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When proving that a parallel program has a given 
property it is often convenient to assume that a state- 
ment is indivisible, i.e. that the statement cannot be 
interleaved with the rest of the program. Here sufficient 
conditions are obtained to show that the assumption that 
a statement is indivisible can be relaxed and still pre- 
serve properties such as halting. Thus correctness proofs 
of a parallel system can often be greatly simplified. 
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1. Introduction 

Suppose that P is a parallel program and R is some 
statement contained in P. It is often easy to prove that 

(I) P has some property Z as long as the statement R is 
"uninterruptible." 

A statement is uninterruptible provided it is never inter- 
leaved with the rest of P, i.e. provided it is treated as one 
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"indivisible" action. For instance, R might be the three 
instructions or actions: 

begin 
r ~ - - x ;  
increment  r; 
x ~-- r; end; 

Assuming that R is uninterruptible or indivisible reduces 
R to the single instruction: 

x~-x+l ;  

In contrast to (1), it is usually not easy to prove that 

(2) P has property 2; when R is interruptible. 

The basic question considered in this paper is: When are 
assertions (1) and (2) equivalent? 

Define P/R to be the parallel program obtained 
f rom P by reducing R to one indivisible action (i.e. R 
is considered to be uninterruptible). P/R is called the 
reduction o f  P by R. Then the type of result we obtain 
is:  

(3) P/R has property 2; iff P has property Z. 

In proving (3), restrictions must be placed on R. These 
restrictions, however, are satisfied by a wide range of 
statements. These results are then used as follows. Sup- 
pose that one desires to prove that P has property Y~. 
P is then reduced to P ' ,  P '  is reduced to P", and so on, 
finally yielding Q. Now Q is shown to have property 2;; 
thus several applications of (3) show that P also has 
property 2;. The reason this method is fruitful is that Q 
is usually much "s impler"  than P. There are two ways 
in which Q is simpler: (i) Q has fewer actions than P. 
It follows that a proof  that Q has property Z must 
consider fewer cases than a proof  that P has property ~.. 
(ii) Assertions about Q are often simpler than assertions 
about  P. For  example, we will later investigate an 
example where in Q the sum of two variables a + b is 
always a constant, while in P, a -k- b is a complex func- 
tion of the state of P. This difference in the assertions 
that can be made about a + b is important:  the fact that 
a d- b is constant allows an easy proof  that Q does not 
halt. 

The previous proof  procedures for parallel programs 
have consisted essentially of Floyd's  assertion method 
[3] adapted to parallel programs (Ashcroft [1], Lauer 
[5], and Levitt [6]). The basic drawback to this method 
is that because of the many possible computat ions in a 
parallel program, the assertion method tends to involve 
the consideration of many cases. The arbitrary inter- 
leaving of a parallel program is then a major  obstacle for 
the assertion method. It  seems to lead to complex asser- 
tions of the form if process-I is at statement lx and 
process-2 is at statement 15 and . . . ,  then . . . .  This 
should be compared with the main advantage of the 
reduction method: The computat ions of P/R are a 
proper subset of the computat ions of P. Of  course, the 
reduction method can be used in conjunction with the 
assertion method. 

This paper is composed of five sections. In Section 2 
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the basic definitions of  parallel programs and indivisi- 
blity are presented. In Section 3 the concept  of  reduct ion 
is presented. It  is then proved that  certain reductions, 
called D-reductions,  preserve a number  of properties 
such as halting. In Section 4 several examples that  
demonst ra te  the power of  the reduction method are 
presented. 

2 .  P a r a l l e l  P r o g r a m s  

For  the basic definition of  parallel programs in this 
paper, Algol or a similar language will be supplemented 
with the parallel s tatement parbegin . . .  parend of  
Dijkstra [2]. The effect of  

parbegin S~ ; . . .  ; Sk ,  parend 

is then to interleave the statements $1,  • • • ,  Sk in some 
arbitrary order until no further execution is possible. 
A computation is then a sequence t l , . . . ,  t,~ of  state- 
ments  such that  tt is executed first, then t2 is executed, 
and so on until the last s tatement t,~ is executed. Since 
an S~ may  be a c o m p o u n d  statement, m > k is possible. 
For  example, if $1 is 

begin x ~ - - x  + 1; y ~-- if w = 1 then y else 1 ; end 

then t~ might  be the statement x ~-- x + 1 or the state- 
ment  

y ~ - - i f w  = l t h e n y e l s e  1 

Indeed one might  even allow t~ to be a "pa r t "  of  one of  
these statements. Thus  t~ might  be the action that  com- 
putes the value of  the Boolean expression w = 1. The 
reason it is not  necessary to say exactly what  ti can be is 
that  in the major i ty  of  cases it simply does not  matter.  
In  some cases, however,  it is extremely impor tan t  that  
some statement  be considered indivisible, i.e. that  no t~ 
be a par t  of  it. Fo r  this reason we add to the p a r b e g i n  

. . .  parend nota t ion as follows: A statement S (we 
assume S has a single entry and a single exit) is indivisi- 
ble if it is enclosed in brackets to fo rm IS]}. The seman- 
tics of  {IS] are then:  

1. In a given state of  the parallel program,  [S] can 
execute provided in this state control  (in the normal  
sense) is ready to enter S and after S is applied con- 
trol has left S. 

2. In a given state of  the parallel program,  the ef fect  of  
applying I S ]  (provided it can execute) is the same 
as that  of  S. 

The key to the definition of  ~[S] is that  we can never 
apply it when it cannot  fully complete its execution. Fo r  
example, consider the indivisible statement 

[ L : i f a  > 0 t h e n a ~ - a - -  l e l s e g o t o L ~  

It  can execute iff a > 0; if a < 0, then control  remains 
ready to enter and so the indivisible statement cannot  be 
applied. The effect of  this s tatement is always to decre- 
ment  a by I. This s tatement  will be later denoted by 

P(a) ;  it corresponds to the "wai t"  primitive of  [2]. 
Second, consider the indivisible statement 

t~a ,-- a + I] 

Clearly, it can execute iff true, i.e. it can always execute. 
The effect of  this s tatement is always to increment a by 1. 
This statement will be later denoted by V(a); it cor- 
responds to the "s ignal"  primitive of  [2]. No te  this 
second example is not equivalent to 

a * - - a + l  

Without  enclosing a ~-- a + 1 in brackets it is possible 
to "lose counts ,"  i.e. in 

integer a; (a = O) ; 
parbegin a ~- a + 1 ; a ~-- a + 1 ; parend; 

the value of  a can be 2 or 1. 
Finally, consider the indivisible s tatement  

[P (a ) ;  r ~-  r + 1; if r : I then P(b); V(a)] 
It can execute i f fa  > 0 and (r ~ 0 or b > 0). The effect 
of  this s tatement  is to leave a unchanged  [P(a) decre- 
ments  a and V(a) increments a]; always to increment  r 
by 1; and to replace b by 

i f r  = 0 t h e n b  - lelseb 

The expression for b follows f rom the observat ion that  
the t h e n  statement is evaluated only if r = 0 on entry to 
the indivisible statement. 

In order to complete the basic definitions of  this 
paper  the not ion of  computa t ion  is extended to pro- 
grams with indivisible statements.  Define c~{[S]} to be a 
computa t ion  provided c~ is a computa t ion  and [S~} can 
execute in the state that  results after c~ is executed. Thus  
in the p rogram 

integer a (a = 0); 
parbegin A: P(a);  B: V(a); parend; 

the only computa t ions  are the sequences B and B, A. 
The sequence A, B is not  a computa t ion  since P(a) 
cannot  execute initially, for a = 0. This is an impor tan t  
point, which must  be stressed: Computa t ions  are se- 
quences of  statements that  execute; no s tatement  can 
occur in a computa t ion  if it would "b loc k"  in the sense 
of  [2]. The reason that  this assumpt ion can be made  is 
that  only properties of  programs that  depend on their 
states (i.e. the values of  their p rogram variables will be 
studied). N o w  the key to this assumpt ion  is that  the 
reachable states in a p rogram with or wi thout  "block-  
ing" are the same. 

3.  R e d u c t i o n s  

The concept  of  reduct ion is now defined. It  is then 
shown that  D-reduct ions,  a class of  reductions,  preserve 
a number  of  interesting properties, including for in- 
stance, halting. 

Definition. Suppose that  P is a parallel p rogram with 
statement S. Then define P / S ,  the reduct ion of  P by S, 
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to  be the parallel p rogram that  results when S is re- 
placed by IS]}. 

The fundamenta l  question is: what  is the relation- 
ship between P and P/S? In particular, let us consider 
the quest ion:  is it true that  P/S  halts iff P halts? A 
program halts if there is son:e computa t ion  a such that  
a f  is not  a computa t ion  for all statements f .  A parallel 
p rogram that  does not  halt is often called "deadlock 
free" [2]. In analyzing parallel programs,  as found in 
operat ing systems, it is often impor tan t  to prove that  
they never halt, i.e. that  they are deadlock free. This 
follows since operat ing systems are often never-ending 
tasks and hence must  be proved never to halt. 

The most  optimistic conjecture to make is that  all 
reductions preserve halting; more exactly, 

(4) P/S  halts iff P halts. 

This is, however, false. Consider  the parallel program 
E X l :  

integer a,b (a = b = 1); 
parbegin 

repeat P(a);  P(b) ; V(a) ; V(b); end; 
repeat P(b) ; P(a) ; V(b) ; V(a); end; parend; 

It  is easy to see that this p rogram halts. Just  let both 
repeat's execute their first P ' s ;  then a = b = 0 and the 
program has halted. N o w  consider the following pro- 
gram E X 1 / S :  

integer a,b (a = b = 1); 
parbegin 

repeat [[P(a); P(b);  V(a); V(b);]  end; 
repeat P(b); P(a) ; V(b); V(a); end; parend; 

Clearly, E X 1 / S  does not halt. This follows since the 
effect of  

[[P(a); P(b); V(a); V(b)] 

is to leave both a and b fixed. Therefore, assertion (4) is 
false. The failure of  assertion (4) can be explained as 
follows. In EX1 it is possible to enter S and not  ever be 
able to leave it. This observation leads to one restriction 
on statements S: 

(R1) If  a statement S is ever entered, then it must  be 
possible eventually to exit S. 

This restriction appears  to be strong; as demonstra ted 
later, however, it is satisfied by a wide class of  state- 
ments. 

Restriction (R1) alone is not  sufficient to ensure the 
truth of  assertion (4). For  example, consider the parallel 
p rogram EX2 : 

integer x,y (x = y = 0); 
parbegin x ~-- 0; repeat A:x ~-- 1; B:y~---x;P(y); end; 
parend; 

It is easy to see that  EX2 halts. Now  S = A : x ~-- 1 ; 
B: y ~-- x; satisfies restriction (R1). The program 
E X 2 / S  is: 

integer x,y (x = y = 0); 
parbegin x ~ 0; repeat {[A : x ~-- 1; B :y  ~-- x ] ;  P(y);  end; 
parend; 

Clearly, this does not  halt; this follows since ~A : x *-- 
1 ; B : y ~-- x ]  always sets y to I. Thus, restriction (1) is not  
sufficient to implyasse r t ion  (4). This example fails to 
satisfy assertion (4) because the effect A : x * -  1 and 
B : y ~-- x when "separa ted"  and when " toge ther"  is not  
the same. When together y is always set to I; when 
separated y can be set to 0 or 1. This observat ion leads 
to a further restriction: 

(R2) The effect of  the statements in S when together 
and separated must  be the same. 

This restriction may appear  to be difficult to capture 
precisely and perhaps just as difficult to satisfy, but  this 
is not  the case. The following is the key definition. 

Definition. Suppose that  f and g are statements in a 
parallel program. Then 

(a) f is a right mover provided for any afh a computa-  
tation where f and h lie in different processes (in p a r -  

b e g i n  5'1 ; . . .  ; Sk ; p a r e n d  the statements of  each S, 
form a distinct process), then ahfis also a computa t ion ;  
moreover,  the values of  all the program variables in afh 
and ah fa r e  the same; 
(b) g is a left mover provided for any ahg a computa-  
tion where h and g lie in different processes, then agh 
is also a computa t ion ;  moreover ,  the values of  all the 
program variables in c~hg and agh are the same. 

Essentially, a right mover  is a statement that  per- 
forms a "seize" while a left mover  is a s tatement that  
performs a "release" of  a "resource ."  

In order to see this, consider first the case of  a left 
mover.  If  ahf is a computa t ion  and f performs a "re- 
lease," then afh is also a computa t ion  p r o v i d e d f  and h 
lie in different processes (recall here our restriction on 
what is a computa t ion ,  i.e. no blocking can occur in a 
computa t ion)  : 

1. c~fis a computa t ion  since a release can always execute 
(here we are using the fact that  f and h lie in different 
processes). 
2. afh is a computa t ion  since h could execute after 
and f did not  seize any resource (i.e. any demand of  h 
can still be fulfilled). 

Second, consider the case of  a right mover.  If agh 
is a computa t ion  and g performs a "seize," then c~hg is a 
computa t ion  provided g and h lie in different processes: 

1. ah is a computa t ion ;  argue as before. 

2. ahg is a computa t ion .  If  h is a "retease" this follows 
immediately by the first case. Thus  assume that  h is a 
"seize" and the result follows by a symmetry  argument .  

The "p roof s"  above can be stated exactly for PV 
parallel programs.  A program P is a PV parallel pro- 
gram provided there is a distinguished subset of  the 
program variables a l , . . . ,  ak called semaphores with 
integer values such that  they can be used only in either 
P(a~)'s or V(ai)'s. Then we have essent'ially proven the 
following theorem. 

THEOREM 1. In any PV parallel program all P(a)'s 
are right movers and all V(a)'s are left movers. 
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D-reduc t ions  can now be defined. 
Definition. Replac ing  St ; • • • ; Sk with {[$1 ; . . .  ; Ski 

is a D-reduction prov ided ,  for some i, S 1 , . . . ,  S~_1 are  
r ight  movers  and  Si+~,  . . . ,  Sk are left  movers  (Si  is 
uncons t ra ined)  and  each $2 ,  . . . ,  S~ can a lways  exe- 
cute. 

Res t r ic t ion  (R2) co r r e sponds  to the fact  tha t  the 
first i - -  1 s ta tements  are r ight  movers  and  the last  
k --  i are left  movers .  Res t r ic t ion  (R1) co r r e sponds  to  
the fact  tha t  the last  k - 1 s ta tements  can a lways  exe- 
cute. F o r  example ,  in a PV paral le l  p r o g r a m  [S~ ; . . .  ; 
Ski} is a lways  a D- reduc t ion  p rov ided  $2 ,  . . . ,  Sk are 
V's. This  fol lows f rom T h e o r e m  1 and  the fact  tha t  any 
V in a P V  p r o g r a m  can a lways  execute. 

THEOREM 2. Suppose that S is a D-reduction in P. 
Then P halts iff P / S  halts. 

PROOF. Clear ly  if P / S  halts,  then P halts.  This  
fol lows since any state of  P / S  is also a state of  P. I t  will 
now be shown tha t  if  P halts,  then P / S  halts.  To this 
end,  assume tha t  P hal ts ;  moreover ,  let a be a c o m p u t a -  
t ion in P such tha t  a halts.  I t  will now be assumed  tha t  
S = S1 ; . . .  ; S , .  The plan of  the p r o o f  is to cons t ruc t  a 
c o m p u t a t i o n  ~ such tha t  all  the p r o g r a m  var iables  agree 
af ter  a and  ¢~ are executed and  S ~ , . . . ,  S ,  a lways  occur 
as "consecut ive  b locks  of  s ta tements  in /3 ,"  i.e. where ~ 
is the ith e lement  of  the sequence ~, (1) i f¢~ = S i  and  
j < n, then/3~+t = Si+l  ; (2) i f / ~  = Sj  a n d j  > I, then 
¢~i_1 = S~._~. In o rder  to avo id  complex  no t a t i on  it will 
be assumed  there are no goto ' s  in S1,  . . . ,  S, , .  N o w  
two simple l emmas  are needed.  L e m m a  2 encodes  the 
key " t r i ck"  used in our  proof .  

LEMMA 1. Suppose that aS,{3 is a computation in P 
with i > 1. Then a = XS,_~u where no statement from the 
process of S~ is in u. 

PROOF OF LEMMA. This  fol lows easily f rom the fact  
that  S,  ; . . .  ; S ,  has a single ent ry  and  the a s sumpt ion  
tha t  no goto ' s  occur  in our  p rograms .  [ ]  

LEMMA 2. Suppose that aS~13 is a computation that 
halts in P with i < n. Then 5 = XS~+lU where no state- 
ment from the process of S~ is in X. 

PROOF OF LEMMA. If  a n y f  occurs  in ¢ / w h e r e f i s  in the 
process  of  S~, then the first such f must  be S,+~.  Thus  
assume tha t  no s u c h f  is in ~. In o~S~/~ con t ro l  mus t  be 
r eady  to enter  Si+l  ; therefore  o~S~S~+, is a c o m p u t a -  
t ion,  which is a con t rad ic t ion  (recall  a S ~  halts) .  No te  
aS~SS~+t is a c o m p u t a t i o n  since by the defini t ion of  
D- reduc t ion  Si+l  can a lways  execute. [ ]  

I f  no S~ is in a,  then o~ is a l ready  in the desired fo rm 
(i.e. let/3 = a) .  Therefore  suppose  tha t  some S~ is in a. 
By repea ted  app l i ca t ions  of  L e m m a s  1 and  2, 

a = XS~a ~ . . .  ~"S,u 

where no s ta tement  f rom the process  of  S~ is in any 
od ( j  = 2, . . . ,  n). By the defini t ion of  D- reduc t ion  for 
some k, 

= )tO~ 2 . . .  o~kS1  . . .  S h O t  k + l  , . .  o~n~ 

is a c o m p u t a t i o n  and  it agrees with a on all  the p r o g r a m  

variables .  This  a rgumen t  can be repea ted  to fo rm the 
desired c o m p u t a t i o n  ~. N o w  

: ~ 1 5 1  . . .  S n #  2 . . .  ~ m - l s 1  , , ,  S n ~  m' 

where no Sj  is in any ¢~" and  a and /3  agree on all  p ro-  
g ram variables .  Then 

= ~1S~2 . . .  ~ m - l s ~ "  

is a c o m p u t a t i o n  in P/S;  moreover ,  a and  ~ and  
agree on all  the p r o g r a m  variables .  I f  ~ hal ts  in P/S ,  
then the t heo rem is proved.  Conversely ,  assume tha t  
does  no t  ha l t  in P/S;  fur ther  assume tha t  ~h is a com-  
pu t a t i on  in P/S.  I f  h # S, then ~h is a c o m p u t a t i o n  in 
P ;  if h = S, a S 1 , . . . ,  S,  is a c o m p u t a t i o n  in P.  These  
asser t ions  fol low since o~ and  ~ agree on all  p r o g r a m  
variables .  In ei ther  case we have reached a con t rad ic -  
t ion.  [ ]  

The  p r o o f  of  T h e o r e m  2 ac tua l ly  es tabl ishes  tha t  for 
each ~ tha t  hal ts  in P there  is a ~ tha t  hal ts  in P / S  such 
tha t  a and  B agree on all  p r o g r a m  variables .  Thus  if  S is 
a D- reduc t ion ,  then 

(5) The final s tates  of  P equal  the final s tates  of  P/S .  

(A final state of  a p r o g r a m  is a s tate tha t  results  af ter  an 
is executed  where a is a ha l t ing  compu ta t i on . )  

T h e o r e m  2 is then seen to  be a special  case of  (5). I t  
s tates  tha t  P has  a final s tate iff P / S  has a final state.  In 
general ,  D- r educ t i on  then preserves  any  p rope r ty  tha t  
depends  only on a p r o g r a m ' s  final state.  

4.  A p p l i c a t i o n s  

The reduct ion  m e t h o d  is now d e m o n s t r a t e d  by two 
examples .  In bo th  cases app l i ca t i ons  of  T h e o r e m s  1 and  
2 show tha t  a para l le l  p r o g r a m  does  not  hal t ,  i.e. it  is 
d e a d l o c k  free. 

The first example  is based  on the p r o g r a m  EX3 : 

integer a, b, c (a = b = c = 1); 
parbegin repeat P(a) ; P(b) ; V(a); V(b) ; end; 

repeat P(b); P(c); V(b); V(c); end; 
repeat P(a); P(e); V(a) ; V(c); end; parend; 

Essent ia l ly  this  p r o g r a m  is the " s m o k e r ' s  e x a m p l e "  
except  for  in i t ia l  condi t ions .  By T h e o r e m s  1 and  2, 
EX3 hal ts  iff the fo l lowing p r o g r a m  hal ts :  

integer a, b, c (a = b = c = 1); 
parbegin repeat P (a); P(b) ; V(a) ; V(b) ; end; 

repeat P(b); {[P(c); F(b); V(c);] end; 
repeat P(a);  {~P(c); V(a); V(c);]} end; parend; 

The two indivis ible  s ta tements  behave  as fo l lows:  

1. [P(c) ; V(b); V(c);]] can execute iff c > 0; its effect is 
to inc rement  b by  1 and  leave a and  c unchanged .  

2. [P (c ) ;  V(a);  V(c) ; ]  can  execute iff c > 0; its effect 
is to inc rement  a by 1 and  leave b and  c unchanged .  

Thus  c is a lways  equa l  to  1. I t  fol lows tha t  

{[P(c); V(b); V(c);] = V(b) 

and  
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[e(c); v(a); v(c);] = v(a) 

In summary,  EX3 halts iff the following program halts: 

integera, b ( a  = b = 1); 
parbegin repeat P(a) ; P(b) ; V(a); V(b) ; end; 

repeat P(b); V(b); end; 
repeat P(a); V(a); end; parend; 

Once again Theorems 1 and 2 can be applied; hence, 
EX3 halts iff the following program halts: 

integera, b (a = b = 1); 
parbegin repeat P(a); ~P(b); V(a); V(b);] end; 

repeat ~P(b); V(b);] end; 
repeat P(a) ; V(a) ; end; parend; 

AS with variable c, it is now the case that  b is always 
equal to 1. Therefore,  EX3 halts iff the following pro- 
gram halts: 

integer a (a = 1) ; 
parbegin repeat P(a); V(a); end 

repeat end; 
repeat P(a) ; V(a) ; end; parend; 

Finally, this p rogram trivially never halts. The second 
process runs forever, doing nothing! Thus  EX3 does 
not halt. 

Our  second example is based on the program EX4:  

integer a, b (a = 0, b = N); 
parbegin repeat P(a); V(b); end; 

repeat P(b); V(a); end parend; 

The integer N > 0 represents the amoun t  of  "buffer 
space" available. This is essentially the bounded buffer 
example of  [4]. Each process consumes f rom one buffer 
and produces elements for the other buffer. The value 
of  a -k b intuitively represents the number  of  elements in 
the buffers. One would like to argue that  a q- b is always 
equal to N, but  it clearly is not. Indeed a -q- b can equal 
N or N -- 1 or N -- 2. N o w  let us apply Theorems 1 and 
2. Then EX4 halts iff the following program halts: 

integer a, b (a = 0, b = N); 
parbegin repeat ~P(a) ; V(b) ;] end; 

repeat ~P(b) ; V(a);] end; parend; 

The effect of  ~P(a); V(b)] is to decrement  a by 1 and 
increment b by 1; the effect of  {~P(b); V(a)] is to decre- 
ment  b by 1 and increment a by 1. Thus, a q- b is 
"conserved"  and is always equal to N. But [P (a ) ;  
V(b) ~ can execute iff a > 0 and [P(b) ; V(a) ] can execute 
iff b > 0. Since a q- b = N > 0, it is not  possible for the 
p rogram above to halt; hence EX4 does not  halt. 

that  in a wide number  of  nontrivial  instances reduction 
preserves impor tant  properties. Indeed, Theorem 1 can 
be extended to show that  left and right movers  exist in 
great abundance  in parallel programs.  In any P V  pro- 
g r a m - - a n d  even the restriction to P V  can be weakened 
- - t h a t  allows processes to share only global variables 
with critical sections [2], any statement that  is not  a P 
or a V is both a left and a right mover.  The ramification 
of  this generalization is that  reduction can be applied to 
a very wide class of  statements. 
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5. C o n c l u s i o n s  

That  reduct ion aids in a correctness p roof  seems to 
be clear. Essentially reduction is nothing more than 
analyzing a parallel p rogram by collapsing pieces of  the 
p rogram together. It is interesting to note that  the same 
technique has long been used in sequential p rograms 
(e.g. macros  or procedures).  But in the parallel case it 
was not  at all clear that  reduct ion was possible. The 
main achievement of  Theorems 1 and 2 is the realization 
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