CIS 505: Software Systems
Lecture Note on Consistency and
Replication (3)

Instructor: Insup Lee Y3
Department of Computer and Information Science &
University of Pennsylvania

CIS 505, Spring 2007

Coherence Protocols

= Replicated data need to be ensured to be coherent (i.e.,
nodes do not access stale data)

= Primary-based protocols
o Remote-write protocols: all R/W are done by a single server
(e.g., partitioned data among servers)
« Primary-backup protocols: reads can be using a local copy.
« Easy to support sequential consistency
o Local-write protocols

* A single copy of data is migrated to a local server: problem is how
to keep track of data

* Primary can be updated, whereas backups are read only
= Replicated write protocol
= Cache coherence protocol

Remote-Write Protocols (1)

Client Client
Single server
for l'«\em X Backup server
w1l | wa \ R1| |R4

r’yr/,,vl\\ w2 »,L\< R2 ,_!L‘ - !:\

Data store
Yy,
W1. Write request R1. Read request
W2. Forward request to server for x R2. Forward request to server for x
W3. Acknowledge write completed R3. Return response
WA4. Acknowledge write completed R4. Return response

= Primary-based remote-write protocol with a fixed server to which all
read and write operations are forwarded.

Remote-Write Protocols (2)

Client Client
Primary server
for item x Backup server
Wi1| (W5 \ R1 ‘ R2
v BN
owa S wa
5 PR — i)
\WS/, v M_,/ Data store
w2 wa w3
W1, Write request R1. Read request
W2. Forward request to primary R2. Response to read
W3, Tell backups to update L. .
W4, Acknowledge update = The principle of primary-
WS5. Acknowledge write completed backup protocol.

Local-Write Protocols (1)

= Primary-based local-write protocol in which a single copy is
migrated between processes.
Client

Current server New server
for item x for item x

= e

Data store

1. Read or write request

2. Forward request to current server for x

3. Move item x to client's server

4. Return result of operation on client's server

Local-Write Protocols (2)

= Primary-backup protocol in which the primary migrates to the
process wanting to perform an update.

Client Client
Old primary New primary

A for item x foritemx g~ Backup server
R1 |R2 w1l w3 ‘

v < v v

. W5 - . W5 \
ez . CE
A 4 A Data store

W5 - Wa W2~ B
W1. Write request R1. Read request
W2. Move item x to new primary R2. Response to read

W3. Acknowledge write completed
W4. Tell backups to update
WS5. Acknowledge update

Replicated-Write Protocols

= Writes can be done at multiple replicas
= Active replication
o Writes are flushed to all replicas
o Need a total ordering
* Centralized sequencer
* Totally-ordered multicasting
o Potential problem with replicated invocations

= Quorum-based protocols
o For N replicas, use voting to get a read quorum (= N,) and a
write quorum (= N,,), where
« N, +N,>N
« N, >N/2

Quorum-Based Protocols

Read quorum

y'S A - ~
A B Cc D A B C" D 1A B [D
E F G H E F G H | E F G H
I J K L tl J K L | J K L
,,,,,,,,,,,,,,,,, ‘ A —— S ———
Ng =3, Ny =10 /" Ng=7 Ny= Ng =1, Ny =12
Write quorum

(a) (b) (©

= Three examples of the voting algorithm:
a) A correct choice of read and write set
b) A choice that may lead to write-write conflicts
c) A correct choice, known as ROWA (read one, write all)

S 505, Spring 2007 coherence

Cache Coherence

= Caches are a special case of replication as they are controlled by clients instead of
servers.
= Usually in the context of shared-memory multiprocessor systems
= Many processors can have locally cached copies of the same object
o Level of granularity can be an object or a block of 64 bytes
= We want to maximize concurrency
o If many processors just want to read, then each one can have a local copy, and reads won't
generate any bus traffic
= We want to ensure coherence
o Ifa processor writes a value, then all subsequent reads by other processors should return
the latest value
= Coherence refers to a logically consistent global ordering of reads and writes of
multiple processors
= Modern multiprocessors support intricate schemes
o Coherence detection strategy: when inconsistencies are detected
o Coherence enforcement strategy: how cashes are kept consistent
« Write-invalidate protocol
+ Invalidate all copies and then write
+ Need to send invalidate-msg to all nodes, even if they no longer use
+ Better if several updates between reads
* Write-update
+ Update all copies
+ More network traffic overhead

Example

Invalidate vs. update protocols

P1’s cache __
Memory
P2’s cache [—
P1’s cache __
Memory

P2’s cache [IEEE—

P1’s cache
Memory
P2’s cache
Snoopy Protocol
= Each processor, for every cached object, keeps a state that can be

Invalid, Exclusive or Read-only
= Goal: If one has Exclusive copy then all others must be Invalid
= Each processor issues three types of messages on bus
o Read-request (RR), Write-request (WR), and Value-response (VR)
o Each message identifies object, and VR has a tagged value
= Assumption:

o If there is contention for bus, then only one succeeds
o No split transactions (RR will have a response by VR)
= Protocol is called Snoopy, because everyone is listening to the bus all the
time, and updates state in response to messages RR and WR
= Each cache controller responds to 4 types of events

o Read or write operation issued by its processor
o Messages (RR, WR, or VR) observed on the bus
= Caution: This is a simplified version

coherence 12

Snoopy Cache Coherence

ID |val State

Processor 1 Processor N

Read(x), Write(x,u)

»| Cache Controller

RR(x), WR(x), VR(x,u)

Snoopy Protocol

. If state is Read-only
o Read operation: return local value

o Write operation: Broadcast WR message on bus, update state to Exclusive, and
update local value

o WR message on bus: update state to Invalid
o RR message on bus: broadcast VR(v) on bus
. If state is Exclusive
Read operation: return local value
Write operation: update local value
RR message on bus: Broadcast VR(v), and change state to Read-only
WR message on bus: update state to Invalid
. If state is Invalid

o Read operation: Broadcast RR, Receive VR(v), update state to Read-only, and
local value to v

o Write operation: As in first case
o VR(v) message on bus: Update state to Read-only, and local copy to v
o WR message on the bus: do nothing

o
o
o
o

Sample Scenario for Snoopy

= Assume 3 processors P1, P2, P3. One object x : int

= Initially, P1’s entry for x is invalid, P2’s entry is Exclusive with value 3, and P3's
entry is invalid

= A process running on P3 issues Read(x)

= P3 sends the message RR(x) on the bus

= P2 updates its entry to Read-only, and sends the message VR(x,3) on the bus

= P3 updates its entry to Read-only, records the value 3 in the cache, and
returns the value 3 to Read(x)

= P1 also updates the x-entry to (Read-Only, 3)

= Now, if Read(x) is issued on any of the processors, no messages will be
exchanged, and the corresponding processor will just return value 3 by a local

look-up
= P1:x=(inv,) ... x=(ro,3)
= P2:x=(exc,3) ... X=(ro,3); VR(x,3);

= P3:x=(inv,-) ... Read(x); RR(x); ... x=(ro,3),return(x,3)

Snoopy Scenario (Continued)

= Suppose a process running on P1 issues Write(x,0)
= At the same time, a process running on P2 issues Write(x,2)

= P21 will try to send WR on the bus, as well as P2 will try to send WR on
the bus

= Only one of them succeeds, say, P1 succeeds
= P21 will update cache-entry to (Exclusive,0)

= P3 will update cache-entry to Invalid

= P2 will update cache-entry to Invalid

= Now, Read / Write operations by processes on P1 will use local copy,
and won't generate any messages

= P1: Write(x,0); WR(x); x=(ex,0)
= P2: Write(x,2); WR(x); x=(inv,-)
= P3:.. x=(inv,-)

