
Valgrind: A Program
Supervision Framework

Aaron Evans
2004 Nov 15

2

Citation

Nicholas Nethercote and Julian Seward, Valgrind: A Program
Supervision Framework, Electronic Notes in Theoretical Computer
Science, Volume 89, Issue 2, October 2003, Pages 1-23.

http://www.sciencedirect.com/science/article/B75H1
–4DDWKTJ-PG/2/49e9f28ff4e74ceeb8e34e4bf4050f5b

3

Preliminaries (1/2)

How do you pronounce “Valgrind”?

The “Val” as in the world “value”. The “grind” is pronounced with a
short ‘i’ -- ie. “grinned” (rhymes with “tinned”) rather than “grined”
(rhymes with “find”).

Don’t feel bad: almost everyone gets it wrong at first.

http://valgrind.kde.org/faq.html

4

Preliminaries (2/2)

Where does the name “Valgrind” come from?

Valgrind is the name of the main entrance to Valhalla (the Hall of
the Chosen Slain in Asgard). Over this entrance there resides a wolf
and over it there is the head of a boar and on it perches a huge
eagle, whose eyes can see to the far regions of the nine worlds.
Only those judged worthy by the guardians are allowed to pass
through Valgrind. All others are refused entrance.

It’s not short for “value grinder”, although that’s not a bad guess.

http://valgrind.kde.org/faq.html

5

Valgrind History

• First released in 2002
• It was originally a memory checker
• Became a “meta-tool”

6

Valgrind Overview

• a meta-tool enabling program
supervision
• core - performs binary translation of

x86 instructions
• skins - interface to core to check

execution

7

Agenda

1. Introduction
2. Valgrind Core
3. Valgrind Skins
4. A Valgrind “skin” - Memcheck
5. Performance
6. Conclusions

8

Valgrind Core

• Valgrind works with ordinary
dynamically-linked executables (client)
• Core dynamically translates x86 to

UCode to x86
• UCode is RISC-like, two-address

immediate language
• Checkers check UCode

9

UCode

• UCode uses a simulated register set
• valgrind holds state for the virtual

processor
- simulated registers

- condition codes for registers

• simulated state is updated at the end of
each basic block

10

Translating Basic
Blocks

1. disassemble x86 to UCode
2. optimize UCode
3. instrument UCode
4. allocate registers
5. translate to x86
6. execute instrumented x86 code

11

Translation Example
(disassembly: x86 → UCode)

movl $0xFFF, %ebx 0: MOVL $0xFFFF, t0
1: PUTL t0, %EBX
2: INCEIPo $5

andl %ebx, %eax 3: GETL %EAX, t2
4: GETL %EBX, t4
5: ANDL t4, t2 (-wOSZACP)
6: PUTL t2, %EAX
7: INCEIPo $2

ret 8: GETL %ESP, t6
9: LDL (t6), t8
10: ADDL $0x4, t6
11: PUTL t6, %ESP
12: JMPo-r t8

12

Translation Example
(optimization)

movl $0xFFF 0: MOVL $0xFFFF, t0
1: PUTL t0, %EBX
2: INCEIPo $5

andl %ebx, %eax 3: GETL %EAX, t2
4: GETL %EBX, t4
5: ANDL t4, t2 (-wOSZACP)
6: PUTL t2, %EAX
7: INCEIPo $2

ret 8: GETL %ESP, t6
9: LDL (t6), t8
10: ADDL $0x4, t6
11: PUTL t6, %ESP
12: JMPo-r t8

13

Translation Example
(optimization)

movl $0xFFF 0: MOVL $0xFFFF, t0
1: PUTL t0, %EBX
2: INCEIPo $5

andl %ebx, %eax 3: GETL %EAX, t2
4: GETL %EBX, t4
5: ANDL t0, t2 (-wOSZACP)
6: PUTL t2, %EAX
7: INCEIPo $2

ret 8: GETL %ESP, t6
9: LDL (t6), t8
10: ADDL $0x4, t6
11: PUTL t6, %ESP
12: JMPo-r t8

14

Translation Example
(instrumentation)

movl $0xFFF 0: MOVL $0xFFFF, t0
1: PUTL t0, %EBX
2: INCEIPo $5

andl %ebx, %eax 3: GETL %EAX, t2
4: GETL %EBX, t4
5: ANDL t0, t2 (-wOSZACP)
6: PUTL t2, %EAX
7: INCEIPo $2

ret 8: GETL %ESP, t6
9: LDL (t6), t8
10: ADDL $0x4, t6
11: PUTL t6, %ESP
12: JMPo-r t8

15

Translation Example
(register allocation)

movl $0xFFF 0: MOVL $0xFFFF, %eax
1: PUTL %eax, %EBX
2: INCEIPo $5

andl %ebx, %eax 3: GETL %EAX, %ebx
4: ANDL %eax, %ebx(-wOSZACP)
5: PUTL %ebx, %EAX
7: INCEIPo $2

ret 8: GETL %ESP, %ecx
9: LDL (%ecx), %edx
10: ADDL $0x4, %ecx
11: PUTL %ecx, %ESP
12: JMPo-r %edx

16

Translation Example
(code generation: UCode → x86)

0: MOVL $0xFFFF, %eax movl $0xFFFF, %eax
1: PUTL %eax, %EBX movl %eax, 0xC(%ebp)
2: INCEIPo $5 movb $0x18, 0x24(%ebp)
3: GETL %EAX, %ebx movl $0x0(%ebp), %ebx
4: ANDL %eax,%ebx (-wOSZACP) andl %eax, %ebx
5: PUTL %ebx, %EAX movl %ebx, 0x0(%ebp)
6: INCEIPo $2 movb $0x1A, 0x24(%ebp)
7: GETL %ESP, %ecx movl 0x10(%eb), %ecx
8: LDL (%ecx), %edx movl (%ecx), %edx
9: ADDL $0x4, %ecx pushfl; popl 32(%ebp)

addl $0x4, %ecx
10: PUTL %ecx, %ESP movl %ecx, 0x10(%ebp)
11: JMPo-r %edx movl %edx, %eax

ret

17

Connecting Basic
Blocks

• Translated basic blocks are cached
• Cache holds ~160,000 basic blocks
• At the end of a basic block,
- jumps to address known at compile-time
(chain, 70%)

- address not known at compile time

• translated block in cache

• untranslated block

18

System Calls

• System calls are not converted to UCode

• The core does the following for a syscall:

i. save valgrind’s stack pointer

ii. copy simulated registers (except PC) into real registers

iii. do the system call

iv. copy simulated registers out to memory (except PC)

v. restore valgrind’s stack pointer

19

Floating Point,
MMX, SSE, etc

• load simulated FPU state into the FPU
• execute
• copy FPU state to the simulated state
• similar approach for MMX, SSE, etc

20

Client-requests

• a “trapdoor” for clients to query core
• client code contains trapdoor

instruction sequence
• core identifies sequence and waits for

client request via signal

21

Ensuring Correctness

• in x86→UCode→x86’ , is x86
functionally equivalent to x86’ ?
• no formal way to prove correctness
• valgrind can revert to CPU execution to

pinpoint problems

22

Signals
• valgrind should receive signals that are sent to

clients

• valgrind intercepts a clients sigaction() and
sigprocmask() and registers the signals for itself

• periodically, valgrind delivers any pending signals

• “deliver”

- build stack frame at intended client code

- execute,

- upon return, continue from prior location

23

Threads

• How should threads be modeled?

- one valgrind thread per client thread?

- complex due to 1) thread-safety between valgrind
structures 2) thread-safety between skins and core

- consider memcheck

• Solution: only support pthreads, use custom pthread lib

- valgrind controls context switching within a single thread

- reimplementation of libpthread complicates the core

24

Skins

• Skins define instrumentation of UCode
• A client program has three levels of

control:
+ user space: all JIT compiled code

- core space: signal handling, pthreads,
scheduling

- kernel space: execution in kernel

25

Programming Skins

• Each skin is a shared object
• A programmer of a skin must define

four functions:
- initialization (2)

- instrumentation

- finalization

26

Initialization
Functions

• Details: name, copyright, etc
• Needs: list of services needed from core
• Trackable Events: indicate which core

events are of interested to the skin

27

Instrumentation

• upon translation, function is called to
instrument UCode
• typically, instrumentation is just a

function call
• it’s possible to define new UCode

instructions

28

Finalization

• a finalization function is called per skin
to output results

29

Overriding Library
Functions

• skins can override library functions

30

An Example:
Memcheck

memcheck can detect:
- use of uninitialized memory
- accessing memory a7er it has been freed
- accessing memory past the end of heap blocks
- accessing inappropriate areas on the stack
- Memory leaks- pointers to heap blocks are lost
- passing of uninitialized /unaddressable memory to

syscalls
- mismatched malloc()/new/new[] vs. free()/
delete/delete[]
- overlapping source and destination areas for
memcpy(), strcpy(), etc

31

Memcheck Overview
• each byte of memory is shadowed with

nine status bits
• ‘A’ bit - whether or not a byte is

addressable
• 8 ‘V’ bits - which bytes have defined

values (based on C semantics)
- allows bit-field operations to be accurately

checked

32

Services Used
• error recording - skin provides functions for reporting errors

• debug information - core provides functions that take an
address and return debug info

• shadow registers - skin defines one function that defines the
valid bits for shadow register

• client requests - if the core receives an unrecognizable client
request, it is passed to the skins

• extended UCode - inlines instrumentation

• replacement library functions - memcheck replaces malloc,
free, etc

33

Events Tracked

• mma(), brk(), mprotect(),
mremap(), munmap()

• A and V bits are checked before system
calls that read memory
• V bits are updated a7er all those that

write memory

34

Instrumentation

• For every UCode instruction,
instrumented code is added
immediately before it
• Most instrumentation updates or

checks for consistency of A and V bits for
memory and registers

35

Performance

• Tested on 1400MHz Athlon, 1GB RAM
• testing (some) SPEC2000 benchmarks

36

Performance
(slowdown)

Program Time (s) Nulgrind Memcheck Addrcheck Cachegrind

bzip2 10.7 2.4 13.6 9.1 31.0

crafty 3.5 7.2 44.6 26.5 107.4

gap 0.9 5.4 28.7 14.4 46.6

gcc 1.5 8.5 36.2 23.6 73.2

gzip 1.8 4.4 20.8 14.5 50.3

mcf 0.3 2.1 11.6 5.9 18.5

parser 3.3 3.7 17.4 12.5 34.8

twolf 0.2 5.2 29.2 18.5 53.3

vortex 6.5 7.5 47.9 32.7 88.4

ammp 18.9 1.8 24.8 21.1 47.1

art 26.1 5.9 14.1 11.5 19.4

equake 2.1 5.5 32.7 28.0 49.9

mesa 2.7 4.7 41.9 31.6 64.5

median 5.2 28.7 18.5 9.98

37

Performance
(code expansion)

Program Size (KB) Nulgrind Memcheck Addrcheck Cachegrind

bzip2 34 5.2 12.1 6.8 9.1

crafty 156 4.5 10.9 5.9 8.2

gap 140 5.6 12.7 7.3 9.7

gcc 564 5.9 13.1 7.6 9.9

gzip 30 5.5 12.6 7.2 9.4

mcf 30 5.7 13.5 7.7 9.9

parser 97 6.0 13.6 7.8 10.1

twolf 114 5.2 12.2 7.0 9.3

vortex 234 5.8 13.2 8.1 10.1

ammp 68 4.7 11.7 7.1 9.5

art 24 5.5 13.0 7.5 9.8

equake 44 5.0 12.2 7.1 9.2

mesa 69 4.8 11.2 6.7 8.9

median 5.5 12.6 7.2 9.5

38

Tools built with
Valgrind

• KCacheGrind-
collect call tree
information

39

Tools built with
Valgrind

• VGprof - profiler
• Redux - creates dynamic dataflow

graphs

40

Conclusions
valgrind...
• works with compiled programs
• dynamically compiles x86 to UCode
• provides a skin interface for arbitrary

instrumentation of UCode
• has acceptable performance
• has been used for a variety of purposes

