CIS 505: Software Systems
Architectures of Distributed Systems

Insup Lee XD
Department of Computer and Information Science &
University of Pennsylvania

CIS 505, Spring 2007

Software Concepts

System Description Main Goal

DOS Tightly-coupled operating system for multi- Hide and manage
processors and homogeneous multicomputers hardware resources

NOS Loosely-coupled operating system for Offer local services
heterogeneous multicomputers (LAN and WAN) to remote clients

Additional layer atop of NOS implementing general- | Provide distribution

Middleware purpose services transparency

= Software more important for users
o Connecting users and resources
o Developing software for distributed systems

System software structures

= DOS (Distributed Operating Systems)
o Uniprocessor OS, Mutliprocessor OS, Multicomputer OS
o Global IPC, file system interface
o Distributed Shared Memory

= NOS (Network Operating Systems)
o Loosely coupled-software on loosely-couple hardware

o rlogin, rcp, file servers for shared file, etc.

= Middleware

Uniprocessor Operating Systems

No direct data exchange between modules

-

4 "
Al

> - = \
08 interface User | Memory Process || File module | ||\
application | | module module [User mode
4| | A /
= = = \
P *Kernel mode
System call -~ Microkernel /
Hardware

= Separating applications from operating system code through
a microkernel.

CIS 505, Spring 2007 Architectures 4

Multicomputer Operating Systems (1)

Machine A Machine B Machine C
|| L1
Distributed applications
- -
Distributed operating system services
Kernel Kernel Kernel

|

= General structure of a multicomputer operating system

Network

Example

= Sender

print (before send)
send (“my msg”)
print (after send)

= Receiver

print (before receive)

receive (msg)

print (after receive)

Multicomputer Operating Systems (2)

Possible
synchronization

point -)
~—— Receiver
"‘: sS4

v -
Sender | _wi—— ~ 4| Receiver
buffer | |[— — buffer

e 32 $ s3
[Bl

Network

Sender ¢ S1

= Alternatives for blocking and buffering in message passing.

Multicomputer Operating Systems (3)

Synchronization point Send buffer sﬁg?:;i;%n;m‘
Block sender until buffer not full Yes Not necessary
Block sender until message sent No Not necessary
Block sender until message received No Necessary

Block sender until message delivered No Necessary

Relation between blocking, buffering, and reliable communications.
Dealing with failures.

S 508, Spring 2007 Architectures

Distributed Shared Memory Systems (1)

a)

b)

c)

Pages of address
space distributed
among four
machines

Situation after CPU
1 references page
10

Situation if page 10
is read only and
replication is used

Shared global address space

0‘?3{}31849‘0?1‘?‘3"‘5

YA A aNAY s Lrs LY

o]2]s JE D DK EE

9 3|10 1214 [« Memory

cPUY cPu2 cPu3 cPua
@

o]2]s IBO00ERRER

© 110 8 12414

cPU1 cPU2 cPU3 cPU4
(®)

o]z]s B0 0ER N ER

910 3 |10} 1214

cPU1 cPU2 cPU3 CPU 4

Network Operating System (1)

Machine A Machine B Machine C
|| |
Distributed applications
Network OS Network OS Network OS
services services services
Kernel Kernel Kernel
Network

= General structure of a network operating system.

Distributed Shared Memory Systems (2)

Machine A

Code using A

Page transfer when
B needs to be accessed

Page transfer when
A needs to be accessed

Machine B

/

T Two independent
data items

= False sharing of a page between two independent processes.

Network Operating System (2)

Client 1

Client 2

Request Reply

Ly <

File server

=

=
J)

Network

Disks on which
shared file system
is stored

= Two clients and a server in a network operating system.

CIS 505, Spring 2007

Architectures

Web-sever Architectures

Front end

handling

incoming Replicated Web servers each

requests containing the same Web pages
Requests - - <} — Disks
handled in _pr — = | e -
round-robin “~{ &= =

| fashion I — | o

Internet

= An example of horizontal distribution of a Web service.

Middleware for Distributed Systems

= Middleware is a layer of software between
applications and OS that gives a uniform interface

= Central to developing distributed applications

= Different types
o Document based (world-wide web)
o File-system based (e.g., NFS)
o Shared object-based (CORBA)
o Coordination based (Linda, Publish-subscribe, Jini)

Coordination-based Approach

Component Component

Data delivery Publish

Shared (persistent) data space

(b)

= Linda: the tuple space
o In (“fred”, 1958), Read (“fred”, x), Out(“fred”, 1958)

Middleware Layer

= In an open middleware-based distributed system, the protocols
used by each middleware layer should be the same, as well as
the interfaces they offer to applications

Architectures 16

Comparison between Systems System Architectures for Applications

Distributed 0S . .
Ttem : ricos | Middieware- = Centralized Architecture

Multiproc. Multicomp. .
o Client-server model

Degree of transparency Very High High Low High " . .
o Application layering
Same 05 on all nod Y Y No N i .
e o one note = = ’ o Multitiered architecture
Number of copies of OS 1 N N N . .
= Decentralized Architecture
Basis for communication ﬁ‘h:r:)dry Messages Files Model specific

o Peer-to-peer architecture
Resource management f:l’_"t’;’a'i (?ig?glned Per node Per node * Distributed hash table (DHT)
Scalability No Moderately Yes Varies o Overlay Networks

Openness Closed Closed Open Open = Hybrid Architectures

The Client and Server Model An Example Client and Server (1)

memmdwdmuamum o4
mhno TRUE
woefine MAX _ F'ATH 255 /* maximum length of file name ¥ 4
#define BUF _SIZE 1024 /* how much data to transfer at once */
#define FILE_SERVER 243 /" file server's network address b/
. Wait for result /* Definitions of the allowed opambom

Client #define CREATE I* create a new file -
#define READ 2 /~ read data from a file and return it */
#define WRITE 3 /" write data to a file b
#define DELETE 4 /* delete an existing file */

RequeSt 7 Error codes. */
#define OK o I~ operation performed correctly */
#define E_BAD_OPCODE -1 /* unknown operation requested !
#define E_BAD_PARAM -2 /* error in a parameter 4
Server ----oooooooo- #define E_IO -3 I disk error or other UO error ot

Provide service Time —» I Definition of the message format. */

struct message {
long source; /" sender’s identity /
long dest; /" receiver's identity !
long opcode; /* requested operation U
jong count; /* number of bytes to transfer /
long offset; /* position in file to start VO U
N " . Iong resuit; /* result of the operation /
* General interaction between a client and a server. char name[MAX_PATH]: /* name ol file being operatedon */
char data[BUF _SIZE]: /* data to be read or written d

= Protocols (e.g., HTTP, SMTP, MIME, etc.) k

= The header.h file used by the client and server.

CIS 505, Spring 2007 Architectures 20

An Example Client and Server (2)

#include <header.h>

void main(void) {
struct message mi, m2; I ing and outgoing g Ki
intr; /* result code !
while(TRUE) { I* server runs forever !
receive(FILE _SERVER, &mi); /* block waiting for 2 message */
switch(ml.opcode) { I* dispatch on type of request
case CREATE: r = do_create(&mi, &m2); break;
case READ: r = do_read(&ml, &m2); break;

case WRITE: r = do_write(&ml, &m2); break;
case DELETE: r = do_delete(&ml, &m2); break;

defauit: r = E_BAD_OPCODE;
}
m2.result =r; /" retumn result to client */
send(ml.source, &m2); I* send reply */

}
}

= A sample server.

An Example Client and Server (3)

#include <headerh>
int copy(char *src, char *dst){ I* procedure 1o copy file using the server
struct message mi; " message buffer
long positon; I* current file position
long client = 110; I* chent's address
initakze(); " prepare for execution
position = 0;
do{
mi.opcode = READ; I* operation is a read
mi.offset = position; [* current position in the file *
mi.count = BUF_SIZE; " how many bytes 1o read”/
strepy(&mi.name, src); I copy name of file to be read to message */
send(FILESERVER, &mi); I* send the message 10 the file server -
receive(client, &mi); I* block waiting for the reply

I Write the data just received to the destination file.
mi.opcode = WRITE; /* operation is a write

mi.offset = position; I* current position in the file
mi.count = miresult; ” how many bytes 10 write
strepy(&miname, dst); I* copy name of file 10 be written to buf
send(FILE_SERVER, &ml); " sand the message 10 the file server
receive(client, &mi), " block waiting for the reply
position += mi.result; [~ mi.result is number of bytes written

} while(mi.result >0); " iterate until done

retum{mi.result >= 0 ? OK : mi result); /* retum OK or error code

= A client using the server to copy a file.

Application Layering

User-interface

™ User interface level
HTML page
Keyword expression containing list
HTML
generator Processing
Query @ Ranked list level
generator of page titles

Ranking
Database queries algorithm

Web page titles

with meta-information

Database Data level

with Web pages

Multitiered Architectures (1)

The simplest organization is to have only
two types of machines:

A client machine containing only the
programs implementing (part of) the
user-interface level

A server machine containing the rest,

o the programs implementing the processing
and data level

CIS 505, Spring 2007 Architectures 24

Multitiered Architectures (2)

Client machine

IUsel interlaqu [User inlerlaoel User interface User interface

User interface

- TR ~

1 A

e

User interface L

Database

Application Application “Application L
D: Datab D [Datab] [Datab I
Server machine
(a) (b) (c) (d) (e)

Multitiered Architectures (3)

Wait for result

User interface
(presentation)

Request
operation

Return
result
Wait for data

Application ____________1
server
Request data Return data

Database
server >

Structured Peer-to-Peer Architectures (1)

DHT (Distributed

Hash Table) (0}

145 (1314,15) {0,1}

Ex: the mapping of 1)
data items onto

nodes in Chord. {8,9,10,11,12}
. Associated
{11} data keys
{10 56.7)

\9\8 /@/

Actual node

s

18}

{2,3,4}

Structured Peer-to-Peer Architectures (2)

Keys associated with

= Content Addressable o node at ((\).6.0.7) .

Network (CAN) \ (09,0.9)
(0250.8)

" F|gur(—? 2-8. (a) The Al ua{ e 060.) -
mapping of data items .
onto nodes in CAN.

(0’260‘3)
(0'760'2)
(0,0) (1,0)

(a)

CIS 505, Spring 2007 Architectures 28

Structured Peer-to-Peer Architectures (3)

(0.9,0.9)
L]
(0.2,0.8)
.
(0.6,0.7)
.
(0.9,0.6)
.
(0.2,0.45)
(02,0.15) O
= Figure 2-8. (b) o
Splitting a region

when a node joins.
(b)

Topology Management of Overlay Networks

Structured Pr:;zcc(i),'icfor ,..-/'——:' Links to topology-
overlay overlay Q: specific other nodes

A
Random peer

Random Z\r:ég(r:r?ilzg _,,4 Links to randomly
I h h
overlay viow -QI chosen other nodes

= Structured overlay based on ranking functions
o E.g., Semantic proximity

Topology Management of Overlay Networks

Time

= Figure 2-11. Generating a specific overlay network using a two-
layered unstructured peer-to-peer system [adapted with
permission from Jelasity and Babaoglu (2005)].

Superpeers

Regular peer

Superpeer

Superpeer
network

= Figure 2-12. A hierarchical organization of nodes into a
superpeer network.

S 505, Spring 2007 Architectures

Self-Management of Distributed Systems

= |ssues
o What to monitor
o How to monitor
o How to evaluate
o How to adapt
o ...

= Three steps
o Monitor
o Check
o Steer/Adapt

The Feedback Control Model

Uncontrollable parameters (disturbance / noise)

Initial configuration Corrections Observed output
< () Core of distributed syst -

+/- ? +/-
+/-

Reference input

Adjustment Metric
measures l estimation
| Analysis 1—‘
Adjustment triggers Measured output

Possible techniques for adaption

Changing system parameter values
Micro resets
Dynamic replacement of components

System regeneration by global reset and
restriction to essential functionality

b=

Example: Systems Monitoring with
Astrolabe

avg_load | avg_mem | avg_procs

0.06 0.55 47

Machine A Machine B

|P-addr load | mem | procs
1

92.168.1.2 | 0.03| 0.80 43
192.168.1.3 | 0.05| 050 20
192.168.1.4

Machine C

CIS 505, Spring 2007 Architectures 36

Example: Differentiating Replication
Strategies in Globule (1)

e =)

LI Client L] Client

Enterprise network

Example: Automatic Component Repair
Management in Jade

= Steps required in a repair procedure:

= Terminate every binding between a component
on a nonfaulty node, and a component on the
node that just failed.

= Request the node manager to start and add a
new node to the domain.

= Configure the new node with exactly the same
components as those on the crashed node.

= Re-establish all the bindings that were previously
terminated.

Architectures

Example: Differentiating Replication

Strategies in Globule (2)

|

Error in prediction

Trace length used for selecting next policy —>

= Figure 2-19. The dependency between prediction
accuracy and trace length.

10

