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Clocks

1. physical clocks

o Protocols to control drift exist, but physical clock timestamps cannot
assign an ordering to “nearly concurrent” events.

2. logical clocks

o Simple timestamps guaranteed to respect causality: “A’s current
time is later than the timestamp of any event A knows about, no
matter where it happened or who told A about it.”

3. vector clocks

o Order(N) timestamps that say exactly what A knows about events
on B, even if A heard it from C.

4. matrix clocks

o Order(N2) timestamps that say what A knows about what B knows
about events on C.

o Acknowledgement vectors: an O(N) approximation to matrix clocks.

Event Ordering

= When there is no common memory or clock, it is
sometimes impossible to say which of two events occurred
first.

The happened-before relation is a partial ordering of events
in distributed systems such that

1 If A and B are events in the same process, and A was executed
before B, then A = B.

2 If A is the event of sending a message by one process and B is the
event of receiving that by another process, then A = B.

3 IfA=BandB= C,thenA = C.

If two events A and B are not related by the = relation,

then they are executed concurrently (no causal
relationship)

Causality Example: Event Ordering
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Causality and Logical Time

= Constraint: The update ordering must respect
potential causality.

o Communication patterns establish a happened-before
order on events, which tells us when ordering might
matter.

o Event e, happened-before e,

iff e, could possibly have affected the generation of e,:

we say that e, < e,.
* e, < e,iff e, was "known” when e, occurred.
* Events e; and e, are potentially causally related.

Logical Clocks [Lamport]

=  Solution: timestamp updates with /ogical clocks Timestamping
updates with the originating node’s logical clock LC induces a
partial order that respects potential causality.

Clock condition: e, < e,implies that LC(e;) < LC(e,)

1. Each site maintains a monotonically increasing clock value LC.
2. Globally visible events (e.g., updates) are timestamped with the current

LC value at the generating site.
Increment local LC on each new event: LC=LC + 1

3. Piggyback current clock value on all messages.
Receiver resets local LC: if LC,> LC, then LC, = LC + 1

= Use processor ids to break ties to create a total ordering.

Logical Clocks: Example

A6-A10: receiver’s clock is unaffected
because it is “running fast™ relative to sender.

CS5: LC update advances receiver’s clock
if it is “running slow” relative to sender.
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Causality and Updates: Example
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Update Ordering

= Problem: how to ensure that all sites recognize a fixed
order on updates, even if updates are delivered out of
order?

= Solution: Assign timestamps to updates at their
accepting site, and order them by source timestamp at
the receiver.
o Assign nodes unique IDs: break ties with the origin node ID.
o Problem: What (if different) ordering exists between
updates accepted by different sites?
« Comparing physical timestamps is arbitrary: physical clocks drift.

» Even a protocol to maintain loosely synchronized physical clocks
cannot assign a meaningful ordering to events that occurred at
“almost exactly the same time”.

Example: Lamport’s Algorithm

= Three processes, each with its own clock.
The clocks run at different rates.

= Lamport’s Algorithm corrects the clock.
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= Note: ts(A) < ts(B) does not imply A happened before B.
= What if we use this to synchronize physical clocks?

Motivation for Vector Clocks

= [ ogical clocks induce an order consistent with
causality, but
o the converse of the clock condition does not hold: it may be
that LC(e,) < LC(e,) even if e, and e, are concurrent.
* If A could know anything B knows, then it mustbe LC,> LC,
¢ Butif LC,> LCg then this doesn’'t make it so; i.e., “false
positives”.
« Concurrent updates may be ordered unnecessarily.
= We need a clock mechanism that is necessary and
sufficient in capturing causality.

Vector Clocks

= Vector clocks (AKA vector timestamps or version vectors) are a
more detailed representation of what a site might know.

1. In a system with N nodes, each site keeps a vector timestamp
TS[N] as well as a logical clock LC.

TSi[i] at site i is the most recent value of site j’s logical clock that site
i “heard about”.

TS|[i] = LC;: each site i keeps its own LC in TSI[i].
2. When site i generates a new event, it increments its logical clock.
TS[i]=TS|i]+1
3. A site r observing an event (e.g., receiving a message) from site s
sets its TS, to the pairwise maximum of TS, and TS,.
For each site i, TS [i] = max (TS[i], TS[i])




Vector Clocks: Example
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Vector Clocks and Causality

= Vector clocks induce an order that exactly reflects
causality.

o Tag each event e with current TS vector at originating site.
 vector timestamp TS(e)

o e, happened-before e, if and only if TS(e,) dominates TS(e,)
* e<e,iff TS(e )[i] <= TS(e,)[i] for each site i
* “Every event or update visible when e, occurred was also visible

when e, occurred.”

* Proof?

o Vector timestamps allow us to ask if two events are concurrent,

or if one happened-before the other.

* Ife,<e,then LC(e,) < LC(e,) and TS(e,) dominates TS(e,).
* “If TS(e,) does not dominate TS(e,) then it is not true that e,< e,.”

The Need for Propagating Acknowledgments

= Vector clocks tell us what B knows about C,
but they do not reflect what A knows about

what B knows about C.
* Nodes need this information to determine when it is safe
to discard/stabilize updates.
o A can always tell if B has seen an update u by
asking B for its vector clock and looking at it.
« If u originated at site i, then B knows about u if and only if
TSg covers its accept stamp LC,: TSg[i] >= LC,,.
o A can only know that every site has seen u by
looking at the vector clocks for every site.

« Even if B recently received updates from C, A cannot tell
(from looking at B’s vector clock) if B got u from C or if B
was already aware of u when C contacted it.

Solution: Matrix Clocks

= Matrix clocks extend vector clocks to capture
“what A knows about what B knows about C”.

o Each site i maintains a matrix MC;(N,N).
* Row j of i's matrix clock MC; is the most recent value of j's
vector clock TS; that i has heard about.
* MC{[i, i] = LC; and MC[i, *] = TS,
* MC|[j,k] = what i knows about what j knows about what
happened at k.
o If A sends a message to B, then MC; is set to the
pairwise maximum of MC, and MCg.
¢ If A knows that B knows u, then after A talks to C, C knows
that B knows u too.




