control

The essence of hierarchical reliable multicasting.

a) Each local coordinator forwards the message to its children.

b) A local coordinator handles retransmission requests.
CIS 505, Spring 2007 mutlicast 6

Atomic Multicast (Layered Architecture)

Figure 8-12. The logical organization of a distributed system to
distinguish between message receipt and message delivery.

CIS 505, Spring 2007 mutlicast 7

Virtual Synchrony

Figure 8-13. The principle of virtual synchronous
multicast.

CIS 505, Spring 2007 mutlicast 8

Ordered multicast

Unordered multicasts

FIFO ordering

o Sender ordered

Causal ordering

o Happens-before

Total ordering

Assume no overlapping groups

3

CIS 505, Spring 2007 mutlicast 9

Message Ordering (1)

Three communicating processes in the same group.

The ordering of events per process is shown along the

vertical axis.

receives m1receives m2sends m2

receives m2receives m1sends m1

Process P3Process P2Process P1

CIS 505, Spring 2007 mutlicast 10

Message Ordering (2)

Four processes in the same group with two different
senders, and a possible delivery order of messages under
FIFO-ordered multicasting

receives m4receives m4

receives m2receives m2

sends m4receives m1receives m3sends m2

sends m3receives m3receives m1sends m1

Process P4Process P3Process P2Process P1

CIS 505, Spring 2007 mutlicast 11

FIFO-ordered Multicast

Fifo or sender ordered multicast:

Messages are delivered in the order they were

sent (by any single sender)

p

q

r

s

a e

CIS 505, Spring 2007 mutlicast 12

FIFO-ordered multicast

Fifo or sender ordered multicast

Messages are delivered in the order they were

sent (by any single sender)

p

q

r

s

a

b c d

e

delivery of c to p is delayed until after b is delivered

4

CIS 505, Spring 2007 mutlicast 13

Implementing FIFO order

Basic reliable multicast algorithm has this

property

o Without failures all we need is to run it on FIFO

channels (like TCP)

o With failures need to be careful about the order in

which things are done but problem is simple

CIS 505, Spring 2007 mutlicast 14

Causally-ordered multicast

Causal or happens-before ordering:

If send(a) send(b) then deliver(a) occurs

before deliver(b) at common destinations

p

q

r

s

a

b

CIS 505, Spring 2007 mutlicast 15

Causally-ordered multicast

Causal or happens-before ordering:

If send(a) send(b) then deliver(a) occurs

before deliver(b) at common destinations

p

q

r

s

a

b c
delivery of c to p is delayed until after b is delivered

CIS 505, Spring 2007 mutlicast 16

Causally-ordered multicast

Causal or happens-before ordering:

If send(a) send(b) then deliver(a) occurs

before deliver(b) at common destinations

p

q

r

s

a

b c

e

delivery of c to p is delayed until after b is delivered

e is sent (causally) after b

5

CIS 505, Spring 2007 mutlicast 17

Causally-ordered multicast

Causal or happens-before ordering:

If send(a) send(b) then deliver(a) occurs

before deliver(b) at common destinations

p

q

r

s

a

b c

e

delivery of c to p is delayed until after b is delivered

delivery of e to r is delayed until after b&c are delivered

CIS 505, Spring 2007 mutlicast 18

Implementing causal order

Start with a FIFO multicast

Frank Schmuck showed that we can always strengthen
this into a causal multicast by adding vector time (no

additional messages needed)

o If group membership were static this is easily done, small

overhead

o With dynamic membership, at least abstractly, we need to

identify each VT index with the corresponding process.

CIS 505, Spring 2007 mutlicast 19

Observations

These two orderings are for asynchronous:

o Sender doesn’t get blocked and can deliver a copy to itself

without “stopping” to learn a safe delivery order

o If used this way, the multicast can seem to sit in the output

buffers a long time, leading to surprising behavior

o But this also gives the system a chance to concatenate

multiple small messages into one larger one.

Sometimes, we want a replicated object or service that

advances through a series of transitions in the same
order

o Clearly will need all copies to make the same transitions

o Leads to a need for totally ordered multicast

CIS 505, Spring 2007 mutlicast 20

Totally-ordered multicast

Total or locally total multicast:

Messages are delivered in same order to all

recipients (including the sender)

p

q

r

s

a

b c d

e

all deliver a, b, c, d, then e

6

CIS 505, Spring 2007 mutlicast 21

Totally-ordered multicast

Can visualize as “closely synchronous”

Real delivery is less synchronous, as on the

previous slide

p

q

r

s

a

b c d

e

all deliver a, b, c, d, then e

CIS 505, Spring 2007 mutlicast 22

Implementing Total Order

Many ways have been proposed

o Centralized sequencer

o Just have a token that moves around

Token has a sequence number

When you hold the token you can send the next burst of

multicasts

CIS 505, Spring 2007 mutlicast 23

What about membership changes?

Virtual synchrony model synchronizes
membership change with multicasts

Idea is that:
o Between any pair of successive group membership

views…

o … same set of multicasts are delivered to all
members

If you implement distributed code, this makes
algorithms much simpler for you!

CIS 505, Spring 2007 mutlicast 24

Process groups with joins, failures

crash

G0={p,q} G1={p,q,r,s} G2={q,r,s} G3={q,r,s,t}

p

q

r

s

t
r, s request to join

r,s added; state xfer

t added, state xfer

t requests to join

p fails

7

CIS 505, Spring 2007 mutlicast 25

Asynchrony

Notice that FIFO-order and causally-order can be used
asynchronously, while total-order always “stutters”
o Insight is that the first two can always be delivered to the sender

at the time the multicast is sent

o Total-order delivery ordering usually isn’t known until a round of
message exchange has been completed

Results in a tremendous performance difference
o With asynchrony, we gain concurrency at the sender side, but

this helps mostly if remainder of group is idle or doing a non-
conflicting task

o Too much asynchrony
Means things pile up in output buffers

If a failure occurs, much is lost

And we could consume a lot of sender-side buffering space

