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Abstract

Scenarios as partial behavior descriptions, are used
more and more to represent users requirements, and to
conduct software engineering. This paper examines au-
tomatic generation of specifications from requirements.
This 4s a cructal step when accuracy is desired in the re-
quirement engineering process. Automatic construction
of specifications from scenarios reduces to the merg-
ing of partial behaviors into global specifications, such
that these specifications can reproduce them. This pa-
per presents an incremental algorithm that synthesizes
timed automata from scenarios with timing constraints.
The algorithm is based on a formalism developed for
scenarios. Its uses operations semantics, and a map-
ping between concepts of scenarios, and those of the
theory of timed automata.

1 Introduction

A scenario is a partial behavior description of the
interaction between a system and its environment in
a restricted situation [3], composed of a succession of
operations constrained by timing requirements.

Scenarios are an interesting way to express require-
ments as they describe how users want a system to be-
have. Their partial nature allows them to represent
parts of a system behavior, making it possible for sev-
eral users with different views or uses of a same system,
to provide different but possibly overlapping scenarios.
In fact, several proposed and actual system develop-
ment methods use scenarios, or related concepts such as
uses cases, to describe users requirements [8, 2, 10, 7].
We presented in [11], a requirement engineering method
where scenarios are used for requirements description,
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as a preliminary step towards producing complete and
valid specifications.

As scenarios are only partial descriptions, produc-
ing specifications from them therefore requires a way
to merge these partial behaviors to obtain global ones.
The merging process must produce a specification that
includes all desired behaviors, with respect to tempo-
ral aspects and conditions. This paper describes an
algorithm, that generates a specification from scenar-
ios. We use timed automata [1] as a target specification
language.

The paper is organized as follow. We present the
scenario concept in Section 2, and the theory of timed
automata in Section 3. The specification generation al-
gorithm is described in Section 4, while Section 5 shows
a specification construction example. Section 6 exam-
ines some related works and Section 7 concludes this
paper. ’

2 Scenarios

A scenario is a partial description of a system and
environment interaction, arising in a restricted situation.
This section goes beyond this definition. Its presents an
operational view of scenarios, considers how they are
composed, and explains the formal representation that
is required for the specification generation algorithm.

2.1 Operational view of scenarios

A scenario can be represented as a sequence of op-
erations and time of occurrence, that may depends on
conditions in the system and environment. A scenario
restricted situation, its pre-condition, is a set of condi-
tions that must hold in the system and environment
prior to the scenario execution. Possible times of oc-
currence of operations may also depend on temporal
constraints.

Figure 1 shows a scenario that describes an in-
teraction between a CUSTOMER and an automated



teller machine (ATM). We represent conditions as pairs
<entity, value> describing the fact that an entity (a
system or environment component or attribute) has a
certain value. A condition can also reflect the fact that
an operation has been executed. As an example condi-
tion <card, inserted> is asserted by default after oper-
ation insert card. The scenario in Figure 1, can be ex-

< display, card_insert_prompt >CUSTOMER insert card, §
ATM display pin-enter.prompt, d;
83 > 81 + 5 sec
dp < 87 + 60 sec
CUSTOMER enter pin,dp

83 < 81 + 60 sec
ATM check id,d3

}

ATM retain card,dy

< id,invalid >
< number_attempts, X > X > 3 ATM reinit,ds

Figure 1: A scenario. This example shows a scenario as
a sequence of operations. Applicability conditions are
depicted on their right side while temporal constraints
between time of occurrence are on their left.

ecuted in situation < display, card_insert_prompt >.
One of the operation sequence permitted is insert card
by CUSTOMER, display pin_enter_prompt by ATM, en-
ter pin by CUSTOMER, check id by ATM, and if af-
ter this operation the situation < id,invalid > and <
number_attemps, X > with X > 3 prevails, retain card
and reinit by ATM. Temporal constraints are such that
operation enter pin can be done only between 5 seconds
and 60 seconds after operation display pin_enter_prompt,
and operation check id must have occured 60 seconds
after it. Alternative scenarios, that apply when these
temporal constraints are not respected, can be supplied
elsewhere.

2.2 Composing scenarios

Scenarios being descriptions of partial behavior,
global behavior is obtained by composing several of
them. There are three ways to combine scenarios: se-
quential composition, alternative composition and par-
allel composition.
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2.2.1 Sequential composition

Sequential composition produces a behavior where
narios follow each other. Such a composition od
between scenarios that overlap. Figure 2 shows

Scenario 1

Scenario 2 Resulting behay
0]‘[.)1 op2 opl
/ | |
O]PZ op3 op2
: | |
op3 op4 op3
op4

Figure 2: scenarios sequential composition

scenarios that compose sequentially if we suppose
op2 in scenario 2 has an applicability condition (
dition that must hold prior to its execution) incly
in the condition in the system and environment

opl in scenario 1. Two scenarios may also compos
quentially if after executing one, the conditions in
system and environment are included in the second
condition.

2.2.2 Alternative composition

Alternative composition produces a behavior w

sce-
curs
two
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that
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1ded .
after
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there are choices between scenarios. This kind of dom-
position is obtained between scenarios that have a
common part (situation, operations) before differing.

Figure 3 shows an alternative composition of two

sce-

Scenario 1 Scenario 2  Resulting behavior

opl sz opl
op2 op3 OIJZ
op3 opb op3
op4 op6 op4 op5
op6

Figure 3: scenarios alternative composition

narios. In this example, the composition supposes that



conditions after executing op! in scenario 1 are included
in scenario 2’s pre-condition.

A special kind of alternate composition is obtained
between scenarios that have operations with comple-
mentary temporal constraints. Figure 4 shows a such
alternate scenario of the scenario in Figure 1, and Fig-
ure 5, an overall behavior obtained when composing
them.

< display, cardinsert_prompt > CUSTOMER insert card, &

ATM display pin_enter.prompt, §;
8¢ = 61 + 60 sec
ATM eject card,dg

:

ATM reinit,é7

Figure 4: Alternate scenario of scenario in Figure 1.

< display, card-insert_prompt > CUSTOMER insert card, &

ATM display pin_enter_prompt, §;
5 sec

% 2 g% 60 sec
CUSTOMER enter pin,d;

ﬁ3 < 81 + 60 sec

ATM check id,d3

l 8g = §1 + 60 sec

ATM eject card,dg

ATM reinit,d7

< id,invalid >
< number_attempts, X > X > 3 ATM retain card,ds

ATM reinit,ds

Figure 5: Overall behavior.

2.2.3 Parallel composition

Parallel composition produces a specification where
each partial behavior may be taken in parallel with
others. This kind of composition may be obtained from
scenarios describing behaviors that occurs in separated
sub-systems, or that are unrelated.

2.3 Scenarios representation

~From a user point of view, a scenario is a serie of
interactions made of stimuli and system reactions to
them. Stimuli include operations and conditions that
trigger system reactions. As an example, the scenario
in Figure 1 includes the following interactions:
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- CUSTOMER

pin_enter_prompt,

insert card/ATM display

- CUSTOMER enter pin/ATM check id and

- the occuring of new situation {< id, invalid > and <
number_attempts, X > with X greater than 3} /ATM
retain card, ATM reinit.

The time of occurrence of operations can be constrained
by interaction initial delays and timeouts, and scenario
timeouts. An interaction initial delay specifies a mini-
mal, a mazimal or an erxact amount of time that must
pass between the interaction first operation, and the
last operation of the interaction preceding it. Interac-
tions and scenarios timeouts specifies a mazrimal delays
for their completion. Ezpiry operations may be associ-
ated with timeouts in order to be executed when delays
are not respected. Initial delays may be use to bound
events occurence time at a system interface, while time-
outs can serve to state performance requirements.

We formally represent a scenario as a quadruple <
Raum, Rp, Ry, Rp > where:

e R,.m 18 a scenario number,

e Rp is the scenario pre-condition. Rp is a set of con-
ditions <E, V> where: FE'is an entity and V a possi-
ble value of E,

e Ry is a sequence of interactions [I1, - -, I,].
I; =< ind;, Dy, R;, ID; > with:

Each

ind; an initial delay,

- D; = [di,,---,d;,] aset of stimuli (operations or
conditions),

- R; = [ri,, -+, 7] operations which are system
reactions, :

ID; =< dv;,IDR; > an interaction timeout,
where dv; is a delay and IDR; a sequence of time-
out expiry operations.

e Rp =< rdv;, DR; > a scenario timeout where rdv;
is a scenario delay and DR; a sequence of timeout
expiry operations.

As an example, assuming that the scenario described in
Figure 1 number is Sc1, it can be formally represented
as the quadruple < R,um, Rp, Ry, Rp > with:

Rpum = Scl,
Rp = {< display, card_insert_prompt >}
R; = [I1, I, I5] where:
I = < nil, [insert_card),
[display_pin_enter_prompt], nil >



I, = < 5sec, [enter PIN],
[check id], < 60sec, [eject card, reinit] >>
I3 = < nil,[< id, invalid >,
< number_attempts, X > |X > 3],
[retain-card, reinit], nil >
Rp = nil

A scenario is formally interpreted, as a possible set
of timed traces (op1,61) - - - (0pn,d,), where each op; is
an operation and §;, the instant where its occurs ac-
cording to an abstract global clock. Each operation
has applicability conditions and can occur only if they
hold. The applicability conditions of the first operation
in a scenario corresponds to the scenario pre-condition.
Other operations applicability conditions are obtained
from the normal processing of their preceding opera-
tions, because executing an operation, may withdraw
existing conditions and induce new ones. As an ex-
ample, a valid timed trace drawn from the scenario in
‘Figure 1 is (insert card, 5), (display pin_enter_prompt, 7),
(enter pin, 14), (check id, 15), (retain card, 17), (reinit,
20). On the other hand the timed trace (insert card,
5), (display pin.enter_prompt, 7), (enter pin, 8), (check
id, 10), (retain card, 12), (reinit, 15) is not valid accord-
ing to the scenario because the temporal constraint on
operation enter pin is not respected.

3 The theory of Timed Automata

A timed automaton is defined as a timed transition
table < ¥, S, Sy, C, E > where:

e X is a finite alphabet, each symbol of the alphabet
can be considered as the occurrence of an event,

e Sis a finite set of states,

e Sy C S is a set of start states,

e ('is a finite set of clock variables and

e ECSxSxXx2%x®(C) is aset of transitions.

A transition from state s to s’ on the input symbol a is
represented as a 5-uple < s,¢',a,A,y>. A C C is a set
of clock variables reseted with the transitions and +, a
set of clock constraints expressed using clock variables
in C, that must be satisfied for the transition firing.
Clock variables values are set according to a global ab-
stract clock, and hold at each moment, the elapsed time
since their reseting. The theory of Timed Automata
uses a dense-time model in which time domain is a set
of positive real values.

A word (o, ) recognised by a timed automaton A
consists on an event sequence o = 0y,---,0, and a
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temporal sequence 7 = 1, -+, 7, such that o; is con-
sumed at the moment 7;. A run r (5,4) of a timed tran-
sition table over a timed word (o, 7) is defined as an

(o1,71) (dzyiTz)

infinite sequence r :< sg,v9 > — ‘< s1,v1 > B
(v3,73)

s9,v3 > = ... with s; € S and v; € [C — R], for
all £ > 0, satisfying the following requirements: |

e 50 €5y and vo(z) =0 for all z € C and

e for all ¢ > 0, there is an edge in E of the form
< 8i-1,8i,0i, A, Y > such that (vio1 + 7 — 7i_1)
satisfies ; and v; equals [A; — 0](vi—1 + 7 — T3-1).

A partial run 7 of a run r, is a finite sequence 7 :<

o YT. - .
Si, Vs >( '+1—>'+1) -+ < 8i4n,Vi+n > included in r.

A timed transition table < X,5,5,,C, F > is de-
terministic if and only if there is a single start state
and for each pair of transitions < s,-,a,_,v1 > and
< 8,.,8,,,%2 >, v1 and 7y, are mutually exclusive. -

4 Timed Automaton generation

This section presents the specification generation al-
gorithm from scenarios. We first provide some defi-
nitions and principles of the algorithm, then a detailed
description of specification construction. The presenta-
tion i1s concluded with some remarks about automata
generated.

4.1 Principles of the algorithm

The generation algorithm aims at producing a timed
automata A = (5,50, %,C, E) from a set of scenarios
R = (Rpum, Rp, Rr, Rp). It is an incremental algo-
rithm, that enriches an empty specification as each sce-
nario is added.

The algorithm is based on the expectation that there
exists a partial run in the resulting automaton over each
scenario. When a scenario is considered, a such partial
run is sought, and if it does not exists, the automaton
is augmented to include it. A correspondence is thus
made between each scenario and parts of an automa-
ton. More precisely, this correspondence exists between
conditions (in scenarios) and states (in the automaton),
and between interactions and transitions. Clock vari-
ables and constraints are added to transitions according
to delays and timeouts in scenarios.

4.1.1 States determination

The following definitions are used to determine automa-
ton states from scenarios. These definitions are similar



to modelling concepts introduced by state-based plan-
ning systems such as STRIPS [4].

Proposition 1 Fach state is defined by characteristic
conditions which hold in this state.

Proposition 2 A states is redundant if it has the
same characteristic conditions as another state.

Proposition 3 A state sb‘ ts a sub-state of a state s,
(its sup-state), if its characteristic conditions include
that of sq.

Proposition 1 will be used to determine states. Propo-
sition 2 and 3 will be used to link new scenarios to
existing specification. States corresponding to a sce-
nario are determined so that the first state in each
partial run over a scenario characteristic conditions in-
clude the scenario pre-conditions, and the other states
characteristic conditions are obtained by using opera-
tions semantics defined by their added-conditions and
withdrawn-conditions.

Proposition 4 An operation added-conditions is a set
of conditions that becomes true after its execution, while
its withdrawn-conditions is a a set of conditions that
are not longer true after its execution.

By default, each operation added-conditions include the
fact that its has been executed. An operation can also
withdraw all conditions previously asserted in the sys-
tem before its execution.

ab
" ol (+c) (-b)
ac
/ \2\(+dl+e) )
ae ad
03 (+H 03 (+6)
aef adf

Figure 6: Example of conditions derivation

As an example of condition derivation, let a, b, ¢, d,
e and fbe conditions, lets us suppose pre-conditions to
be @ and b, that the operation sequence considered is
ol, 02 and 03, and that:
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- ol added-conditions is {c} and withdrawn-conditions
{6},

- 02 added-conditions is {d} or {e} and withdrawn-
conditions {c} and

- 08 added-conditions is f and withdrawn-conditions
the empty set.

The first states of partials runs over the scenario char-
acteristic conditions include the set {q, b}, and Figure 6
shows the determination process of conditions that hold
after the scenario operations. The two sets of condi-
tions {a,e,f} and {a,d,f} are obtained as a result in this
example, and may be used to determine other states of
the partial run.

If, for a state derived from a scenario, there already
exists an automaton state with the same characteristic
conditions, then this existing state will be used to find
the partial run. A new state is inserted in an automaton
when there is no such state. State insertion is done
according to the following criterions.

Criterion 1 All transitions possible from a state must
be possible from all its sub-states.

Criterion 2 A non empty sequence of transitions must
exist between any state and each of its sub-states.

Criterion 1 is motivated by the fact that operation ex-
ecution depends on conditions, and whenever the ini-
tial conditions of an operation are verified, its must
be possible to execute it. As all conditions of a state
are verified in its sub-states, transitions possibles from
these states must also be possible from their sub-states.
Criterion 2 motivation is shown in figure 7, where a

Figure 7: Synthetic transition addition

state Sb characterized by conditions (a, b and c) have a
sup-state Sa characterized by conditions (a and b). Be-
havior described is such that operation z can be done
in Sb, but not in Sa. However in Sa, its should be pos-
sible to do z, if there is a mean to make condition ¢
becomes true. Such possibility is materialized by in-
cluding a synthetic transition between Sa and Sb, that
aims at verifying condition c.



4.1.2 Transition determination

We produce a single automaton event from each in-
teraction. A state change may thus be provoked by a
sequence of operations corresponding to stimulus and
their reactions. The motivation for this kind of cor-
respondence is that we build an abstract specification
which shows the external view of a system behavior,
and there may be no external visible state within inter-
actions. The abstract description built from scenarios
should however be further refined by decomposing in-
teractions or operations.

Interactions initial delays and timeouts, and scenar-
ios timeouts cause the addition of temporal constraints
in automata transitions. Three cases should be consid-
ered:

e For an interaction with an initial delay, a clock vari-
able is initialized in transitions arriving to states
from which they can be initiated (a new clock vari-
able may be added to the automaton), and used to
express a clock constraint in transitions correspond-
ing to the interaction.

e For an interaction with a timeout, a clock variable is
initialized as for interactions initial delays. Then, a
clock constraint ¢ < d (where ¢ is the clock variable
used and d the timeout delay), is added to transitions
corresponding to the interaction. When a timeout
includes expiry operations, another transition with a
clock constraint ¢ = d corresponding to the execu-
tion of these operations is added.

o For scenarios with a ¢imeout, a clock variable is ini-
tialized in transitions arriving to first states of their
partial runs and a clock constraint ¢ < d (where ¢
is the clock variable used and d the timeout delay),
is added to all transitions corresponding to the sce-
nario interactions. When a scenario timeout includes
expiry operations, transitions with a clock constraint
¢ = d corresponding to the execution of these opera-
tions is added from all states in partials runs to the
scenario, are added.

4.2 Generation algorithm

The algo-
rithm takes as input a scenario (Rnum, Rp, Rr, Rp),
and enriches an automaton (S, Sy, 2, C, E). It executes
in two steps: first states determination and interactions
insertion. The first step is a determination of states
satisfying scenario pre-conditions. In the second step
we determine states and transitions making the par-
tial run in the automaton over the scenario. These two
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steps cause new states to be inserted to the automaton.
Below we show how new states insertion is done, and
describe the two step of the generation algorithm.

4.2.1 States insertion

Input : a state s
A-1 let LCI set of sup-states of s. If LCI # 0
A-1.1 let LMG set of less general states of LCI in re-
lation with s

A-1.2 For each s; in LMG

A-1.2.1 For each transition starting at s;, add a
similar transition starting at s,

A-1.2.2 add a synthetic transition between s; and s
A-2 let LIC set of sub-states ofs. If LIC # 0

A-2.1 let LPG set of more general states of LIC in
relation with s

A-2.2 For each s; in LPG add a synthetic transition
between s and s;

Figure 8: New state insertion algorithm

The addition of a new state to an automaton is done
in accordance with criterion 2, that is, after insertion, a
non empty sequence of transitions must exist between
any state and all its sub-states in an automaton. Fig-
ure 8 shows new state insertion. A new state is in-
serted by adding synthetic transitions starting from its
sup-states to it and other synthetic transitions starting
from it to its sub-states.

As shown in line A-1.1 of the state insertion algo-
rithm, we do not create synthetic transitions between
every state and its sup-states, but we rather restraint
to the set of less general states among them, in relation
with s. A state s/ is less general than s2in relation with
a state s if sI and s2 are sup-states of s, and the differ-
ence between characteristic conditions of s and those
of s does not include the difference between charac-
teristic conditions of s and those of s2. This restriction
explains itself because within the new state sup-states,
less general states are the only states that are not sup-
states of any existing states, and according to the inser-
tion criterion, there are already non empty sequences
of transitions between each state and its sup-states in
the automaton.

Similarly in line A-2.1 of the state insertion algo-
rithm,; a connection between a new state and all its sub-
states is made by restraining to the set of more general
states among them in relation with the new state. A



state sI is more general thans2 in relation with a state
s if s1 and s2 are sub-states of s, and the difference
between characteristic conditions of s and those of si
does not include the difference between characteristic
conditions of s and those of s2.

In line A-2.1, we repeat in the inserted state transi-
tions starting from its sup-states as a state and its sup-
states include the same conditions, and must therefore
allow same interactions execution.

4.2.2 First states determination

First state determination (Figure 9) begins by seeking
a state with charecteristic conditions identical to the
scenario pre-conditions. If a such state is founded, we

Input : Rp the scenario pre-condition set
Output: Flist a list of states
B-1 If there is no state in S, that characteristic condi-
tions are equal to Rp

B-1.1 let s a new state such that s characteristic con-
ditions are Rp

B-1.2 If $ =0 So = {s}, S ={s}

B-2 Else S = SU{s}
B-2.1 let LCI sup-states of s, If LCI = ¢ adds to Sy
B-2.2 inserts in S

B-8 FList = s and the set of sub-states of s

Figure 9: First states determination

return it with all its sub-states, and the scenario first
states determination ends.

When no existing state in the automaton character-
istic conditions match the pre-condition, we create a
new state having this characteristic conditions, and in-
serts it in the automaton. The new state becomes a new
initial state when it does not have any sup-state. The
algorithm returns the new state with all its sub-states
as the scenario first states.

4.2.3 Interactions insertion

Figure 10 shows clock variables determination and ini-
tialization, in interaction insertion described in 11.
Clock variables are used to state transitions timing con-
straints, in order to satisfy scenarios delays and time-
outs. Clock variables must be set to zero in transi-
tions preceding their use. When for a given clock, such
transitions does not already exist in the automaton, we
create a synthetic state and a synthetic transition going
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Input : a states
Output: a clock variable c
C-1 create a new clock variable ¢, add c to C

C-2 let LTr set of transitions arriving at s.

C-8 If LTr = 0 create sbs a synthetic state, add a syn-
thetic transition from sbs to s that instialize c

C-4 Else add c initialization to all transitions in LTr

Figure 10: Clock variable determination.

from it to the transition departing state, which initial-
ize the clock variable (C-3).

Interaction addition is repeated for each of the sce-
nario first states. When a scenario have a scenario de-
lay, a clock variable is determined and initialized and
a constraint is constructed from it, to be added to all
transitions generated from the scenario.

Transitions realizing a scenario behavior, are gener-
ated by successive levels of interaction addition. A sce-
nario first interaction is added from states determined
using its pre-condition (Figure 9). Transitions arrival
states, are founded using operations added-conditions
and withdrawn-conditions, as shown in Figure 6. The
set of arrival states, constitutes departing states of the
scenario second interaction, but when an interaction
stimulus includes conditions, only the sub-set of states
in this set, in which these conditions hold is used. The
states obtained are then used as the next interaction
departure states, and this process is repeated until all
interactions have been considered. Each transition may
include temporal constraints that corresponds to ini-
tial delays, interaction timeouts and scenario timeouts.
Timeouts ezpiry operations treatment may also result
on additional transitions creation as in D-1.3.2 and D-
1.3.3. Synthetic states are removed from the automaton
in D-2, when they are no longer needed D-2.

4.2.4 Non determinism in the automaton

Automata generated by our algorithm can be non de-
terministic: there can be several initial states, and it is
possible to have the same transition leading to different
states from a given one.

The existence of several initial states can be due
to composition of parallel sets of scenarios, that de-
scribe behaviors in independent sub-systems. Distinct
automata of parallel sub-systems, having no common
transitions, may be obtained in this way.

Non deterministic transitions may be wanted or un-
wanted, according to systems design objectives because



specification generated are higher abstractions of their
behaviors. Unwanted determinism may be created by
contradictory scenarios, where same stimuli applied
when same conditions hold, produce different reactions.
When such transitions are obtained, that may imply a
need for changes in scenarios.

Input : Flist a set of first states
D—-1 For each state s; in Flist

D-1.1 If Rp # none, Rp =< Rdval, Rdexp > deter-
mine and initialize clock variable c, using s;, and con-
struct Contsp from Rdval, using c

D—-1.2 let LS the set with the single element s;, and Icur
the first interaction of the scenario

D-1.3 For each s; in LS, let Icur =< te, D, Re, tD >

D-1.3.1 If te # none determine and initialize a clock
variable ce using s;, and construct Contie from te,
using ce

D-1.8.2 If tD # none, tD = < td,Tdexp >, deter-
mine and initialize a clock variable ctd using s,
and construct Contyq from td, using ctd
If Tdexp # none add expiry transitions corre-
sponding to Tdezp

D-1.8.8 If Rdexp # none add expiry transitions cor-
responding to Rdexp

D-1.8.4 let LSucc set of states successors of s;, ob-
tained by executing operations in D and Re

D-1.3.5 add in E transitions between s;, and ele-
ments of LSucc with event D and Re, and time
constraint Contsp, Contie and Conta

D-1.8.6 remove Icur from Rp

D-1.8.7 If Ry # O Icur becomes the next interaction,
LS becomes LSucc, and Goto D-1.3

D-2 For each synthetic states sbs, let s a state such that
there is a transition between sbs ands. If there are more
than one transition arriving at s remove sbs and transi-
tion between sbs and s

Figure 11: Interactions addition.

Synthetic states and transitions are due to misses
in original scenarios. A synthetic transition between a
state and one its sub-state outlines missing operations
or conditions in scenarios. This situation may thus be
corrected by modifying the set of scenarios.

5 A generation example

This section shows a composition of scenarios which
describe an ATM behavior in interaction with a CUS-
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TOMER. An empty specification is incrementally en-
riched by two scenarios, in this example.

Scenario Scl shown in Figure 1 and formally de-
scribed in Section 2.3, is the first scenario used. The
automaton in Figure 12 is the specification obtained
after adding it.

x0:= 0,
CUST inserts card & ATM disp pin_enter_ prompt

ATM retains card

ATM relnit
(x0<507) M

CUST enters PIN & ATM checks id
id valid & num_attempts <=3

CUST enters PIN & ATM checks id
id tnvalid & num_sttempts > 3

oJO OO,

Figure 12: Automaton generated from scenario Scl

(x0<507) (x0<607)
CUST enters PIN & ATM checks 14| CUST enters PIN & ATM checks id
1 Invalid & num_sttempts <= 3 id valid & pum_attempts > 3

So is the first state generated from the  sce-
nario. It is characterized by the pre-condition of Sci,
<display,card_insert_prompt>. The second state gen-
erated, S; is obtained by computing the situation
that hold after executing all operations in the scenario
first interaction. This is done using operation added-
condition and withdrawn-condition description. In this
example, No explicit description is needed for operation
insert card, but operation display pin_enter_prompt, ob-
viously makes the display to become pin_enter_prompt,
and withdraws previous condition on this device. State
S; obtained after the first interaction is therefore char-
acterized by condition <display,pin_enter_prompt>.

The second interaction of scenario Sc!, produces four
transitions, because each of operations enter PIN and
check id may have two different added-conditions. Af-
ter entering PIN, the total numbers of attempts is in-
creased, and according to the focus chosen in the sce-
nario, becomes greater than three. Operation check id
can results on a wvalid ¢d or an invalid one. Execut-
ing these two operations may therefore produce four
possible situations, that characterize states Sy, Ss, S
and Ss. All transitions between S; and these states
are constrained by a clock constraint £0 < 60, as the
interaction have a corresponding timeout. The expiry
of this timeout, makes the ATM to reinit, an operation
that cause the display to become pin_enter-prompt. A
transition is thus added from S; to Sy with the clock
constraint 0 = 60. The clock variable used, z0, is set



to zero in the single transition arriving at state Si, the
transition between Sy, and it.

Now consider the addition of a second scenario Sc2
whose operational view is shown in Figure 13.

< display, card_insert_prompt > CUSTOMER insert card, dg

e

ATM display pin-enter_prompt, &1

¥ 819 = 97 + 60 sec
g > 81 + 5 sec

ATM eject card,dip
dy < &7 + 60 sec

CUSTOMER enter pin,ép l

3 < &7 + 60 sec ATM reinit,d13

ATM check id,d3

\

< id,valid > ATM display sevice menu,dy
814 = 84 + 60 sec
d5 < 84 + 60 sec ATM e¢ject card,dy4
CUST select cash_withdrawal,dg l

166 < 84 + 60 sec ATM reinit,dy5

ATM ask amount,dg

l 14 816 = d¢ + 60 sec
d7 < 8g + 60 sec ATM eject card,dig
CUST enter amount,d7 l

168 < 8g + 60 sec

ATM reinit,d7
ATM check amount,dg

< amount,valid > ATM give cash, dg

ATM eject card, d1g

ATM reinit, d1

Figure 13: Operational view of Scenario Sc2

Figure 14 shows the automaton obtained after
adding scenario Sc2. The two scenarios compose al-
ternatively as their two first interactions are identi-
cal, and they differ on the third one. States, and
transitions determined by scenario Sc2, first and sec-
ond interactions are therefore already in the automa-
ton. As scenario Sc2 third interaction can be executed,
only when condition <id,valid> holds, transitions cor-
responding to it start from states Sy and S4, and end to
state Sg assuming that operation display service_menu
withdraws all previous conditions and added-condition
is <display,service-menu>. Remaining transitions are
added from this state.
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6 Related work

Our research combines two areas: scenario formal-
ization, and partial behavior composition.

Formalization of scenarios is presented in [5] where
scenario trees describe a user view of a system. A sce-
nario tree include nodes, to represent states, and events
to represent specific stimuli that may change the system
state or trigger other events.

x0:=0,
CUST inserts card & ATM disp pin_enter_prompt

(x0=607)

ATM ejects ca
ATM reinit

IATM retains card

(x1=607)
ATM efects card
ATM reinit
(x0<607)

CUST enters PIN & ATM checks id
id invalid & num_attempts > 3

ATM relnit

(x0<607)
‘CUST eaters PIN & ATM checks id
i valid & wume_sitempts <= 3

(0<607) (x0<607)
CUST enters PIN & ATM checks § CUST enters PIN & ATM checks id
\d invalid & num_sttempls <=3 Id valld & num_sitempts > 3

OO

x1:=, ATM displays service mes: x1:=0,ATM displays service menu

x2:<0 (x1<60%)
CUST select cash_withdruwal

(x2=607)
ATM efects card
ATM reinit

amot brvalid amount valid

a w ATM gives cash & ATM efects card & ATM relnit

Figure 14: Automaton obtained after scenario Sc2

Scenario trees are defined by analysts during require-
ment elicitation, and each of them is converted into a
regular grammar which is used to construct a concep-
tual state machine. This abstract machine can then be
used to verify inconsistencies, redundancies and incom-
pleteness in scenarios. Abstract machines can also be
used to generate other scenarios and prototypes. This
work differs from ours in several ways. Our scenar-
10s do not rely on the use of unique state names, but
we use rather conditions and infers states from them.
Conditions give us more flexibility when comparing and
merging scenarios than state names, as there is no for-



mal mean to compare them. Another difference is that
we consider timing constraints.

A kind of partial behavior merging similar to that
described in our work, is described in [9]. The ap-
proach presented there uses trace diagrams, which rep-
resents scenarios as ordered events sent between ob-
Jects. Finite state machines are synthesized from these
trace diagrams, by an inductive inference mechanism.
This approach differs from ours as trace diagrams must
be first derived from scenarios, and also as we con-
siders timing requirements. Another difference is that
our algorithm is based on operation semantics (post-
condition and withdrawn conditions) rather than infer-
ence inducting. Others approaches which incrementally
construct systems global behavior from trace diagrams,
are [12] and [6] that deals with telecommunication sys-
tems.

7 Conclusion

Scenarios describe users requirements in a natural
way and shown to be useful for requirements engineer-
ing. We are concerned about accuracy in this process,
and believe that automation is one way to achieve it.
Requirements represented by scenarios may be used to
automatically generate specifications, but the scenario
concept must be formalized. The work presented here
formalizes scenarios and uses the formalism developed
to build an algorithm that generates timed specifica-
tions. Our method leans on operation semantics, pro-
viding us an accurate way to considers users require-
ments. The algorithm requires description of opera-
tions, but this step is often included in many software
engineering methods.

We aim at building a requirement engineering aid
tool, and automatic generation of specifications is a
step toward that. We are pursuing this research to
include specification completion, simulation and deal
with changing requirements [11].

References

[1] Rajeev Alur and David Dill. The Theory of Timed
Automata. Lecture Notes In Computer Science,

vol 600, Springler-Verlag, 1991.

[2] John S. Anderson and Brian Durney. Using Sce-
narios in Deficiency-driven Requirements Engi-
neering. In Requirements Engineering’93, pages

134-141. IEEE Computer Society Press, 1993.

57

[3] Kevin M. Benner, Martin S. Feather, W Lewis
Johnson, and Lorna A. Zorman. Utilizing Sce-
narios in the Software Development Process. In
N. Prakash, C. Rolland, and B. Pernici, editors,
Information System Development Process, pages
117-134. Elsevier Science Publisher B.V.(North-
Holland), 1993.

R Fikes and N Nilson. STRIPS: A new approach
to the application of theorem proving to prob-
lem solving. Artificial Intelligence, 2(3/4):189-208,
1971.

[4]

P Hsia, J Samuel, J Gao, D Kung, Y Toyoshima,
and C Chen. Formal approach to scenario analysis.
IEEE Software, pages 33-41, march 1994.

Haruhisa Ichikawa, Masaki Itoh, June Kato, Akira
Takura, and Masashi Shibasaki. SDE: Incremen-
tal Specification and Development of Communica-
tions Software. IEEE Transaction on Computers,
40(4), april 1991. ‘

Ivar Jacobson, Magnus Christerson, Patrik Jons-
son, and Gunnar Overgaard. Object-Oriented Soft-
ware Engineering, A Use Case Driven Approach.
Addison-Wesley, ACM Press, 2 edition, 1993.

V Kelly and U Nonnenmann. Reducing the Com-
plexity of Formal Specification Acquisition, chap-
ter 3, pages 41-64. AAAI Press/The MIT Press,
1991.

Kai Koskimies and Erkki Makinen. Automatic
Synthesis of State Machines from Trace Diagrams.
Software-Practice and Ezperience, 24(7):643-658,
July 1994. ‘

Kenneth S. Rubin and Adele Goldberg. Object
Behavior Analysis. Commaunications of the ACM,
35(9):48-62, september 1992.

(8]

[9

—

[10]

[11] S Somé, R Dssouli, and J Vaucher. Toward an Au-
tomation of Requirements Engineering using Sce-
narios. Technical Report 978, DIRO-Université de

Montréal, 1995.

Y Wakahara, Y Kakuda, A Tto, and E Utsunomiya.
ESCORT: an environment for specifying communi-
cation requirements. [EFFE Software, pages 38-43,
1989. '

(12]



