CIS 505 Software Systems
Lecture Note on CSP

Instructor: Insup Lee
Department of Computer and Information Science
University of Pennsylvania

[The slides are originally prepared by U. Sammapun,
based on the CSP book by C.A.R. Hoare]

Communicating Sequential
Processes (CSP)

« Capture real world behaviors
— Chocolate vending machine

« Event (instantaneous actions)
— coin
— choc

* Process (behavior patterns of objects)
— VMC - chocolate vending machine

« Alphabet (set of possible events, denoted as aP)
— aVMC = {coin, choc}

« STOP, (behavior or process of a broken object with alphabet A)
- STOP

aVMC

CIS 505, Spring 2007 CspP

Prefix

« Prefix: (x> P)
— Process with same alphabet as P
— (x> P)=aP where x € aP

« Broken chocolate vending machine
— coin > STOP ymc
— (coin > (choc = (coin = (choc > STOP ,yuc))))

¢ Counter board E}

— oCRT = {up, right}
— CRT = (right = up > right - right > STOP cg7)

* Incorrect

- P>Q
— x>y (Correctsyntax: x 2> (y > STOP))

CIS 505, Spring 2007 CspP

Recursion

« Describe repetitive behaviors

¢ Clock
— aCLOCK = {tick}
— CLOCK =tick > CLOCK

— CLOCK
= (tick > CLOCK) [original equation]
= (tick = (tick > CLOCK)) [by substitution]
= (tick > (tick > (tick > CLOCK))) [similarly]
=tick - tick = tick - tick 2> tick > [unfolding CLOCK many times]

¢ Useless equation?
- X=X

CIS 505, Spring 2007 CspP

Recursion

e Guarded
— A process description that begins with a prefix
— CLOCK = (tick > CLOCK)

» If F(X) is a guarded expression containing process X and
alphabet A
— Then X = F(X) has a unique solution with alphabet A
— Solution: u X: A « F(X)

» X s alocal name and can be changed
— uX:AsF(X) =uY:AsF(Y)
— Because a solution for X = F(X) is also a solution for Y = F(Y)

CIS 505, Spring 2007 CspP 5

Recursion Examples

* Clock
— CLOCK = u X: {tick} « (tick > X)

» Working chocolate vending machine!
— VMC = (coin 2 (choc > VMC))
— Or formally, VMC = uX: {coin,choc} ¢ (coin = (choc 2> X))

» Machine gives change for 5p repeatedly
— aCHB5A = {in5p, out2p, outlp}
— CH5A = (in5p - out2p - outlp - out2p - CH5A)

« Different change-giving machine with same alphabet
— CH5B = (in5p - outlp - outlp - outlp - out2p - CH5B)

CIS 505, Spring 2007 CspP

Choice

¢ Interaction with environment
— Machine with 1p coin slot and 2p coin slot
— It's a customer’s choice

e Syntax
- x>Ply>Q)
where a(x > P |y 2> Q) = aP
provided {x,y} € aP and aP = aQ

« Examples
— Possible counter moves
* (up > STOP | right - right > up - STOP)

— Machine with two combination of changes
¢ CH5C =in5p - (outlp - outlp - outlp > out2p - CH5C
| out2p - outlp > out2p > CH5C)

CIS 505, Spring 2007 CspP 7

Choice Example

« Chocolate / toffee machine
— VMCT = u X » coin > (choc > X | toffee > X)

« Machine with choices of coins / goods / change
— VM = (in2p >(large > VM
| small > outlp = VM)
|inlp > (small > VM
| inlp > (large > VM
| inlp > STOP)))

« Machine that trusts customers
— VMCRED = u X * (coin > choc > X | choc - coin > X)

« To prevent loss, an initial payment is required
— VM2 = (coin > VMCRED)

« Copying Process
— COPYBIT = pu X+ (in.0 > out.0 > X | in.1 > outl > X)

CIS 505, Spring 2007 CspP

Choice

* More than two alternatives
- xX2P|y=2Q| .. |z2R)
— where X, y, z are distinct events

¢ Incorrect syntax
- xX2P|x=2Q)
- xX?Pl(y=>Qlz=>R)

« In general, choice is written as
- (x:B=2PX)
— Offers a choice of any event x in B, and behaves like P(x)
— Aset B is called the “initial menu” of the process

« Example: Process which can engage in any event in alphabet A
— GRUN,=A
— RUN, =(x:A >RUN,)

« There are other kinds of choice: e.g., non-deterministic choice

Mutual Recursion

» Orange-Lemon drink dispenser (DD)
— Pressing two buttons: setorange, setlemon
— Dispensing drinks: orange, lemon
— aDD = a0 = al = {setorange, setlemon, orange, lemon}

DD = (setorange = O | setlemon 2 L)
O = (orange =2 O | setlemon =2 L | setorange = O)
L = (lemon =2 L | setorange 2 O | setlemon 2 L)

* Object movement
— On the ground: move up or around
e CT,=(up = CT, | around 2 CT,)
— In the air: move up or down
e CT,,; =(up 2 CT,,,| down > CT))

CIS 505, Spring 2007 CspP 10

CIS 505, Spring 2007 CsP 9
v "v_ ¢
com
v
A . AN -,
/ com choc toffee
r'/ Y \‘\
e \ —~ e
(_/ \
= ‘ ‘ s
‘-‘. L‘hm‘// \‘\ toffee | coin
_\ / \ /,/‘ v
¥ P |
e/ N/ choc toffee
» 4
CIS 505, Spring 2007 CsP 11

Laws

e Lawl:
-x2Ply2Q =(2Q[x=>P)
— (x 2 P) = STOP
—x2P)=(y2Q) if x=y
—(x2P)=(x=>Q) implies P=Q

— Example:
¢ (coin = choc =2 coin 2 choc 2 STOP) = (coin 2 STOP)
¢ uX e (coin 2 (choc = X | toffee 2 X))
= uX ¢ (coin 2 (toffee > X | choc =2 X))

CIS 505, Spring 2007 CspP 12

Laws

* Law2: let F(X) be a guarded expression
- (Y=F(Y)) = (Y =uX+F(X))
— uX* F(X) = F(uX * F(X))

— Example:
¢ Let VM1 = (coin = VM2)
VM2 = (choc 2 VM1)

« Then VM1 = (coin > VM2)

= (coin = (choc »> VML1))
=VMC

CIS 505, Spring 2007 CspP

13

Traces

» Trace of a behavior of a process

— Finite sequence of symbols recording events up to
some moment in time

 Example

— Chocolate vending machine after serving 2 customers
« { coin, choc, coin, choc)

— Before anyone puts coins in
* () (called empty trace, the shortest possible trace)

— Change-giving machine — customer is waiting for the

last 2p

« (in5p, out2p, inlp)

CIS 505, Spring 2007 CspP 14

Operations on Traces

e Concatenation: s”t
— (coin, choc) ~ (coin, toffee) = (coin, choc, coin, toffee)

e Head: s, Tail:s’
= (XY, X)o=x
= (%Y, x) "= (Y, %)

¢ Ordering: s<t = (Jues™u=t)
— “sis a prefix of t”
- (xy)ys(xy, % w)

e Star:

- A*={t|t=()or
(t,EA andt'€AY) }

CIS 505, Spring 2007 CspP

15

Operation on Traces

e After: P/s where s € traces(P)
- “Pafters”
— (VMC /{ coin)) = (choc 2 VMC)
— (VMC /{ coin, choc)) = VMC

¢ Restriction: (t 1A) “trace t when restricted to symbols in A”
— (around, up, down, around) 1 { up, down } = up, down)

* Length: #t
- #(X Yy, x)=3

CIS 505, Spring 2007 CspP 16

Traces of Process

» Complete set of all possible traces of P
— traces(P)

 Example
— traces(STOP) ={() }
— traces(coin 2 STOP) ={(), {(coin) }
— traces(uX « tick 2 X) = {(), (tick), (ticktick), ... }
= {tick }*
— Chocolate vending machine
« trace(uX ¢ coin 2 choc 2 X) ={s |3 n s <{coin,choc)"}

CIS 505, Spring 2007 CspP

17

Specifications

« Describe intended behaviors of products
— Assume tr is a variable for an arbitrary trace
— Let (tr | choc) denote #(tr 1 { choc})
« Number choc events in trace tr

« Example
— VM owner: # of chocolate must never exceed # of coins inserted
¢ NOLOSS = (tr | choc) < (tr | coin)

— VM customers: VM won't take more coins until it dispenses paid
chocolate

¢ FAIR = (tr | coin) < (tr | choc) +1

— Hence, VM manufacturer must meet spec. from both VM owner and
customers
« VMSPEC = NOLOSS A FAIR
=0= (tr | coin) - (tr | choc) < 1

CIS 505, Spring 2007 CspP 18

Satisfaction

e PsatS
— If a product P meets a specification S, then P satisfies S
— Formally, P sat S iff V tr « tr € traces(P) = S

» Example: VMC sat VMSPEC
— Recall:
¢ VMC = (coin = (choc »> VMC))
* VMSPEC = NOLOSS A FAIR
=0 < (tr | coin) - (tr [choc) = 1

CIS 505, Spring 2007 CspP

19

Concurrency

e 2 0r more processes operating together
— Syntax: P || Q

— Example: Both customers and vending machines can be viewed
as processes interacting with one another

* Interaction
— Interact via shared events between processes

« Concurrency
— Specifies how shared and private events in processes are joined

CIS 505, Spring 2007 CspP 20

Interaction Example

» A greedy customer tries to get chocolate or toffee
without paying
 If doesn’t work, he reluctantly pays for chocolate
— GRCUST = (toffee > GRCUST
| choc > GRCUST
| coin & choc > GRCUST)

* When using VMCT machine,
— VMCT = u X ¢ coin = (choc > X | toffee 2> X)

» he can'’t get goods without paying, hence, he only gets
chocolate
— (GRCUST || VMCT) = u X ¢ (coin = choc > X)

CIS 505, Spring 2007 CspP

21

Interaction Laws and Traces

e Laws:
-PJ[Q =Q]P
-PIQIIR) = (PIQIR
- P|| STOP,, = STOP,;
—-PJ|| RUN, = P
-Cc2P)|c2Q =(C2>((PlQ
—(c2P)||(d>Q) =STOP if c =d
¢ Traces:

— traces(P || Q) = traces(P) N traces(Q)
-(PIIQ/s = (PIs)[(Q/s)

CIS 505, Spring 2007 CspP 22

Concurrency

* In general, it's possible that
—aP = aQ
—forx € (aP — aQ),

* P may engage alone with no concern to Q
* and vice versa

* Hence,
—aP]| Q)=aP U aQ

CIS 505, Spring 2007 CspP

23

Concurrency Example

* Noisy vending machine
— aNOISYVM = {coin, choc, clink, clunk, toffee}
— NOISYVM = (coin =2 clink 2 choc 2 clunk 2 NOISYVM)

» Customer who curses when gets chocolate instead of
toffee

— aCUST = {coin, choc, curse, toffee}
— CUST = (coin 2 (toffee > CUST
| curse =2 choc 2 CUST)

e Cursing customer using noisy machine
— (NOISY || CUST) =
u X ¢ (coin =2 (clink 2 curse 2 choc 2 clunk 2> X
| curse =2 clink 2 choc 2 clunk 2 X))

CIS 505, Spring 2007 CspP 24

Concurrency Law

¢ || is symmetric and associative
* P||STOP_ =STOP
* P||RUN,=P

e Let
- a€(aP - aQ)
- be(aQ - aP)
- {c,d} C(aP N aQ)
*« Then
- 2P)||[(c2Q =c2(PIQ
- (c2P)||(d=>Q) =STOP ifc=d
- @2P)llc2Q =a=>(Pll(c 2Q)
- 2P)|[(b=2Q) =b=>(c>P)| Q)
- @2P)Ib2Q =@=2Pl(b=>Q)(b>(a=>P)IQ)
CIS 505, Spring 2007 CSP

25

Concurrency Traces

traces(P || Q) is all possible traces of process (P || Q)

° traceS(P ” Q) = traces of all events where P ici
participates
{t](t1 aP) € traces(P) A L =]
(t1 aQ) € traces(Q) /\éaces of all events where Q participates
*
te (O(P U aQ) } wery event in t must be in either aP or @

t1 = (coin, clink, curse) € traces(NOISYVM || CUST)
— t1 1 aNOISYVM = (coin, clink) € traces(NOISYVM)
— t1 1 aCUST = (coin, curse) € traces(CUST)

Similar for t2 = (coin, curse, clink)

CIS 505, Spring 2007 CspP 26

Concurrency Pictures

CIS 505, Spring 2007 CspP

27

Concurrency Pictures

ﬁ— (PIQIR)

CIS 505, Spring 2007 CspP 28

Dining Philosophers

» Book p. 57 T

PHIL PHIL

'l'm\ b 2 ywed 1 PHIL

CIS 505, Spring 2007

Change of Symbol

¢ Define groups of processes with similar behaviors
— One-on-one function (injection) maps alphabet of P onto a set of
symbols A
—f:aP 2A

« Example:
— Recall: Chocolate / toffee machine
¢ VMCT = coin = (choc > VMCT | toffee > VMCT)
— Want: Gum / pretzel machine
« f(coin) = coin
« f(choc) = gum
« f(toffee) = pretzel
— Now, VMGP = f(VMCT)

CIS 505, Spring 2007 CspP 30

Process Labeling
» Label identical but independent processes

» Example:

— Two machine standing side by side
« (left: VMC) || (right : VMC)

— Possible trace
« (left.coin, right.coin, right.choc)

CIS 505, Spring 2007 CspP

31

Specifications and Satisfaction

 Satisfaction for concurrent processes

° |f P sat S(tr) Z: P satisfies a spec S j

and Q sat T(tr) { Q satisfied a spec T j
then (P || Q) sat S(tr 1 aP) A T(tr 1 aQ)

P || Q satisfies if in trace tr
« events of P satisfy S
« events of Q satisfy T

CIS 505, Spring 2007 CspP 32

Spec, Sat Example

— Let aP={a,c} and aQ={b,c}
*« P=(@a>c->P)
* Q=(c>b=>0Q)

— Wantto know if (P || Q) satO < (tr | ay—(tr | b) = 2

num of a and b differ at most 2

Obviously, In P, num of a and c differ at most 1
e« PsatOs<(trja)—(trjc)=<1

*« QsatO=(trjc)—(tr|b)=1 jq, num of ¢ and b differ at mostD

— Hence,
« P||Q)sat (O=< (trtaP)la — (tr1aP)lc <1 A
Os< (rtaeQ)lc - (trtaQ)|b =<1)

. Since(tr1A)la =trawhena€A num of a when trace has only
eventsinAanda € A

« P|]|Q)sat (O=< (trja) — (trjc) <1 A
O< (trjc) — (trlb) <1)

« (P||Q)sat (O=<(trja)—(tr{b)<2)

CIS 505, Spring 2007 CspP

33

Theory of Deterministic Processes

* CSP Book P. 72 -79

* |t shows that
— CSP laws are in fact true

— arecursively defined process is indeed a
solution of the corresponding recursive
equation (fixed point theory)

— there exists a unigue solution

CIS 505, Spring 2007 CspP 34

