CIS 505: Software Systems
Lecture Note on Consistency and
Replication (2)

Instructor: Insup Lee %
Department of Computer and Information Science €9
University of Pennsylvania

CIS 505, Spring 2007

Client-Centric View

Client moves to other location
and (transparently) connects to
other replica P

- - Replicas need to maintain
client-centric consistency
»-

Wide-area network s /" i
. . '

Read and write operations

Portable computer

= The principle of a mobile user accessing different replicas of a distributed
database.

Synchronous Replication

Basic scheme: connect each client (or front-end) with every replica: writes go to all
replicas, but client can read from any replica (read-one-write-all replication).

How to ensure that each replica
sees updates in the “right” order?

client A client B

Problem: low concurrency, low availability, and
= high response times.

Partial Solution: Allow writes to any N replicas.
replicas To be safe, reads must also request data from the
set of replicas.

Asynchronous Replication

Idea: build available/scalable information services with read-any-write-any
replication and a weak consistency model.

- no denial of service during transient network partitions
- supports massive replication without massive overhead
- “ideal for the Internet and mobile computing” [Golding92]

replica A
o . Problems: replicas may be out of date,
may accept conflicting writes, and may
client A receive updates in different orders.
client B asynchronous state client C
propagation
replica B replica C

replication

Disconnected Operation

= Continue critical work when that repository is

inaccessible.

= Key idea: caching data.
o Performance
o Availability

= Server Replication

An Example

x=87 x=87

x=87

r
ravel |
—

(b)

An Example

/ (
Enuhch \l\:ll(lJ r:l\'clJ
. L

— T —
X p] X Z
‘A{m
x=12
(a)
An Example
x—33 x=87 x=87

) N\ p
~<_En:lhlcr [\'i\n Idj ravel J
: J \.
/
/

x-87

(c)

1
33

An Example

_{—Ennhlcr E ivi

x-45

An Example

(d)

x=45
-

ravel

) &9 (

An Example
5 x=87
p
l’u\cIJ

x=87

X435

\
mahler vivaldi
3 J .
y
.
;
’
J
.
J
.
H
.
‘
H
J

<45 — T~
x-87

(e)

(f)

Four notions of Client-centric consistency

= Monotonic-read consistency

o if a process reads x, any future reads on x by the process will
returns the same or a more recent value

= Monotonic-write consistency

o A write by a process on x is completed before any future write
operations on x by the same process

o A write by a process on x will be seen by a future read operation

= Read your write
on x by the same process
o A write by a process on x after a read on x takes place on the

= Writes follow reads
same or more recent value of x that was read

Notation

= Let X|[t] denote the version of data x at local copy L, at
time t.

= Version X|[t] is the result of a series of write operations
at L, since initialization.

= Use WS(X[t]) to denote this set of the series of writes at

i

= |f operations in WS(X[t]) has also been performed at

local copy L, at a later time t,, we write WS(Xi[t;]; X,[t,]).

= Omit tif timing is clear.

Monotonic Reads

L1: WS(xy) R(x9
L2: WS(x4x5) R(x2)
(a)

L1: WS(x9) R(xy)
L2: WS(x;) R(x) WS(xyxp)
(b)

. Def: if a process reads x, any future reads on x by the process will
returns the same or a more recent value

. Fig: The read operations performed by a single process P at two
different local copies of the same data store.
a) A monotonic-read consistent data store
b) A data store that does not provide monotonic reads.

. Example: reading mail from different places

Monotonic Writes

L1: WI(xy)

L2: Wixy) W(xo)
(@)

L1: W(xy)

L2: Wi(x2)
(b)

. Def: A write by a process on x is completed before any future write operations on x
by the same process
. Fig: The write operations performed by a single process P at two different local
copies of the same data store
a) A monotonic-write consistent data store.
b) Adata store that does not provide monotonic-write consistency

. Update to part of the library

Read Your Writes

L1 W(xy)
L2 WS(x4x) R(x2)
(@)
L1: Wi(xq
L2 WS(xy) R(x2)
(k)
. Def: A write by a process on x will be seen by a future read operation on x by
the same process

. Fig:
a) A data store that provides read-your-writes consistency.
b) A data store that does not.
. Example: update on web that is locally cached, update on password file

CIS 505, Spring 2007 replication

Writes Follow Reads

L1: WS(x) R(x4)
L2: WS(x4:x2) W(x5)

(a)

L1 WS(xy) R(xq)
L2: WS(xp) Wix2)

(b)

Def: A write by a process on x after a read on x takes place on the same or
more recent value of x that was read
Fig:
a) A writes-follow-reads consistent data store
b) A data store that does not provide writes-follow-reads consistency
Example: reading netnews and posting of a reaction

Implementation

= Each operation is assigned a unique global id
= For each client, keep two sets of write ids:

0 Read set: write ids relevant for reads by the client
o Write set: write ids of writes by the client

= For monotonic-read consistency, use the read
set

= For monotonic-write consistency, use the write
set

= For read-your-write consistency, use both
= For writes-follow-reads consistency,..

Replica Placement

. — » Server-initiated replication

A A » Client-initiated replication
<! Permanent

replicas <

Server-initiated replicas

Client-initiated replicas

Clients

= The logical organization of different kinds of copies
of a data store into three concentric rings.

Permanent Replicas

= Two approaches for distributed date stores,
like web sites

1. Replicate files across a limited number of servers on
a single LAN; Forward a request to one of the
servers

2. Mirror sites; Users select one of the mirror sites

Server-initiated replicas

= A server install temporary replicas to handle
increased requires.

= Known as push caches.

Issues

o Where and when replicas should be added or deleted

o Dynamic replication algorithm

* Replicate to reduce the load on a server
* Place in the proximity of clients

Increasing used in Web hosting services

Client-initiated replicas

= Known as (client) caches.
= To improve access times to data.

How long data should be kept in a cache?
o May become stale

o Need to be deleted to make room for other data
(LRU, FIFO, etc.)

To improve cache hit, caches can be shared
between clients.

Prefetching

Server-Initiated Replicas

‘x" \ Co
Server without e
copy of file F
Client Server with
|e: It ,*—*—-,A copy of F
cil = S > oy

~File F

Server Q counts access from Cqand
C2 as if they would come from P

= Counting access requests from different clients.

Update propagation

= What to propagate
o A notification of an update
o Actual data
0 Update operation
= |nvalidation protocols
0 Use little network bandwidth

o Work best when many updates compared to reads (i.e., read-to-
write ratio is small)

= Transfer of modified data
0 Work best when read-to-write ratio is high
= Active replication
o Transfer update operations with arguments
0 Trade-off communication with computation

Pull versus Push Protocols

= Update can be pushed or pulled.

= |n the case of multiple client, single server systems:
o A push-based approach uses server-based protocols
o A pull-based approach uses client-based protocols

= Hybrid approach using lease

Issue Push-based Pull-based
State of server List of client replicas and caches None
Messages sent Update (and possibly fetch update later) Poll and update

Response time at

client Immediate (or fetch-update time) Fetch-update time

Lease-based Approach

= Alease is a promise by a server that it will push updates
to the client for a specified time.

= When a lease expires, the client needs to poll the server
for updates and pull the modified data.

= Leases introduced by Gray and Cheriton (1989)

= Can be used to dynamically switch between push-base
and pull-base approaches

= Questions: How long should be a lease
o for frequently updated data?
o for specified data that a client asks very infrequently?

Epidemic protocols

= Update propagation in eventual-consistent data stores

= Aserver that is part of a distributed data store is called
o Infective: holds an update that it wants to spread.
o Susceptible: has not yet been updated.
o Removed: is not willing to spread its update.
= A server P picks another server Q at random to
exchange updates with Q. Three approaches:
1. P only pushes its own update to Q
2. P only pulls in new updates from Q
3. P and Q send updates to each other (i.e., pull-push)

Epidemic algorithms

= PARC developed a family of weak update protocols
based on a disease metaphor (epidemic algorithms
[Demers et. al. OSR 1/88]):
= Each replica periodically “touches” a selected
“susceptible” peer site and “infects” it with updates.
o Transfer every update known to the carrier but not the
victim.
o Partner selection is randomized using a variety of heuristics.
0 Theory shows that the epidemic will eventually infest the
entire population (assuming it is connected).

« Probability that replicas that have not yet converged decreases
exponentially with time.

* Heuristics (e.g., push vs. pull) affect traffic load and the
expected time-to-convergence.

Spring 200 replication

How to Ensure That Replicas Converge

= Using any form of epidemic (randomized) anti-
entropy, all updates will (eventually) be known
to all replicas.

= Imposing a global order on updates guarantees
th at all sites (eventually) apply the same
updates in the same order.

= Assuming conflict resolution is deterministic, all
sites will resolve all conflicts in exactly the
same way.

Issues and Techniques for Weak Replication

= How to determine which updates to propagate to
a peer on each anti-entropy exchange?
0 vector timestamps
= When can a site safely commit or stabilize
received updates?
o0 receiver acknowledgement by vector clocks

Issues and Techniques for Weak Replication

= How should replicas choose partners for anti-
entropy exchanges?

o Topology-aware choices minimize bandwidth demand
by “flooding”, but randomized choices survive
transient link failures.

= How to impose a global ordering on updates?

o logical clocks and delayed delivery (or delayed

commitment) of updates
= How to integrate new updates with existing
database sfate?

o Propagate updates rather than state, but how to
detect and reconcile conflicting updates? Bayou:
user-defined checks and merge rules.

