CIS 505: Software Systems
Lecture Note on Logical Clocks

Insup Lee
Department of Computer and Information Science
University of Pennsylvania

CIS 505, Spring 2007

Clocks

1. physical clocks
 - Protocols to control drift exist, but physical clock timestamps cannot assign an ordering to "nearly concurrent" events.

2. logical clocks
 - Simple timestamps guaranteed to respect causality: "A's current time is later than the timestamp of any event A knows about, no matter where it happened or who told A about it."

3. vector clocks
 - Order(N) timestamps that say exactly what A knows about events on B, even if A heard it from C.

4. matrix clocks
 - Order(N^2) timestamps that say what A knows about what B knows about events on C.
 - Acknowledgement vectors: an O(N) approximation to matrix clocks.

Event Ordering

- When there is no common memory or clock, it is sometimes impossible to say which of two events occurred first.
- The happened-before relation is a partial ordering of events in distributed systems such that
 1. If A and B are events in the same process, and A was executed before B, then A \(\rightarrow\) B.
 2. If A is the event of sending a message by one process and B is the event of receiving that by another process, then A \(\rightarrow\) B.
 3. If A \(\rightarrow\) B and B \(\rightarrow\) C, then A \(\rightarrow\) C.
- If two events A and B are not related by the \(\Rightarrow\) relation, then they are executed concurrently (no causal relationship)

Causality Example: Event Ordering
Causality and Logical Time

- **Constraint:** The update ordering must respect potential causality.
 - Communication patterns establish a happened-before order on events, which tells us when ordering might matter.
 - Event e_1 happened-before e_2 iff e_1 could possibly have affected the generation of e_2: we say that $e_1 < e_2$.
 - $e_1 < e_2$ iff e_1 was “known” when e_2 occurred.
 - Events e_1 and e_2 are potentially causally related.

Logical Clocks [Lamport]

- **Solution:** timestamp updates with logical clocks. Timestamping updates with the originating node’s logical clock LC induces a partial order that respects potential causality.
 - **Clock condition:** $e_1 < e_2$ implies that $LC(e_1) < LC(e_2)$
 1. Each site maintains a monotonically increasing clock value LC.
 2. Globally visible events (e.g., updates) are timestamped with the current LC value at the generating site. Increment local LC on each new event: $LC = LC + 1$
 3. Piggyback current clock value on all messages. Receiver resets local LC: if $LC_s > LC_r$, then $LC_r = LC_s + 1$
 - Use processor ids to break ties to create a total ordering.

Logical Clocks: Example

- LC update advances receiver’s clock if it is “running slow” relative to sender.
- $A6-A10$: receiver’s clock is unaffected because it is “running fast” relative to sender.
- $C5$: LC update advances receiver’s clock if it is “running slow” relative to sender.

Causality and Updates: Example

- $A1 < B2 < C3$
 $B3 < A4$
 $C3 < A5$

Use processor ids to break ties to create a total ordering.
Update Ordering

- **Problem:** how to ensure that all sites recognize a fixed order on updates, even if updates are delivered out of order?

- **Solution:** Assign timestamps to updates at their accepting site, and order them by source timestamp at the receiver.
 - Assign nodes unique IDs: break ties with the origin node ID.
 - Problem: What (if different) ordering exists between updates accepted by different sites?
 - Comparing physical timestamps is arbitrary: physical clocks drift.
 - Even a protocol to maintain loosely synchronized physical clocks cannot assign a meaningful ordering to events that occurred at “almost exactly the same time”.

Example: Lamport’s Algorithm

- Three processes, each with its own clock. The clocks run at different rates.
- Lamport’s Algorithm corrects the clock.

 - Note: \(ts(A) < ts(B)\) does not imply \(A\) happened before \(B\).
 - What if we use this to synchronize physical clocks?

Motivation for Vector Clocks

- **Logical clocks** induce an order consistent with causality, but
 - the converse of the clock condition does not hold: it may be that \(LC(e_j) < LC(e_j)\) even if \(e_1\) and \(e_2\) are concurrent.
 - If \(A\) could know anything \(B\) knows, then it must be \(LC_A > LC_B\).
 - But if \(LC_A > LC_B\) then this doesn’t make it so; i.e., “false positives”.
 - Concurrent updates may be ordered unnecessarily.
 - We need a clock mechanism that is necessary and **sufficient** in capturing causality.

Vector Clocks

- **Vector clocks** (AKA vector timestamps or version vectors) are a more detailed representation of what a site might know.
 1. In a system with \(N\) nodes, each site keeps a vector timestamp \(TS[i]\) as well as a logical clock \(LC\).
 - \(TS[i]\) at site \(i\) is the most recent value of site \(j\)’s logical clock that site \(i\) “heard about”.
 - \(TS[i] = LC_j\); each site keeps its own \(LC\) in \(TS[i]\).
 2. When site \(i\) generates a new event, it increments its logical clock:
 - \(TS[i] = TS[i] + 1\)
 3. A site \(r\) observing an event (e.g., receiving a message) from site \(s\) sets its \(TS_r\) to the pairwise maximum of \(TS_s\) and \(TS_r\).
 - For each site \(i\), \(TS[i] = \max(TS[i], TS[j])\)
Vector Clocks: Example

Question: what if I have two updates to the same data item, and neither timestamp dominates the other?

Vector Clocks and Causality

- Vector clocks induce an order that exactly reflects causality.
 - Tag each event e with current TS vector at originating site.
 - $e_i \text{ happened-before } e_j$ if and only if $TS(e_j) \text{ dominates } TS(e_i)$
 - “Every event or update visible when e_i occurred was also visible when e_j occurred.”
 - Proof?
 - Vector timestamps allow us to ask if two events are concurrent, or if one happened-before the other.
 - If $e_i < e_j$ then $LC(e_i) < LC(e_j)$ and $TS(e_j)$ dominates $TS(e_i)$.
 - “If $TS(e_j)$ does not dominate $TS(e_i)$ then it is not true that $e_i < e_j$.”

The Need for Propagating Acknowledgments

- Vector clocks tell us what B knows about C, but they do not reflect what A knows about what B knows about C.
 - Nodes need this information to determine when it is safe to discard/stabilize updates.
 - A can always tell if B has seen an update u by asking B for its vector clock and looking at it.
 - If u originated at site i, then B knows about u if and only if TS_u covers its accept stamp LC_i. $TS_u[i] \geq LC_i$.
 - A can only know that every site has seen u by looking at the vector clocks for every site.
 - Even if B recently received updates from C, A cannot tell (from looking at B’s vector clock) if B got u from C or if B was already aware of u when C contacted it.

Solution: Matrix Clocks

- Matrix clocks extend vector clocks to capture “what A knows about what B knows about C”.
 - Each site i maintains a matrix $MC_i(N,N)$.
 - Row j of i’s matrix clock MC_i is the most recent value of j’s vector clock TS_j that i has heard about.
 - $MC[i, j] = LC_i$, and $MC[i, j]^* = TS_j$.
 - $MC[i, k]$ = what i knows about what j knows about what happened at k.
 - If A sends a message to B, then MC_B is set to the pairwise maximum of MC_A and MC_B.
 - If A knows that B knows u, then after A talks to C, C knows that B knows u too.