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Software Concepts

Software more important for users

o Connecting users and resources

o Developing software for distributed systems

Provide distribution
transparency

Additional layer atop of NOS implementing general-
purpose services

Middleware

Offer local services
to remote clients

Loosely-coupled operating system for
heterogeneous multicomputers (LAN and WAN)

NOS

Hide and manage
hardware resources

Tightly-coupled operating system for multi-
processors and homogeneous multicomputers

DOS

Main GoalDescriptionSystem
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System software structures

DOS  (Distributed Operating Systems)

o Uniprocessor OS, Mutliprocessor OS, Multicomputer OS

o Global IPC, file system interface

o Distributed Shared Memory

NOS (Network Operating Systems)

o Loosely coupled-software on loosely-couple hardware

o rlogin, rcp, file servers for shared file, etc.

Middleware
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Uniprocessor Operating Systems

Separating applications from operating system code through
a microkernel.

1.11
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Multicomputer Operating Systems (1)

General structure of a multicomputer operating system

1.14
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Multicomputer Operating Systems (2)

Alternatives for blocking and buffering in message passing.

1.15
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Example

Sender

     …

     print (before send)

     send (“my msg”)

     print (after send)

Receiver

     …

     print (before receive)

     receive (msg)

     print (after receive)
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Multicomputer Operating Systems (3)

Relation between blocking, buffering, and reliable communications.

Dealing with failures.

NecessaryNoBlock sender until message delivered

NecessaryNoBlock sender until message received

Not necessaryNoBlock sender until message sent

Not necessaryYesBlock sender until buffer not full

Reliable comm.
guaranteed?

Send bufferSynchronization point
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Distributed Shared Memory Systems (1)

a) Pages of address

space distributed

among four

machines

b) Situation after CPU

1 references page

10

c) Situation if page 10

is read only and

replication is used
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Distributed Shared Memory Systems (2)

False sharing of a page between two independent processes.

1.18
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Network Operating System (1)

General structure of a network operating system.

1-19
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Network Operating System (2)

Two clients and a server in a network operating system.

1-20
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Web-sever Architectures

An example of horizontal distribution of a Web service.

1-31
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Middleware for Distributed Systems

Middleware is a layer of software between

applications and OS that gives a uniform interface

Central to developing distributed applications

Different types

o Document based (world-wide web)

o File-system based (e.g., NFS)

o Shared object-based  (CORBA)

o Coordination based (Linda, Publish-subscribe, Jini)
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 Coordination-based Approach

Linda:  the tuple space
o In (“fred”, 1958), Read (“fred”, x), Out(“fred”, 1958)

CIS 505, Spring 2007 Architectures 16

Middleware Layer

In an open middleware-based distributed system, the protocols
used by each middleware layer should be the same, as well as
the interfaces they offer to applications

OS network

middleware

applications

OS network

middleware

applications
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Comparison between Systems

OpenOpenClosedClosedOpenness

VariesYesModeratelyNoScalability

Per nodePer node
Global,

distributed

Global,

central
Resource management

Model specificFilesMessages
Shared
memory

Basis for communication

NNN1Number of copies of OS

NoNoYesYesSame OS on all nodes

HighLowHighVery HighDegree of transparency

Multicomp.Multiproc.

Middleware-
based OS

Network OS

Distributed OS

Item
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System Architectures for Applications

Centralized Architecture

o Client-server model

o Application layering

o Multitiered architecture

Decentralized Architecture

o Peer-to-peer architecture

Distributed hash table (DHT)

o Overlay Networks

Hybrid Architectures
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The Client and Server Model

General interaction between a client and a server.

Protocols (e.g., HTTP, SMTP, MIME, etc.)

1.25
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An Example Client and Server (1)

The header.h file used by the client and server.
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An Example Client and Server (2)

A sample server.
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An Example Client and Server (3)

A client using the server to copy a file.

1-27 b
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Application Layering

Figure 2-4. The simplified organization of an
Internet search engine into three different layers.
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Multitiered Architectures (1)

The simplest organization is to have only

two types of machines:

A client machine containing only the

programs implementing (part of) the

user-interface level

A server machine containing the rest,

o the programs implementing the processing

and data level
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Multitiered Architectures (2)

Figure 2-5. Alternative client-server

organizations (a)–(e).
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Multitiered Architectures (3)

Figure 2-6. An example of a server acting as

client.
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Structured Peer-to-Peer Architectures (1)

DHT (Distributed
Hash Table)

Ex: the mapping of
data items onto
nodes in Chord.
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Structured Peer-to-Peer Architectures (2)

Content Addressable

Network (CAN)

Figure 2-8. (a) The

mapping of data items

onto nodes in CAN.



8

CIS 505, Spring 2007 Architectures 29

Structured Peer-to-Peer Architectures (3)

Figure 2-8. (b)

Splitting a region

when a node joins.
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Topology Management of Overlay Networks

Structured overlay based on ranking functions

o E.g., Semantic proximity
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Topology Management of Overlay Networks

Figure 2-11. Generating a specific overlay network using a two-
layered unstructured peer-to-peer system [adapted with
permission from Jelasity and Babaoglu (2005)].
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Superpeers

Figure 2-12. A hierarchical organization of nodes into a
superpeer network.
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Self-Management of Distributed Systems

Issues

o What to monitor

o How to monitor

o How to evaluate

o How to adapt

o …

Three steps
o Monitor

o Check

o Steer/Adapt

CIS 505, Spring 2007 Architectures 34

The Feedback Control Model

Figure 2-16. The logical organization of a

feedback control system.
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Possible techniques for adaption

1. Changing system parameter values

2. Micro resets

3. Dynamic replacement of components

4. System regeneration by global reset and

restriction to essential functionality
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Figure 2-17. Data collection and information

aggregation in Astrolabe.

Example: Systems Monitoring with

Astrolabe
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Example: Differentiating Replication

Strategies in Globule (1)

Figure 2-18. The edge-server model assumed

by Globule.
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Example: Differentiating Replication

Strategies in Globule (2)

Figure 2-19. The dependency between prediction
accuracy and trace length.
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Example: Automatic Component Repair

Management in Jade

Steps required in a repair procedure:

Terminate every binding between a component
on a nonfaulty node, and a component on the
node that just failed.

Request the node manager to start and add a
new node to the domain.

Configure the new node with exactly the same
components as those on the crashed node.

Re-establish all the bindings that were previously
terminated.


