
1

CIS 505 Software Systems

Lecture Note on CSP

Instructor: Insup Lee
Department of Computer and Information Science

University of Pennsylvania

[The slides are originally prepared by U. Sammapun,

based on the CSP book by C.A.R. Hoare]

CIS 505, Spring 2007 CSP 2

Communicating Sequential

Processes (CSP)
• Capture real world behaviors

– Chocolate vending machine

• Event (instantaneous actions)
– coin

– choc

• Process (behavior patterns of objects)
– VMC – chocolate vending machine

• Alphabet (set of possible events, denoted as P)
– VMC = {coin, choc}

• STOPA (behavior or process of a broken object with alphabet A)
– STOP VMC

CIS 505, Spring 2007 CSP 3

Prefix

• Prefix: (x P)
– Process with same alphabet as P

– (x P) = P where x P

• Broken chocolate vending machine
– coin STOP VMC

– (coin (choc (coin (choc STOP VMC))))

• Counter board

– CRT = {up, right}

– CRT = (right up right right STOP CRT)

• Incorrect
– P Q

– x y (Correct syntax: x (y STOP))

CIS 505, Spring 2007 CSP 4

Recursion

• Describe repetitive behaviors

• Clock
– CLOCK = {tick}

– CLOCK = tick CLOCK

– CLOCK
= (tick CLOCK) [original equation]

= (tick (tick CLOCK)) [by substitution]

= (tick (tick (tick CLOCK))) [similarly]

= ………

= tick tick tick tick tick …… [unfolding CLOCK many times]

• Useless equation?
– X = X

2

CIS 505, Spring 2007 CSP 5

Recursion

• Guarded
– A process description that begins with a prefix

– CLOCK = (tick CLOCK)

• If F(X) is a guarded expression containing process X and
alphabet A
– Then X = F(X) has a unique solution with alphabet A

– Solution: μ X: A • F(X)

• X is a local name and can be changed
– μ X: A • F(X) = μ Y: A • F(Y)

– Because a solution for X = F(X) is also a solution for Y = F(Y)

CIS 505, Spring 2007 CSP 6

Recursion Examples

• Clock
– CLOCK = μ X: {tick} • (tick X)

• Working chocolate vending machine!
– VMC = (coin (choc VMC))

– Or formally, VMC = μX: {coin,choc} • (coin (choc X))

• Machine gives change for 5p repeatedly
– CH5A = {in5p, out2p, out1p}

– CH5A = (in5p out2p out1p out2p CH5A)

• Different change-giving machine with same alphabet
– CH5B = (in5p out1p out1p out1p out2p CH5B)

CIS 505, Spring 2007 CSP 7

Choice

• Interaction with environment
– Machine with 1p coin slot and 2p coin slot

– It’s a customer’s choice

• Syntax
– (x P | y Q)
 where (x P | y Q) = P

 provided {x,y} P and P = Q

• Examples
– Possible counter moves

• (up STOP | right right up STOP)

– Machine with two combination of changes
• CH5C = in5p (out1p out1p out1p out2p CH5C

 | out2p out1p out2p CH5C)

CIS 505, Spring 2007 CSP 8

Choice Example
• Chocolate / toffee machine

– VMCT = μ X • coin (choc X | toffee X)

• Machine with choices of coins / goods / change
– VM = (in2p (large VM

 | small out1p VM)

 | in1p (small VM

 | in1p (large VM

 | in1p STOP)))

• Machine that trusts customers
– VMCRED = μ X • (coin choc X | choc coin X)

• To prevent loss, an initial payment is required
– VM2 = (coin VMCRED)

• Copying Process
– COPYBIT = μ X • (in.0 out.0 X | in.1 out.1 X)

3

CIS 505, Spring 2007 CSP 9

Choice

• More than two alternatives
– (x P | y Q | … | z R)

– where x, y, z are distinct events

• Incorrect syntax
– (x P | x Q)

– (x P | (y Q | z R))

• In general, choice is written as
– (x : B P(x))

– Offers a choice of any event x in B, and behaves like P(x)

– A set B is called the “initial menu” of the process

• Example: Process which can engage in any event in alphabet A
– RUNA = A

– RUNA = (x : A RUNA)

• There are other kinds of choice: e.g., non-deterministic choice

CIS 505, Spring 2007 CSP 10

Mutual Recursion

• Orange-Lemon drink dispenser (DD)
– Pressing two buttons: setorange, setlemon

– Dispensing drinks: orange, lemon

– DD = O = L = {setorange, setlemon, orange, lemon}

 DD = (setorange O | setlemon L)

 O = (orange O | setlemon L | setorange O)

 L = (lemon L | setorange O | setlemon L)

• Object movement
– On the ground: move up or around

• CT0 = (up CT1 | around CT0)

– In the air: move up or down
• CTn+1 = (up CTn+2 | down CTn)

CIS 505, Spring 2007 CSP 11

Pictures

CIS 505, Spring 2007 CSP 12

Laws

• Law1:
– (x P | y Q) = (y Q | x P)
– (x P) STOP

– (x P) (y Q) if x y

– (x P) = (x Q) implies P = Q

– Example:
• (coin choc coin choc STOP) (coin STOP)

• μX • (coin (choc X | toffee X))

 = μX • (coin (toffee X | choc X))

4

CIS 505, Spring 2007 CSP 13

Laws

• Law2: let F(X) be a guarded expression
– (Y = F(Y)) (Y = μX • F(X))

– μX • F(X) = F(μX • F(X))

– Example:

• Let VM1 = (coin VM2)

 VM2 = (choc VM1)

• Then VM1 = (coin VM2)

 = (coin (choc VM1))

 = VMC

CIS 505, Spring 2007 CSP 14

Traces

• Trace of a behavior of a process
– Finite sequence of symbols recording events up to

some moment in time

• Example
– Chocolate vending machine after serving 2 customers

• coin, choc, coin, choc

– Before anyone puts coins in
• (called empty trace, the shortest possible trace)

– Change-giving machine – customer is waiting for the
last 2p

• in5p, out2p, in1p

CIS 505, Spring 2007 CSP 15

Operations on Traces

• Concatenation: s ^ t
– coin, choc ^ coin, toffee = coin, choc, coin, toffee

• Head: s0 Tail: s
– x, y, x 0 = x

– x, y, x = y, x

• Ordering: s t = (u • s ^ u = t)
– “s is a prefix of t”
– x, y x, y, x, w

• Star:
– A* = { t | t = or

 (t0 A and t A*) }

CIS 505, Spring 2007 CSP 16

Operation on Traces

• After: P / s where s traces(P)
– “P after s”
– (VMC / coin) = (choc VMC)

– (VMC / coin, choc) = VMC

• Restriction: (t A) “trace t when restricted to symbols in A”
– around, up, down, around { up, down } = up, down

• Length: # t
– # x, y, x = 3

5

CIS 505, Spring 2007 CSP 17

Traces of Process

• Complete set of all possible traces of P
– traces(P)

• Example
– traces(STOP) = { }

– traces(coin STOP) = { , coin }

– traces(μX • tick X) = { , tick , tick,tick , … }

 = { tick }*

– Chocolate vending machine
• trace(μX • coin choc X) = { s | n • s coin,choc n

 }

CIS 505, Spring 2007 CSP 18

Specifications

• Describe intended behaviors of products
– Assume tr is a variable for an arbitrary trace

– Let (tr choc) denote #(tr { choc })
• Number choc events in trace tr

• Example
– VM owner: # of chocolate must never exceed # of coins inserted

• NOLOSS = (tr choc) (tr coin)

– VM customers: VM won’t take more coins until it dispenses paid
chocolate

• FAIR = (tr coin) (tr choc) + 1

– Hence, VM manufacturer must meet spec. from both VM owner and
customers

• VMSPEC = NOLOSS FAIR
 = 0 (tr coin) - (tr choc) 1

CIS 505, Spring 2007 CSP 19

Satisfaction

• P sat S
– If a product P meets a specification S, then P satisfies S

– Formally, P sat S iff tr • tr traces(P) S

• Example: VMC sat VMSPEC
– Recall:

• VMC = (coin (choc VMC))

• VMSPEC = NOLOSS FAIR

 = 0 (tr coin) - (tr choc) 1

CIS 505, Spring 2007 CSP 20

Concurrency

• 2 or more processes operating together
– Syntax: P || Q

– Example: Both customers and vending machines can be viewed
as processes interacting with one another

• Interaction
– Interact via shared events between processes

• Concurrency
– Specifies how shared and private events in processes are joined

6

CIS 505, Spring 2007 CSP 21

Interaction Example

• A greedy customer tries to get chocolate or toffee
without paying

• If doesn’t work, he reluctantly pays for chocolate
– GRCUST = (toffee GRCUST

 | choc GRCUST

 | coin choc GRCUST)

• When using VMCT machine,
– VMCT = μ X • coin (choc X | toffee X)

• he can’t get goods without paying, hence, he only gets
chocolate
– (GRCUST || VMCT) = μ X • (coin choc X)

CIS 505, Spring 2007 CSP 22

Interaction Laws and Traces

• Laws:
– P || Q = Q || P

– P || (Q || R) = (P || Q) || R

– P || STOP P = STOP P

– P || RUN P = P

– (c P) || (c Q) = (c (P || Q)

– (c P) || (d Q) = STOP if c d

• Traces:
– traces(P || Q) = traces(P) traces(Q)

– (P || Q) / s = (P / s) || (Q / s)

CIS 505, Spring 2007 CSP 23

Concurrency

• In general, it’s possible that

– P Q

– for x (P – Q),

• P may engage alone with no concern to Q

• and vice versa

• Hence,

– (P || Q) = P Q

CIS 505, Spring 2007 CSP 24

Concurrency Example

• Noisy vending machine
– NOISYVM = {coin, choc, clink, clunk, toffee}

– NOISYVM = (coin clink choc clunk NOISYVM)

• Customer who curses when gets chocolate instead of
toffee
– CUST = {coin, choc, curse, toffee}

– CUST = (coin (toffee CUST

 | curse choc CUST)

• Cursing customer using noisy machine
– (NOISY || CUST) =

 μ X • (coin (clink curse choc clunk X

 | curse clink choc clunk X))

7

CIS 505, Spring 2007 CSP 25

Concurrency Law

• || is symmetric and associative

• P || STOP P = STOP P

• P || RUN P = P

• Let
– a (P - Q)

– b (Q - P)

– {c,d} (P Q)

• Then
– (c P) || (c Q) = c (P || Q)
– (c P) || (d Q) = STOP if c d

– (a P) || (c Q) = a (P || (c Q))

– (c P) || (b Q) = b ((c P) || Q)

– (a P) || (b Q) = (a (P || (b Q)) | (b ((a P) || Q))

CIS 505, Spring 2007 CSP 26

Concurrency Traces

• traces(P || Q) is all possible traces of process (P || Q)

• traces(P || Q) =
{ t | (t P) traces(P)

 (t Q) traces(Q)

 t (P Q)* }

• t1 = coin, clink, curse traces(NOISYVM || CUST)
– t1 NOISYVM = coin, clink traces(NOISYVM)

– t1 CUST = coin, curse traces(CUST)

• Similar for t2 = coin, curse, clink

traces of all events where P participates

every event in t must be in either P or Q

traces of all events where Q participates

CIS 505, Spring 2007 CSP 27

Concurrency Pictures

CIS 505, Spring 2007 CSP 28

Concurrency Pictures

8

CIS 505, Spring 2007 CSP 29

Dining Philosophers

• Book p. 57

CIS 505, Spring 2007 CSP 30

Change of Symbol

• Define groups of processes with similar behaviors
– One-on-one function (injection) maps alphabet of P onto a set of

symbols A

– f : P A

• Example:
– Recall: Chocolate / toffee machine

• VMCT = coin (choc VMCT | toffee VMCT)

– Want: Gum / pretzel machine

• f(coin) = coin

• f(choc) = gum

• f(toffee) = pretzel

– Now, VMGP = f(VMCT)

CIS 505, Spring 2007 CSP 31

Process Labeling

• Label identical but independent processes

• Example:

– Two machine standing side by side
• (left : VMC) || (right : VMC)

– Possible trace
• left.coin, right.coin, right.choc

CIS 505, Spring 2007 CSP 32

Specifications and Satisfaction

• Satisfaction for concurrent processes

• If P sat S(tr)

 and Q sat T(tr)

 then (P || Q) sat S(tr P) T(tr Q)

P satisfies a spec S

P || Q satisfies if in trace tr

• events of P satisfy S

• events of Q satisfy T

Q satisfied a spec T

9

CIS 505, Spring 2007 CSP 33

Spec, Sat Example

– Let P = { a, c } and Q = { b, c }
• P = (a c P)

• Q = (c b Q)

– Want to know if (P || Q) sat 0 (tr a) – (tr b) 2

– Obviously,
• P sat 0 (tr a) – (tr c) 1

• Q sat 0 (tr c) – (tr b) 1

– Hence,
• (P || Q) sat (0 (tr P) a – (tr P) c 1

 0 (tr Q) c – (tr Q) b 1)

• Since (tr A) a = tr a when a A

• (P || Q) sat (0 (tr a) – (tr c) 1

 0 (tr c) – (tr b) 1)

• (P || Q) sat (0 (tr a) – (tr b) 2)

In P, num of a and c differ at most 1

In Q, num of c and b differ at most 1

num of a when trace has only

events in A and a A

num of a and b differ at most 2

CIS 505, Spring 2007 CSP 34

Theory of Deterministic Processes

• CSP Book P. 72 – 79

• It shows that

– CSP laws are in fact true

– a recursively defined process is indeed a

solution of the corresponding recursive

equation (fixed point theory)

– there exists a unique solution

