CIS 505: Software Systems
Processes (Chap 3)

Insup Lee qu

Department of Computer and Information Science
University of Pennsylvania

CIS 505, Spring 2007

Thread Usage in Nondistributed Systems

Process A Process B
S1: Switch from user space
to kernel space \\\l t/’/ S3: Switch from kernel
space to user space
hS Py J
Operating system

$S2: Switch context from
process A to process B

= Figure 3-1. Context switching as the result of IPC.

Thread Implementation

Thread state

User space
— Thread

D—— Lightweight process

LWP executing a thread

Kernel space

= Figure 3-2. Combining kernel-level lightweight
processes and user-level threads.

Multithreaded Servers (1)

. Request dispatched
Dispatcher thread to a worker thread Server
L
/ Z
A
Request coming in
from the network
Operating system

= Figure 3-3. A multithreaded server organized in a
dispatcher/worker model.

CIS 505, Spring 2007 Processes




Multithreaded Servers (2)

= Figure 3-4. Three ways to construct a server.

Model Characteristics
Threads Parallelism, blocking system calls ‘
Single-threaded process | No parallelism, blocking system calls |
Finite-state machine Parallelism, nonblocking system calls
Virtualization

= Virtualization is to extend or replace an existing interface
to mimic the behavior of another system.

= |BM 370 mainframe, VMM (Virtual Machine Monitor) -
1970s
o Support multi users by one VM per user
o Support different operation systems

= After 1990s,
o To provide legacy interface on new hardware platforms

o To provide uniformity over a heterogeneous collection of servers
connected by networks

o To provide a high degree of portability and flexibility

The Role of Virtualization in
Distributed Systems

Program

Program Interface A

Implementation of
......... Interface A mimicking A on B

Hardware/software system A Interface B

Hardware/software system B

(a)

(b)

= Figure 3-5. (a) General organization between a program,
interface, and system. (b) General organization of virtualizing
system A on top of system B.

Interfaces of Computer Systems at Different
Levels

= An interface between the hardware and software
consisting of machine instructions
o that can be invoked by any program.
= An interface between the hardware and software,
consisting of machine instructions
o that can be invoked only by privileged programs, such as an
operating system.
= An interface consisting of system calls as offered by an
operating system.
= An interface consisting of library calls

o generally forming what is known as an application programming
interface (API).

o In many cases, the aforementioned system calls are hidden by an
API.

Spring 2007 Processes




Interfaces of Computer Systems

Library functions _ | Application
Library
System calls
Privileged Operating system General
instructions r Y instructions
Hardware

= Figure 3-6. Various interfaces offered by computer
systems.

Architectures of Virtual Machines (b)

[

Applications =T
M

Operating system

Virtual machine monitor

Hardware

(b)
(b) A virtual machine monitor, with multiple instances of (applications,
operating system) combinations.
Example: VMware

Architectures of Virtual Machines (a)

I
[

Application =
s . A process virtual

Runtime system machine, with multiple
instances of

I I (application, runtime)

Operating system combinations.
x e o JVM

o Cywin

Hardware

(a)

Networked User Interfaces (1)

Client machine Server machine
Application |« — > Application
Application- ;
.S specific T
Middleware protocol Middleware
Local OS Local OS
Network

(a)

= Figure 3-8. (a) A networked application with its own
protocol.

CIS 508, Spring 2007 Processes 12




Networked User Interfaces (2)

Client machine Server machine
Appl. Appl.
Application-

A independent A
Middleware protocol Middleware
Local OS Local OS

Network
(b)

=  Figure 3-8. (b) A general solution to allow access to
remote applications.

Client-side transparencies

= Distribute transparency
= Access transparency
o Use client-side stub from an interface definition of the server
= Location transparency
= Migration transparency
= Relocation transparency
= Replication transparency
= Failure transparency

= Concurrency and persistence transparency handled by
servers.

Example: The XWindow System

Application server Application server User's terminal
Window Application Xlib interface
manager d
Xlib Xlib
Local OS Local OS X protocol
o X kernel
Device drivers

Terminal énncludes dlsplay
keyboard, mouse, e!

= Figure 3-9. The basic organization of the X Window
System.

Client-Side Software for Distribution Transparency

Client machine Server 1 Server 2 Server 3
Client Server Server Server
appl appl appl appl

|
“ _ p /

Client side handles
request replication Replicated request

= Figure 3-10. Transparent replication of a server
using a client-side solution.

5 505, Spring 2007 Processes




Servers

= Binding issues
o When, how to bind
= Stateless servers
o Soft state

= Stateful servers

o Temporary session state vs. permanent state
o Where to keep state information

* Cookies - client side

General Design Issues (2)

Client machine

2. Continue
service

Client |«
—

1. Request
service

(b)

Server machine

>

Actual
server

Super-
server

Y

Create
server for
requested
service

= Figure 3-11. (b) Client-to-server binding using a

superserver.

General Design Issues (1)

Server machine

Client machine

2. Request Register
| SeVICe ¥ Server [._end point
Client &
M~

Ierwt (=t

end point Daemon

»

~ End-point
table

(@)

= Figure 3-11. (a) Client-to-server binding using a daemon.

Server Clusters (1)

Logical switch Application/compute servers | Distributed
(possibly multiple) ! file/database
| system
|
!

Dispatched S @
Client requests request |
— = ——
\ l
i
| l @

First tier Second tier Third tier

CIS 508, Spring 2007 Processes




Server Clusters (2)

Logically a
single TCP
connection

Response Server

Request
(handed off)

R
Client equest | 5! switch

Server

= Figure 3-13. The principle of TCP handoff.

Distributed Servers

Distributed server X

Believes server Client 1 Knows that Cient 1
has address HA believes it is X pes -ée- ------ .
. rver 1 "

Believes itis liel] . '
connected to X Access point H a
E(E with address CA1 | '

Believes location [MIPvE . :
of X is CA1 — = ' '
=] ran ; ;

'

\| Internet N
\{ i
Believes server Client 2 > \
5

'
'

rver 2
has address HA < S H
— '
Believes it is APP " )/ I '
connected to X TCP « Y, '
TS— Access point . H
Believes location MIPvE with address CA2 . g
of X is CA2 P ' '

. Knows that Cient2 1

believes it is X 3 H

...........

= Figure 3-14. Route optimization in a distributed server.

Managing Server Clusters
Example: PlanetLab

User-assigned Priviliged management
virtual machines virtual machines

o (2| (2] (22 [2(2 (22 (2
1RHHEHER B 1’
& a8 a8 a4 a8 @
Vserver Vserver Vserver Vserver Vserver

Linux enhanced operating system

Hardware

= Figure 3-15. The basic organization of a PlanetLab
node.

PlanetLab (1)

= PlanetLab management issues:

= Nodes belong to different organizations.

o Each organization should be allowed to specify who is
allowed to run applications on their nodes,

0 And restrict resource usage appropriately.

= Monitoring tools available assume a very specific
combination of hardware and software.
o All tailored to be used within a single organization.

= Programs from different slices but running on the
same node should not interfere with each other.

5 505, Spring 2007 Processes




PlanetLab (2)

° Management
authority 3
1 \
7
4
6
Slice authority 5

= Figure 3-16. The management relationships
between various PlanetLab entities.

PlanetLab (4)

= Relationships between PlanetLab entities:

= A service provider contacts a slice authority to
create a slice on a collection of nodes.

= The slice authority needs to authenticate the
service provider.

= A node owner provides a slice creation service
for a slice authority to create slices. It essentially
delegates resource management to the slice
authority.

= A management authority delegates the creation
of slices to a slice authority.

PlanetLab (3)

= Relationships between PlanetLab entities:

= A node owner puts its node under the regime of a
management authority, possibly restricting usage
where appropriate.

= A management authority provides the necessary
software to add a node to PlanetLab.
= A service provider registers itself with a

management authority, trusting it to provide well-
behaving nodes.

Reasons for Migrating Code

2. Client and server

. communicate
Client / Server

PN L

1. Client fetches code

>

Service-specific
client-side code

Code repository

=  Figure 3-17. The principle of dynamically configuring a client
to communicate to a server. The client first fetches the
necessary software, and then invokes the server.

CIS 505, Spring 2007 Processes




Models for Code Migration

Execute at
Sender-initiated —_ 'arget process
mobility ~~_ Execute in

) separate process
Weak mobility

Execute at
- Receiver-initiated — target process

mobility ~~__ Execute in
separate process
Mobility mechanism

Migrate process
Sender-initiated 2o 0P
mobility ~—

Clone process
Strong mobility
Migrate process
Receiver-initiated — 9 p

mobility ~_

Clone process

Migration in Heterogeneous Systems

Three ways to handle migration (which can be
combined)

= Pushing memory pages to the new machine and
resending the ones that are later modified during
the migration process.

= Stopping the current virtual machine; migrate
memory, and start the new virtual machine.

= Letting the new virtual machine pull in new pages
as needed, that is, let processes start on the new
virtual machine immediately and copy memory
pages on demand.

Migration and Local Resources

Resource-to-machine binding

| Unattached | Fastened | Fixed
Process- By identifier MV (or GR) GR (or MV) GR
to-resource By value CP (or MV,GR) GR (or CP) GR
binding = By type RB (or MV,CP) | RB (or GR,CP) | RB (or GR)

GR  Establish a global systemwide reference

MV Move the resource

CP  Copy the value of the resource

RB  Rebind process to locally-available resource

= Figure 3-19. Actions to be taken with respect to the references
to local resources when migrating code to another machine.




