
1

CIS 505: Software Systems

Lecture Note on Consensus

Insup Lee

Department of Computer and Information Science

University of Pennsylvania

CIS 505, Spring 2007

CIS 505, Spring 2007 Agreement 2

Concepts

Dependability
o Availability –ready to be used; e.g.,

one millisecond every hour

99.9999% available

o Reliability – run continuously without failure; e.g., 24 hrs of
meantime to failure

o Safety – operate correctly

o Maintainability – how easy to repair a failed system

Fault-tolerance
o Failure – a system cannot perform correctly

o Error – a part of a system’s state that may lead to failure

o Fault – the cause of an error
Transient fault, intermittent fault, permanent fault

o Fault-tolerant – a system can provide its services even in the
presence of faults

CIS 505, Spring 2007 Agreement 3

Techniques for masking faults

Information redundancy

o E.g., send extra bits

Time redundancy

o E.g., repeat if needed

Physical redundancy

o TMR (Triple Modular Redundancy)

CIS 505, Spring 2007 Agreement 4

Failure Masking by Redundancy

Triple modular redundancy.



2

CIS 505, Spring 2007 Agreement 5

Why is reaching agreement important?

If system has shared state, and each node has a

local view of state, must agree (roughly) on what

shared state is.

If system is cooperating must agree on a plan of

action.

Must bootstrap this process by agreeing (in advance,

and/or off-line) on how to reach agreement

Must agree on agreement protocol(s)

CIS 505, Spring 2007 Agreement 6

Why is reaching agreement hard?

Agents die

Agents lie

Agents sleep (and wake up)

Agents don’t hear all messages

Agents hear messages incorrectly

Groups of agents split into cliques (partition)

More formally, these are known as

Failure Modes

CIS 505, Spring 2007 Agreement 7

Failure Models

Different types of failures.

A server may produce arbitrary responses at arbitrary timesArbitrary failure

The server's response is incorrect

The value of the response is wrong

The server deviates from the correct flow of control

Response failure

     Value failure

     State transition failure

A server's response lies outside the specified time intervalTiming failure

A server fails to respond to incoming requests

A server fails to receive incoming messages

A server fails to send messages

Omission failure

     Receive omission

     Send omission

A server halts, but is working correctly until it haltsCrash failure

DescriptionType of failure

CIS 505, Spring 2007 Agreement 8

Failure modes: Processors

Fail-stop: dies, stays dead, you know it’s dead.

Crash: dies, stays dead, maybe you don’t know

Receive omission: either dies or only gets some of the

msgs sent to it.

Send omission: either dies or only sends some of the

msgs it tries to send.

General omission: either send or receive omission, or

both.

Byzantine failure: can do anything - violate any protocol,

lie, random behavior, evil/malicious behavior



3

CIS 505, Spring 2007 Agreement 9

Failure modes: Links

Fail-stop: stops xmiting or recving, stays broken, detected

(rare model)

Crash: stops xmiting or recving, stays broken, maybe

undetected

Byzantine failure: can do anything - duplicate packets,

fabricate packets, duplicate after arbitrarily long delay… (e.g.,

babbling idiots)

Note: additional failure modes arise when an assumed property

(ordering, reliability, low error rate) disappears

CIS 505, Spring 2007 Agreement 10

Types of Systems

Synchronous

o Relative processors speeds are bounded

o Communication delays are bounded

Asynchronous

o Can make no assumptions

Intuitively: In Synchronous systems we can

assume things happen in “rounds”, (nobody is

too slow) but this also means that you have to

wait for a round before you can progress

(nobody can be too fast)

CIS 505, Spring 2007 Agreement 11

Classical types of agreement problems

Synchronization (or Mutual Exclusion)

Leader Election

Coordination (two General’s problem)

Consensus

Atomic Commitment

CIS 505, Spring 2007 Agreement 12

Partial Recap on Synchronization

also known as Mutual Exclusion problem

P processes, only 1 may proceed

Token

Voting (> 1/2)

Timestamp or causal order or order



4

CIS 505, Spring 2007 Agreement 13

Unreliable communication

CIS 505, Spring 2007 Agreement 14

Two generals’ problem

Two generals on opposite sides of a valley have to agree on whether to

attack or not (at a pre-agreed time)

Goal: Each must be sure that the other one has made the same

decision

Communicate by sending messenger who may get captured

Can never be sure whether the last messenger reached the other side

(every message needs an ack), so no perfect solution

Impossibility of consensus is as fundamental as undecidability of the

halting problem !

In practice: probability of losing a repeatedly sent message decreases

(so agreement with high probability possible)

CIS 505, Spring 2007 Agreement 15

Impossibility Proof

 Theorem. If any message can be lost, it is not possible for two

processes to agree on non-trivial outcome using only messages

for communication.

 Proof. Suppose it is possible.  Let m[1],…,m[k] be a finite

sequence of messages that allowed them to decide.

Furthermore, let’s assume that it is a minimal sequence, that is, it

has the least number of messages among all such sequences.

However, since any message can be lost, the last message m[k]

could have been lost.  So, the sender of m[k] must be able to

decide without having to send it (since the sender knows that it

may not be delivered) and the receiver of m[k] must be able to

decide without receiving it.  That is, m[k] is not necessary for

reaching agreement.  That is, m[1],…,m[k-1] should have been

enough for the agreement. This is a contradiction to that the

sequence m[1],…,m[k] was minimum.

CIS 505, Spring 2007 Agreement 16

Four Dimensions of Failure Models

Reliable vs. unreliable network

o Reliable: all messages are eventually delivered exactly

once.

Synchronous vs. asynchronous communication

o Synchronous: message delays (and process delays) are

bounded, enabling communication in synchronous rounds.

Byzantine vs. fail-stop

o Fail-stop: faulty nodes stop and do not send.

o Byzantine: faulty nodes may send arbitrary messages.

Authenticated vs. unauthenticated

o Authenticated: the source and content of every message can

be verified, even if a Byzantine failure occurs.



5

CIS 505, Spring 2007 Agreement 17

Consensus

Unreliable
multicast

Step 1

Propose.

P1 

P2 P3 

v1 

v3 
v2 

Consensus
algorithm

Step 2

Decide.

P1 

P2 P3 

d1 

d3 d2 

Generalizes to N nodes/processes.

[Chase]

CIS 505, Spring 2007 Agreement 18

Assumptions

For now we assume:

o Nodes/processes communicate only by messages.

o The network may be synchronous or asynchronous.

o The network channels are reliable.

Is this realistic?

CIS 505, Spring 2007 Agreement 19

Properties for Correct Consensus

There are at least two possible values, 0 and 1.

Termination: All correct processes eventually

decide.

Agreement: All correct processes select the same

di.
Or…(stronger) all processes that do decide select the same di,

even if they later fail.

Integrity: All deciding processes select the “right”

value.

o As specified for the variants of the consensus problem.
[Chase]

CIS 505, Spring 2007 Agreement 20

Consensus: synchronous with no failures

The solution is trivial in one round of proposal

messages.

Intuition: all processes receive the same values, the

values sent by the other processes.

Step 1.  Propose.

Step 2.  At end of round, each Pi decides from

received values.

o Consensus: apply any deterministic function to {v0,…, vN-1}.

o Command consensus: if vleader was received, select it, else

apply any deterministic function to {v0,…, vN-1}.

o Interactive consistency: construct a vector from all received

values.
[Chase]



6

CIS 505, Spring 2007 Agreement 21

Problem Definition

Generals = Computer Components

The abstract problem…

o Each division of Byzantine army is directed by its own general.

o There are n Generals, some of which are traitors.

o All armies are camped outside enemy castle, observing enemy.

o Communicate with each other (private) by messengers.

o Requirements:

G1: All loyal generals decide upon the same plan of action

G2: A small number of traitors cannot cause the loyal generals to

adopt a bad plan

o Note: We do not have to identify the traitors.

CIS 505, Spring 2007 Agreement 22

Naïve solution

ith general sends v(i) to all other generals
To deal with two requirements:
o All generals combine their information v(1), v(2), ..,

v(n) in the same way

o Majority (v(1), v(2), …, v(n)), ignore minority
traitors

Naïve solution does not work:
o Traitors may send different values to different

generals.

o Loyal generals might get conflicting values from
traitors

Requirement: Any two loyal generals must use the
same value of v(i) to decide on same plan of action.

CIS 505, Spring 2007 Agreement 23

Lamport’s 1982 Result, Generalized by Pease

The Lamport/Pease result shows that consensus is

impossible:

o with byzantine failures,

o if one-third or more processes fail (N  3m),

Lamport shows it for 3 processes, but Pease generalizes to N.

o even with synchronous communication.

Intuition: a node presented with inconsistent information

cannot determine which process is faulty.

The good news: consensus can be reached if N > 3m,

no matter what kinds of node failures occur.

CIS 505, Spring 2007 Agreement 24

Assumptions

System Model:
o n processors, at most m are faulty

o fully connected, message passing

o receiver always knows the identity of the sender

o reliable communication, only processors fail

o the value communicated is 0 or 1 (or v or w)

Synchronous computation:  processes run in a lock step manner.
o In each step a process receives one or more messages, performs a computation, and

sends one or more messages to other processes

o A process knows all messages it expects to receive in a round.

Byzantine failure:  process can behave randomly.

Oral messages:
o process can change the contents of a message before it relays the message to other

processes, i.e. it can lie about what it received from another process.

Performance Aspects:  number of rounds (time) and number of messages



7

CIS 505, Spring 2007 Agreement 25

An Impossibility Result

The Byzantine Agreement Problem (restated):

o Agreement- All nonfaulty processes agree on the same value.

o Validity- If the source process is nonfaulty, then the common

agreed upon value by all nonfaulty processors should be the

initial value of the source.

An Impossibility Result:

o Byzantine Agreement cannot be reached among three

processors where one processor is faulty.

A Stronger Result:

o  No solution with fewer than 3m+1 processes can tolerate m

faulty processes.

CIS 505, Spring 2007 Agreement 26

Impossibility with three byzantine generals

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

Faulty processes are shown shaded

[Lamport82]

Intuition: subordinates cannot distinguish these cases.

Each must select the commander’s value in the first case,
but this means they cannot agree in the second case.

“3:1:u” means

 “3 says 1 says u”.

CIS 505, Spring 2007 Agreement 27

Lamport-Shostak-Pease Algorithm

Algorithm OM(0).
1. The source process sends its value to every other process.

2. Each process uses the value it received from the source. (If it receives no value, then it uses
a default value of 0.)

Algorithm OM(m), m>0.

1. The source process sends its value to every other process.

2. For each i, let vi be the value process i receives from the

source. (If it receives no value, then it uses a default value

of 0.)  Processor i acts as the new source and initiates OM(m-1)

by sending vi to each of the (n-2) other processes.

3. For each i and each j (<>i), let vj be the value process i

received from process j in Step 2, using OM(m-1).  (If it

receives no value, then it uses a default value of 0.)  Process

i uses the value majority (v1,v2,...,vn-1).

CIS 505, Spring 2007 Agreement 28

Ex. (m=1, n=3m+1=4), assume p3 is faulty

OM(1): p1 sends v to p2, p3, p4. (n-1 messages)

OM(0): Each pi acts as a source process, sends its value to each
otherpj, j<>i.
o So p2 sends v to p3, p4; p4 sends v to p2, p3.

o Since p3 is faulty it sends v to p3, w to p4.

o ((n-1)(n-2) messages)

Step 3 of OM(1):
o p2 receives (v,v,v) and decides v;

o p4 receives (v,w,v) and decides v;

o p3 can decide anything.

Number of rounds: 2

Number of messages: (n-1) + (n-1)(n-2)



8

CIS 505, Spring 2007 Agreement 29

Solution with four byzantine generals

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

Faulty processes are shown shaded

p4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u

3:1:w

p4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

Intuition: vote.

CIS 505, Spring 2007 Agreement 30

Ex. (m=2, n=3m+1=7), assume p2 and p3 are faulty

OM(2): p0 sends 1 to p1,...,p6. (n-1 messages)

OM(1): Each pi acts as a source process to communicate what it received from the previous
source; other processes need to agree on what it received at the end of this round.

p1: sends 1 to p2,...,p6

OM(0),p1: p2,...,p6 send the values they received to each other.

            p2 and p3 can lie, but p4,p5,p6 must communicate 1.

    p2, p3 can decide anything, say they decide 0

    p4,p5,p6 receive (?,?,1,1,1) ==> 1 (i.e. "p1 received 1 from p0")

p2: sends 1 to p1, p3 and 0 to p4,p5,p6

OM(0),p2: p1,p3,p4,p5,p6 send the values they received to each other.

p3 can lie, but p1 must send 1, p4,p5,p6 must send 0.

    p3 can decide anything, say it decides 1

    p1 receives (1,0,0,0,0) ==> 0 (i.e. "p2 received 0 from p0")

    p4,p5,p6 receive (1,1,0,0,0) ==> 0 and so on (p3 can do anything, say it is like p2; p4,p5,p6
must behave like p1)

Step 3 of OM(1):

   p1,p4,p5,p6 see (1,0,0,1,1,1) ==> 1

   p2, p3 see whatever

CIS 505, Spring 2007 Agreement 31

Note:

Each of the (n-1) occurrences of OM(1) execute in parallel (i.e.
during the same round). So each pi, acting as the new source,
sends (n-2) messages at the beginning of round 2.

Each of the (n-1)(n-2) occurrences of OM(0) also execute in parallel
in round 3, so at the beginning of round 3, each pi sends (n-2)
messages to each other pj.

Number of rounds: 3

Number of messages:

    Round 1:  (n-1)

    Round 2:  (n-1)(n-2)

    Round 3:  (n-1)(n-2)(n-3)

                  ---------------

(n-1)+(n-1)(n-2)+(n-1)(n-2)(n-3)

CIS 505, Spring 2007 Agreement 32

Complexity

In general:

o Number of rounds: m+1

o Number of messages: (n-1)+(n-1)(n-2)+...+(n-1)(n-

2)...(n-m)

o O(n**m)



9

CIS 505, Spring 2007 Agreement 33

Correctness

Lemma.  For any m and k, Algorithm OM(m) satisfies the validity condition if there
are more than 2k+m processes and at most k faulty  processes.

Proof by induction:

Base case - OM(0) holds since the source is non-faulty by hypothesis and all
messages sent are delivered.

Inductive step -  We now assume it is true for m-1, m>0 and prove it for m.
o Step 1: The non-faulty source process sends v to the other (n-1) processes.

o Step 2: Each non-faulty processes applies OM(m-1) with (n-1) processes.

o By hypothesis, n>2k+m so n-1>2k+m-1 and we can use the inductive hypothesis to
conclude that every non-faulty process gets vi=v for each non-faulty process pj.  Since there
are at most k faulty processes, and  n-1>2k+(m-1)>=2k a majority of the n-1 processes are
non-faulty.

o Hence, each non-faulty process has vi=v for a majority of the n-1 values i, so it obtains v is
step 3, proving the validity condition.

QED

CIS 505, Spring 2007 Agreement 34

Correctness

Theorem:  For any m, Algorithm OM(m) satifies the correctness and validity
conditions if there are more than 3m processes and at most m faulty processes.

Proof by induction on m:

Base case - OM(0) trivially holds (no traitors)

Inductive step - Assume that the theorem is true for OM(m-1) and show it for
OM(m), m>0.

o Assume that p0 is non-faulty.  By taking k=m in Lemma 1, we see that OM(m) satisfies
validity.  Correctness follows from validity if the source is non-faulty.

o Assume that p0 is faulty.  Then at most (m-1) of the remaining processes can be faulty.
Since there are more than 3m processes, there are more than 3m-1 processes other than
p0 and 3m-1>3(m-1).  We may therefore apply the induction hypothesis to conclude that
OM(m-1) satisfies correctness and validity.  Hence, for each j, any two non-faulty processes
get the same value for vj in step 3.  Any two non-faulty processes will therefore obtain the
same vector of values and therefore obtain the same value using majority, proving
correctness.

QED

CIS 505, Spring 2007 Agreement 35

Summary: Byzantine Failures

A solution exists if less than one-third are faulty (N > 3m).

It works only if communication is synchronous.

Like fail-stop consensus, the algorithm requires m+1 rounds.

The algorithm is very expensive and therefore impractical.

Number of messages is exponential in the number of rounds.

Signed messages make the problem easier (authenticated

byzantine).

o In general case, the failure bounds (N > 3m) are not affected.

o Practical algorithms exist for N > 3m. [Castro&Liskov]

CIS 505, Spring 2007 Agreement 36

Byzantine Agreement

Must find a way of identifying faulty nodes

and corrupted/forged messages

General strategy is to have everyone

communicate not only their own info, but

everything they’ve heard from everyone

else.

o This allows catching lying, cheating nodes

o If there is a majority that behaves consistently

with each other, can reach consensus.



10

CIS 505, Spring 2007 Agreement 37

Fischer-Lynch-Patterson (1985)

No consensus can be guaranteed in an asynchronous

communication system in the presence of any failures.

Intuition: a “failed” process may just be slow, and can

rise from the dead at exactly the wrong time.

Consensus may occur recognizably on occasion, or

often.
e.g., if no inconveniently delayed messages

FLP implies that no agreement can be guaranteed in an

asynchronous system with byzantine failures either.

CIS 505, Spring 2007 Agreement 38

Consensus in Practice I

What do these results mean in an asynchronous

world?

o Unfortunately, the Internet is asynchronous, even if we

believe that all faults are eventually repaired.

o Synchronized clocks and predictable execution times don’t

change this essential fact.

Even a single faulty process can prevent consensus.

The FLP impossibility result extends to:

o Reliable ordered multicast communication in groups

o Transaction commit for coordinated atomic updates

o Consistent replication

These are practical necessities, so what are we to
do?

CIS 505, Spring 2007 Agreement 39

Consensus in Practice II

We can use some tricks to apply synchronous

algorithms:

o Fault masking: assume that failed processes always

recover, and define a way to reintegrate them into the group.

If you haven’t heard from a process, just keep waiting…

A round terminates when every expected message is received.

o Failure detectors: construct a failure detector that can

determine if a process has failed.

A round terminates when every expected message is received,

or the failure detector reports that its sender has failed.

But: protocols may block in pathological scenarios,

and they may misbehave if a failure detector is
wrong.

CIS 505, Spring 2007 Agreement 40

Recovery for Fault Masking

In a distributed system, a recovered node’s state must

also be consistent with the states of other nodes.
E.g., what if a recovered node has forgotten an important event that

others have remembered?

A functioning node may need to respond to a peer’s
recovery.

o rebuild the state of the recovering node, and/or

o discard local state, and/or

o abort/restart operations/interactions in progress

e.g., two-phase commit protocol

How to know if a peer has failed and recovered?



11

CIS 505, Spring 2007 Agreement 41

Failure Detectors

First problem: how to detect that a member has failed?

o pings, timeouts, beacons, heartbeats

o recovery notifications

“I was gone for awhile, but now I’m back.”

Is the failure detector accurate?

Is the failure detector live (complete)?

In an asynchronous system, it is possible for a failure

detector to be accurate or live, but not both.

o FLP tells us that it is impossible for an asynchronous system to

agree on anything with accuracy and liveness!

CIS 505, Spring 2007 Agreement 42

Failure Detectors in Real Systems

Use a failure detector that is live but not
accurate.

Assume bounded processing delays and delivery times.

Timeout with multiple retries detects failure accurately with high
probability.  Tune it to observed latencies.

If a “failed” site turns out to be alive, then restore it or kill it
(fencing, fail-silent).

Use a recovery detector that is accurate but
not live.

“I’m back....hey, did anyone hear me?”

What do we assume about communication failures?
How much pinging is enough?

1-to-N, N-to-N, ring?

What about network partitions?

CIS 505, Spring 2007 Agreement 43

A network partition

Crashed

router

CIS 505, Spring 2007 Agreement 44

Acknowledgments

This lecture note is based on

o CIS 505 lecture notes by Honghui Lu

o CPS 212 lecture notes by Jeff Chase

o CSE 480 lecture notes by Michael Greenwald

o CSE 480 lecture notes by Insup Lee


