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Abstract
A scheduling architecture for real-time control tasks
is proposed. The scheduler uses feedback from
execution-time measurements and feedforward from
workload changes to adjust the sampling periods of
the control tasks so that the combined performance
of the controllers is optimized. The performance of
each controller is described by a cost function. Based
on the solution to the optimal resource allocation
problem, explicit solutions are derived for linear and
quadratic approximations of the cost functions. It is
shown that a linear rescaling of the nominal sam-
pling frequencies is optimal for both of these approx-
imations. An extensive inverted pendulum example
is presented, where the performance obtained with
open-loop, feedback, combined feedback and feedfor-
ward scheduling, and earliest-deadline first schedul-
ing are compared. The performance under earliest-
deadline first scheduling is explained by studying the
behavior of periodic tasks under overload conditions.
It is shown that the average values of the sampling
periods equal the nominal periods, rescaled by the
processor utilization.

1. Introduction
There is currently a trend towards more flexible real-
time control systems. Combining scheduling theory
and control theory opens up the possibility to achieve
higher CPU-resource utilization and better control
performance. To obtain the best results, co-design of
the scheduler and the controllers is necessary.

Control tasks are generally viewed by the schedul-
ing community as hard real-time tasks with fixed
sampling periods and known worst-case execution
times (WCETs). Upon closer inspection, neither of
these assumptions need necessarily be true. For in-
stance, many control algorithms are quite robust
against variations in sampling period and input-
output latency. In some situations it is also pos-
sible to let the controller actively compensate for
the variations by, e.g., recalculating the controller
parameters. Hence, the timing nondeterminism can

be viewed as a disturbance or uncertainty affecting
the control loop. Controllers can also be designed to
switch between different modes with different exe-
cution times and/or different sampling periods. An
on-line scheduler that uses feedback to dynamically
adjust the control task attributes in order to optimize
the global control performance can be interpreted
as a controller in itself, i.e., as a feedback sched-
uler. The control performance, or Quality-of-Control
(QoC), can, hence, be interpreted as a quality-of-
service measure.

In this work, we present a feedback scheduler for
control tasks that attempts to keep the CPU uti-
lization at a high level, avoid overload, and dis-
tribute the computing resources among the control
tasks so that the total control performance is opti-
mized. While we want to keep the number of missed
deadlines as low as possible, control performance is
our primary objective. Thus, control tasks, in our
view, fall in a category somewhere between hard and
soft real-time tasks. The known-WCET assumption
is relaxed by the use of feedback from execution-
time measurements. We also introduce feedforward
to further improve the regulation of the utilization.
The feedforward action can be interpreted as an ad-
mission controller. The article is based on the feed-
back scheduling approach in [Cervin and Eker, 2000].
There the problem of scheduling a set of hybrid
control tasks was studied. The hybrid controllers
switched between different modes with different
execution-time characteristics. The feedback sched-
uler adjusted the controller task periods through a
simple linear rescaling without any direct connec-
tion to control performance optimization. In this pa-
per we instead study the problem of scheduling a set
of linear controller tasks. The performance of each
controller is described by a cost function. By start-
ing and stopping the different control tasks the CPU
load is varied. The sampling periods are adjusted so
that the total cost of the controllers is minimized.

In [Eker et al., 2000] a feedback scheduler for the
special case of linear-quadratic (LQ) control tasks



was presented. An LQ-controller is a linear state-
feedback controller that is designed to minimize a
quadratic cost criterion. Formulas for the LQ cost
function and its derivative with respect to the sam-
pling period were given. The scheduling problem
was formulated as a recursive optimization problem
based on the exact formulas for the derivatives of the
cost functions. Due to the high computational costs
involved, an approximate version of the scheduler
was also developed. The cost functions were approx-
imated by quadratic functions of the sampling pe-
riods, and explicit expressions for the optimal sam-
pling periods were derived. That result is utilized in
this paper. Furthermore, we allow for a set of gen-
eral linear controllers and also study the results ob-
tained when the cost functions are approximated by
linear functions of the sampling periods. On the im-
plementation side, both priority-based and earliest-
deadline-first (EDF) based approaches are studied. A
new result concerning the properties of EDF schedul-
ing for periodic control tasks during overload condi-
tions is presented.

1.1 Outline of the paper
Additional motivation and a survey of related work
is contained in Section 2. The CPU-resource allo-
cation problem for a set of control tasks is treated
in Section 3. The structure of the proposed schedul-
ing architecture is described in Section 4. The feed-
back scheduling example is presented in Section 5. A
comparison is made between open-loop scheduling,
feedback-based scheduling and combined feedback
and feedforward scheduling. Also, ordinary earliest-
deadline-first scheduling is studied. A new result
concerning the properties of EDF schedules for peri-
odic tasks during overload conditions is presented in
Section 6. The conclusions are given in Section 7.

2. Background
Most control systems are embedded systems where
the computer is a component in a larger engineering
system. The control system is often implemented
on a microprocessor using a real-time kernel or a
real-time operating system. The real-time kernel
or the operating system uses multiprogramming to
multiplex the execution of the tasks on the CPU.
The CPU time, hence, constitutes a shared resource
which the tasks compete for. To guarantee that
the time requirements and time constraints of the
individual tasks are all met, it is necessary to
schedule the usage of the shared resource.

In traditional hard real-time computing models, it is
assumed that control tasks fit the simple task model,
i.e., the tasks are periodic, or can be transformed to
periodic tasks, with a fixed period, a known worst-
case bound on the execution time (WCET), and a

hard deadline. The fixed-period assumption of the
simple task model has also been widely adopted by
the control community and has, e.g., resulted in the
development of the sampled computer-control theory
with its assumption on deterministic, equi-distant
sampling.

Upon closer inspection it is quite clear that many
of the assumptions of the simple model are too re-
strictive. First, the assumptions do not allow us to
use low-cost general purpose hardware and off-the-
shelf operating systems, which in general are not
able to give any guarantees on determinism. These
systems are, typically, designed to achieve good aver-
age performance rather than guaranteed worst-case
performance. They often introduce significant non-
determinism in task scheduling. For computation-
intensive high-end applications, the large variability
in execution time caused by modern hardware archi-
tecture also becomes visible. The effect of this on the
control loop is jitter in sampling period and control
delay (input-output latency). In order to maintain
good control performance it is important to compen-
sate on-line for the variations. A requirement for this
is that the necessary timing information is provided
by the real-time kernel.

The assumptions of the simple model are also overly
restrictive with respect to the characteristics of many
control loops. Many control loops are not periodic,
or they may switch between a number of different
fixed sampling periods. Control loop deadlines are
not always hard. On the contrary, many controllers
are quite robust towards variations in sampling
period and response time. Hence, it is questionable
whether it is necessary to model them as hard
deadline tasks. It is also in many cases possible
to compensate on-line for the variations by, e.g.,
recomputing the controller parameters. Obtaining an
accurate value for the WCET is generally a difficult
problem. Measuring WCET always implies the risk
of underestimation, whereas analytical execution
time analysis tools are still rare. An alternative way
may be to instead measure the actual execution
time every task invocation and to adjust the task
parameters accordingly. Finally, it is also possible to
consider control systems that are able to do a tradeoff
between the available computation time, i.e., how
long the controller may spend calculating the new
control signal, and the control loop performance.

On-line task attribute adjustment mechanisms can
in certain situations be viewed as controllers in
themselves. Using feedback from on-line measure-
ments of, e.g., actual execution times, the resource
utilization of the different tasks is changed. If the
tasks are control tasks, feedback from the control
performance can also be used to, e.g., optimize con-
trol performance under given resource utilization



constraints. The feedback scheduler then solves an
optimization problem to perform the task attribute
adjustment. The use of on-line optimization as a way
of realizing feedback control is quite common in ad-
vanced control systems. One example is model pre-
dictive control (MPC) where a convex optimization
problem is solved in each sample.

2.1 Related Work
The related work falls into three categories: inte-
grated control and real-time system design, quality-
of-service approaches in real-time systems, and flex-
ible and adaptive real-time system algorithms and
architectures.

In [Seto et al., 1996], sampling period selection for a
set of control tasks is considered. The performance of
a task is given as function of its sampling frequency,
and an optimization problem is solved to find a set of
optimal task periods. Co-design of real-time control
systems is also considered in [Ryu et al., 1997],
where the performance parameters are expressed
as functions of the sampling periods and the input-
output latencies. [Shin and Meissner, 1999] deals
with on-line rescaling and relocation of control tasks
in a multi-processor system.

The second area of related work is on quality-of-
service (QoS) aware real-time software, where a
system’s resource allocation is adjusted on-line in
order to maximize the performance in some respect.
In [Li and Nahrstedt, 1998] a general framework
is proposed for controlling the application requests
for system resources using the amount of allocated
resources for feedback. It is shown that a PID
(proportional-integral-derivative) controller can be
used to bound the resource usage in a stable and
fair way. In [Abeni and Buttazzo, 1999] task models
suitable for multimedia applications are defined.
Two of these use PI control feedback to adjust the
reserved fraction of CPU bandwidth. The resource
allocation scheme Q-RAM is presented in [Rajkumar
et al., 1997]. Several tasks are competing for finite
resources, and each task is associated with a utility
value, which is a function of the assigned resources.
The system distributes the resources between the
tasks to maximize the total utility of the system. In
[Abdelzaher et al., 1997] a QoS renegotiation scheme
is proposed as a way to allow graceful degradation
in cases of overload, failures or violation of pre-run-
time assumptions. The mechanism permits clients
to express, in their service requests, a range of
QoS levels they can accept from the provider, and
the perceived utility of receiving service at each of
these levels. The approach is demonstrated on an
automated flight-control system. Control-theoretical
approaches for QoS adaptation are also presented in
[Abdelzaher and Shin, 1999].

The third area relates to the wealth of flexible
scheduling algorithms available. An interesting al-
ternative to linear task rescaling is given in [But-
tazzo et al., 1998], where an elastic task model for
periodic tasks is presented. The relative sensitivity
of tasks to rescaling are expressed in terms of elastic-
ity coefficients. Schedulability analysis of the system
under EDF scheduling is given. Task attribute ad-
justment strategies are also presented in [Nakajima,
1998; Kuo and Mok, 1991; Kosugi et al., 1994; Naka-
jima and Tezuka, 1994; Lee et al., 1996].
The idea of using feedback in scheduling has to some
extent been used previously in general purpose op-
erating systems in the form of multi-level feedback
queue scheduling [Kleinrock, 1970; Blevins and Ra-
mamoorthy, 1976; Potier et al., 1976]. However, this
has mostly been done in an ad-hoc way. Related to
our work, [Stankovic et al., 1999; Lu et al., 1999]
present a scheduling algorithm, the FC-EDF, that
explicitly uses feedback in combination with EDF
scheduling. A PID controller regulates the deadline
miss-ratio for a set of soft real-time tasks with vary-
ing execution times, by adjusting their requested
CPU utilization. It is assumed that tasks can change
their CPU consumption by executing different ver-
sions of the same algorithm. An admission controller
is used to accommodate larger changes in the work-
load. In [Lu et al., 2000] the same approach is ex-
tended. An additional PID controller is added that
instead controls the CPU utilization. The two con-
trollers are combined using a min-approach. The re-
sulting hybrid controller scheme, named FC-EDF2,
gives good performance both during steady-state and
under transient conditions. Although related to the
work presented here, there are important differ-
ences. In our approach the tasks that are scheduled
are controllers, controlling some physical plants. The
performance, or Quality-of-Control (QoC) is explicitly
used by the feedback scheduler to optimize the total
performance of all the controller tasks.

In order to evaluate how the scheduling of controller
tasks influence the control performance it is neces-
sary to have simulators that allow joint simulation of
continuous-time plant dynamics, discrete-time con-
trollers, and the real-time scheduling of the corre-
sponding controller tasks. The simulations in the
current paper are based on the Matlab/Simulink
toolbox presented in [Eker and Cervin, 1999]. A sim-
ilar tool is presented in [Palopoli et al., 2000].
An extensive survey with additional references to
other related work in the area of control and CPU
scheduling can be found in [Årzén et al., 1999].



3. Control Loop Resource Allocation
In this section, we take a higher-level, idealized view
of a feedback scheduling system and study the prob-
lem of distributing limited computing resources to a
number of control loops. For now, it is assumed that
lower-level mechanisms in the real-time system can
provide the feedback information needed, and that
the available computing resources can be divided in
an exact way.

We study the problem of scheduling several indepen-
dent control tasks on a shared processing unit. The
plants are described by linear continuous-time sys-
tems, the controllers are described by linear discrete-
time systems, and the performance of the control
loops are measured using quadratic performance cri-
teria. The goal is to assign sampling periods to the
control loops such that the overall control perfor-
mance is optimized subject to the schedulability con-
straint. The effects of control delay and jitter on the
control performance are neglected at this stage.

The next section introduces a standard mathemati-
cal model of a computer-controlled system. More de-
tails can be found in textbooks on sampled-data con-
trol theory, e.g. [Åström and Wittenmark, 1997].

3.1 Control System Description
Each physical process (or plant) to be controlled is
assumed to be described by a set of linear differen-
tial equations, which give the relationship between
the input (the control signal) and the output (the
measurement signal). A standard mathematical rep-
resentation of such a system is

dx(t)
dt

= Ax(t) + Bu(t) + Gw(t)
y(t) = Cx(t) + v(t)

(1)

Here, x is a vector of state variables (the state of the
plant), u is the control signal, y is the measurement
signal, and w and v are uncorrelated zero-mean
Gaussian white noises which disturb the states and
the measurements. A, B , C, and G are constant
matrices that describe the dynamics of the plant.

The goal of the controller is to keep the plant state
as close as possible to zero (which is assumed to be
the desired state) in the presence of noise and other
disturbances. As the plant exists in the real world,
it is described in continuous time. On the other
side, the controller is implemented in a computer
and is therefore inherently a discrete-time system.
A general linear controller can be described by a set
of linear difference equations,

xc
k+1 = Φcxc

k + Γc yk

uk = Ccxc
k + Dc yk

(2)
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Figure 1 Relationships among the continuous and the
discrete signals in the control loop.

Here, xc is the state vector of the controller, and
Φc, Γc, Cc, and Dc are matrices which describe
the dynamics of the controller. Depending on how
the controller is designed, these matrices may or
may not be functions of the sampling period. In the
interconnection between the continuous-time and
the discrete-time system, y is sampled and u is
held at a constant value until the next update, see
Figure 1.

The controller could be designed using a large num-
ber of techniques, for instance loop shaping, pole
placement, or using optimal control theory. There
is also the choice between direct discrete design or
translation from continuous design to discrete im-
plementation. The linear controller description (2)
covers many common control principles, including
PID control, state feedback control from an observer,
lead-lag filtering, etc.

3.2 Evaluating Control Performance
A good control design should fulfill a large number
of criteria, including fast disturbance rejection, good
robustness towards plant variations, low noise sen-
sitivity, etc. In this work, however, we focus on sam-
pling period selection, and we choose a simple perfor-
mance criterion that can be used to directly compare
the performance of the control loops under different
sampling periods. The performance of a controller is
measured using a quadratic cost criterion,

J = lim
T→∞

1
T E

v,w

{∫ T

0

(
xT(t)Q1x(t) + uT(t)Q2u(t)) dt

}
(3)

The cost J can be interpreted as a weighted sum of
the stationary variance of the plant state and the
control signal. The constant matrices Q1 and Q2 are
weights that are chosen for each plant. A large value
of J indicates large deviations from the desired state
or large control signals, and is thus worse than a
lower value of J. An infinite cost implies that the
control system is unstable.
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Figure 2 Cost functions for two different plants, (a)
Inverted pendulum, G(s) = 1

s2−1
, (b) DC servo, G(s) =
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Evaluation of the cost (3) for a given plant, a
given controller, and a given sampling period h is
a straight-forward task that involves three compu-
tational steps. First, the plant description and the
cost function are discretized. Second, the closed-loop
system is formulated and the stationary variance of
the states in the system is computed. Third, the cost
J is obtained as a linear weighting of the state vari-
ance. More details about the sampling of a plant and
a cost function can be found in [Åström and Witten-
mark, 1997].

3.3 LQG-Control

In the examples in this paper we use LQG (linear-
quadratic-Gaussian) controllers. An LQG-controller
is an optimal controller, explicitly designed to min-
imize the criterion (3). The optimal control param-
eters depend on the sampling period, and they are
obtained using direct discrete design. Standard con-
trol design software (e.g. MATLAB) is used to compute
the LQG-controller parameters.

3.4 Cost Functions
A controller can normally give satisfactory perfor-
mance within a range of sampling periods. Comput-
ing the cost J for such a range we obtain a cost
function. The cost function J(h) will have different
shapes for different plants and different controllers,
but in general it is an increasing function. In Fig-
ure 2, LQG-cost functions have been calculated for
two different plants, an inverted pendulum and a DC
servo. For small sampling periods, the cost increases
linearly in both cases.

It should be pointed out that cost functions are
not necessarily increasing functions. If the controller
has fixed parameters and is designed for a nominal
sampling period, the controller might perform worse
with both shorter and longer sampling periods. Cost
functions are not necessarily convex functions either.
An example of a very irregular cost function is given
in [Eker et al., 2000].

3.5 Performance Optimization

The feedback scheduler should control the workload
of the processor by adjusting the sampling periods of
the controllers. At the same time, it should optimize
the overall control performance. This is formulated
as an optimization problem. Given n control tasks
with average execution times C = [ C1 . . . Cn ]T
and sampling periods h = [ h1 . . . hn ]T , the feed-
back scheduler should solve the problem

min
h

J =
n∑

i=1

Ji(hi)

subject to
n∑

i=1

Ci/hi ≤ Usp

(4)

where Usp is the desired processor utilization level.
This problem has nonlinear constraints. To get linear
constraints, the costs are recast as functions of the
sampling frequencies, f = [ f1 . . . fn ]T ,

Vi( f ) = Ji(1/h) (5)

The problem is now written

min
f

V =
n∑

i=1

Vi( f i)

subject to CT f ≤ Usp

(6)

If the functions V(f) = [ V1( f1) . . . Vn( fn) ]T are
decreasing and convex, the optimal solution f̄ =
[ f̄1 . . . f̄ n ]T fulfills the Kuhn-Tucker conditions

Vf(f̄) + λC = 0

λ(Usp−CT f̄) = 0

λ ≥ 0

(7)

where Vf is the gradient and λ is the Lagrange
multiplier.

Solving the optimization problem exactly can be very
time-consuming, especially if the cost functions Vi( f )
are non-convex. Just evaluating a cost function in a
single point involves a large amount of computations.
If the resource allocation problem is to be solved by
an on-line optimizer, the cost functions for the plants
must be computed off-line and then approximated
by simpler functions. A quadratic approximation
was suggested in [Eker et al., 2000]. Here, we also
present a linear approximation. The solution to the
simplified optimization problem can in both cases be
interpreted as a simple linear rescaling of a set of
nominal sampling periods.



Quadratic Approximation Assume that the
cost functions can be approximated by

Ji(h) = α i + β ih2 (8)
or, equivalently,

Vi( f ) = α i + β i(1/ f )2 (9)
Applying the Kuhn-Tucker conditions (7) yields the
explicit solution

f i =
(β i

Ci

)1/3 Usp∑n
j=1 C2/3

j β 1/3
j

(10)

Notice that the constants α i can be disregarded, i.e.,
it is sufficient to estimate the curvature of the cost
functions.

Linear Approximation Assume that the
cost functions can be approximated by

Ji(h) = α i + γ ih (11)
or, equivalently,

Vi( f ) = α i + γ i/ f (12)
This often seems to be a better approximation than
(9), especially for open-loop stable plants, or any
plants sampled reasonably fast. Applying the Kuhn-
Tucker conditions (7) yields the explicit solution

f i =
( γ i

Ci

)1/2 Usp∑n
j=1(Cjγ j)1/2 (13)

Notice that the constants α i can be disregarded,
i.e., it is sufficient to estimate the slope of the cost
functions.

Interpretation as Simple Rescaling Both
the quadratic and the linear cost function approxi-
mations yield quite simple, explicit formulas for op-
timal task frequency assignment, that could be used
on-line in a feedback scheduler. If a new task ar-
rives, or if the execution time of a controller suddenly
changes, new sampling periods could be calculated
using (10) or (13).
However, not even that amount of calculations is
really needed. In both cases, it can be noted that
each task receives a share of the CPU that is
proportional to a task constant. In the quadratic
case, the proportionality constant is (β i/Ci)1/3, and
in the linear case it is (γ i/Ci)1/2. The ratios between
the optimal sampling periods are thus constant and
do not depend on the available resources or the
number of current tasks in the systems. This implies
that, if the nomial sampling periods have been
chosen wisely, optimal feedback scheduling can be
performed by simple rescaling of the task periods.
This is formulated in the following theorem:

THEOREM 1
If the cost functions of the current tasks in the sys-
tem can be described by either a) quadratic functions
of the sampling period, Eq. (8), or by b) linear func-
tions of the sampling period, Eq. (11), and if nom-
inal sampling frequencies f0 = [ f01 . . . f0n ] are
chosen in proportion to a) (β i/Ci)1/3 or b) (γ i/Ci)1/2,
then simple rescaling of f0 to meet the utilization
constraint is optimal with respect to the total con-
trol performance J.

Proof: Follows from the proportionality argument
above.

Additional Constraints It is possible to add
more constraints to the approximate optimization
problem and still retain a simple solution.

First, one can let the nominal sampling periods f0

be minimal sampling periods. If CTf0 ≤ Usp, then
the nominal periods are used, otherwise they are
rescaled. This constraint prevents the CPU from
being fully loaded when it is not necessary from a
control performance point of view.

Second, one can impose maximum sampling periods
to some tasks. This leads to an iterative solution
(linear programming), where the remaining tasks
are rescaled until all constraints are met.

4. A Feedback-Feedforward
Scheduling Architecture

To implement the feedback scheduling principle
given in the previous section, a feedback-feedforward
scheduling architecture is developed. It is assumed
that the control tasks can switch between different
modes, with possibly very different execution-time
demands. Hybrid controllers that switch between dif-
ferent control algorithms depending on the state of
the process, external signals, etc., are a large class
of controllers that exhibit such behavior. The execu-
tion times of the algorithms in the different modes
are not known exactly, but must be estimated. The
cost functions may also change between the different
modes.

The structure of the feedback scheduler is shown in
Figure 3. A set of control tasks generate jobs that
are fed to a run-time dispatcher. The scheduler re-
ceives feedback information about the actual execu-
tion time, ci, of the jobs. It also receives feedforward
information from control tasks when they switch
mode. In this way, the scheduler can pro-act rather
than react to sudden changes in the workload. Also,
the scheduler may change the parameters in the op-
timization routine according to the current modes of
the controllers. The scheduler attempts to keep the
CPU utilization, U , as close as possible to a utiliza-
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Figure 3 Block diagram of the feedback-feedforward
scheduling structure.

tion set-point, Usp. This is done by manipulating the
sampling periods, h.

4.1 Design Considerations
The feedback scheduler can be implemented in one
of two main ways. The first option is to design
it as an inherent mechanism, alongside the task
dispatcher, in the real-time operating system. The
other way, which we discuss here, is to implement it
as an application task, executing in parallel with the
control tasks. The advantage of this approach is that
it could be implemented on top of existing real-time
operating systems.

A number of other additional design considerations
exist:

• The utilization set-point, Usp, must be chosen.
The choice will depend on the scheduling pol-
icy of the dispatcher and on the sensitivity of
the controllers to missed deadlines. A too low
set-point will give low resource utilization and
poor control performance. A too high set-point,
on the other hand, may cause tasks to suf-
fer from temporary overruns. Notice that the
well-known, guaranteed utilization bounds of
100 % for deadline-driven scheduling and 69 %
for priority-driven scheduling [Liu and Lay-
land, 1973] are not valid in this context, since
the assumptions about known, fixed WCETs
and fixed periods are violated. Also, recent re-
search, e.g. [Palopoli et al., 2000], shows that
operation close to or even above the level U =
1 may give very good control performance in
some cases, despite a large number of missed
deadlines.

• The feedback scheduler will execute as a peri-
odic task in the system, and its period, hFBS,
must be chosen. A short period will give good
control of the utilization but also consume
much of the available resources. A longer pe-
riod will consume less resources, but make the
scheduler respond slower to load disturbances.

• If the controller parameters depend on the
sampling period, the controller must be aware

of its current period and adjust its parameters
accordingly. On-line recalculations are often too
costly, so parameters for a range of sampling
periods must be calculated off-line and stored
in a table.

4.2 Controlling the Utilization

The feedback scheduler controls the processor uti-
lization by assigning task periods that optimize the
overall control performance. However, this requires
that estimates of the execution times of the tasks,
Ĉi, are available. It is assumed that the real-time
operating system can monitor the execution-time of
individual jobs. An estimate Ĉi is obtained from fil-
tered job execution-time measurements,

Ĉi(k) = λ Ĉi(k− 1) + (1− λ)ci (14)

where λ is a forgetting factor. Setting λ close to 1
results in a smooth, but slow estimate. A λ close to 0
gives a faster estimate, but it will also capture more
of the high-frequency execution-time noise. This is a
typical trade-off in control design.

As detailed in Section 3.5, near-optimal task periods
can be calculated by rescaling of a set of nominal
sampling periods. First, the estimated nominal re-
quested utilization is computed by

Û0 =
n∑

i=1

Ĉi

h0i
(15)

Here, h0i can be a function of the mode of the con-
troller, if the different modes should have different
cost functions. Second, new task periods are calcu-
lated by the rescaling

hi = h0i
Usp

Û0
(16)

Additional constraints (minimum and maximum
sampling periods) can also be dealt with, see Sec-
tion 3.5.

4.3 Feedforward Information
The role of the feedforward information from the con-
trollers to the feedback scheduler is three-fold. First,
the scheduler can react to sudden changes in the
workload by executing an extra time in connection
with a mode change. The controller, which typically
executes more frequently than the feedback sched-
uler, is responsible for signaling the scheduler as
soon as a mode switch condition has been detected. If
the mode change is likely to increase the workload,
and if the switching time itself is not critical, the con-
troller could delay the switch one or several sampling
periods while the scheduler recalculates the periods.



Such a non-critical mode switch could for instance
be the result of an operator entering a new setpoint
for the controller.

Second, the scheduler needs to keep track of the
modes of the controllers in order to compute optimal
task periods according to the cost functions. The con-
troller can communicate the new nominal sampling
period at the mode switch, or the scheduler can keep
a table of the nominal sampling periods for all the
controller modes.

Third, the feedforward information allows the sched-
uler to run separate execution-time estimators in the
different modes. The forgetting factor λ can then
be chosen according to the execution-time variability
within each mode. At a mode change, the scheduler
can immediately switch to the current estimate in
the new mode. This further improves the regulation
of the utilization at the mode changes.

5. A Feedback Scheduling Example
As an example of feedback scheduling, we study the
problem of simultaneously stabilizing four inverted
pendulums. The pendulum is a common benchmark
process because of its open-loop instability, which
makes it very sensitive to disturbances, including
timing faults. Different scheduling approaches are
evaluated by co-simulation of the scheduler, the
control tasks, and the pendulums. By simulating
the execution of the tasks, the effects of control
delay and jitter (due to varying execution times
and scheduling) on the control performance are also
captured in the results.

5.1 Plants and Controllers

Each pendulum is described by the system (see
Section 3.1)

dx(t)
dt

=
[

0 1

ω2
0 0

]
x(t) +

[
0

ω2
0

]
u(t) + v(t)

y(t) = [1 0 ] x(t) + e(t)
(17)

where ω0 is the natural frequency of the pendulum,
and the noise variances are given as Ev2 = 1/ω0

and Ee2 = 10−4. The four pendulums have different
lengths, which correspond to different frequencies:
ω0 = [10 13.3 16.6 20 ].
LQG-controllers for the plants are calculated accord-
ing to the design weights

Q1 =
[

1 0

0 0

]
, Q2 = 1 (18)

This corresponds to minimization of the cost criterion

J = lim
T→∞

1
T

E

{∫ T

0
(y2(t) + u2(t))dt

}
(19)
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Figure 4 The cost functions for the four inverted pendu-
lums, (1)–(4). The circles indicate the nominal sampling
periods.

i.e., the controller should attempt to minimize the
sum of the variance of the output signal and the
control signal.

The costs functions for the four pendulums shown
in Figure 4. It is seen that the cost functions can
be reasonably well approximated by linear functions
(see Section 3.5),

Ji(h) = α i + γ ih. (20)

The estimated slopes are

γ = [43 67 95 127 ] . (21)

It can be noted that, the higher the natural frequency
of the pendulum is, the more sensitive the controller
is towards an increase in the sampling period. This
is quite intuitive.

Nominal sampling periods are chosen according to
the solution of the performance optimization problem
and according to the rule of thumb [Åström and
Wittenmark, 1997] that states that the sampling
period should be chosen such that 0.2 < ω0h < 0.6.
The resulting nominal periods are

h0 = [17 14 12 10 ]ms (22)

These periods have been indicated in Figure 4. The
optimal costs associated with these sampling periods
are

J0 = [3.04 3.12 3.19 3.19 ] (23)
These are the expected costs if the controllers could
really execute at their nominal sampling periods,
with zero delay and zero jitter. Implemented in a
computer, the controllers will suffer from various
amounts of sampling jitter, input-output delay, and
output jitter, and the resulting cost will be higher.
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To allow for fast changes between different sampling
periods during run-time, the controller parameters
Φc, Γc, Cc, and Dc are calculated off-line for a range
of different sampling periods for each pendulum
controller and stored in a table.

5.2 The Experiments

Each of the controllers has two different modes:
on and off. When on, the average task execution
time is C = 5.5 ms. The controller code consists of
three parts. First, A-D conversion is requested, i.e.
the output of the plant is sampled. Second, a new
control signal is computed according to the control
algorithm. Third, D-A conversion is requested, i.e.
the new control signal is sent out to the plant.
The total execution time of the task is assumed to
vary according to the probability distribution shown
in Figure 5. When the controller is turned off, the
execution time is zero.

At the start of the experiment, t = 0, Controllers
1 and 2 are on, while Controllers 3 and 4 are off.
At t = 2, Controller 3 switches on, and at t = 4,
Controller 4 also switches on. The four controllers
run in parallel until t = 6.

It is initially assumed that the feedback sched-
uler and the tasks are implemented in a priority-
preemptive real-time system. The feedback sched-
uler is given the highest priority while the con-
trol tasks are assigned rate-monotonic priorities. The
reason for studying the priority-preemptive setting is
clarity—under rate-monotonic scheduling it is easy
to predict the effects of overloads. In this case, Con-
troller 1 will be given the lowest priority and will
thus suffer the most during an overload.

It is assumed that the execution time of the feedback
scheduling task is CFBS = 2 ms. Its period is
chosen as hFBS = 200 ms and the utilization set-
point is chosen as Usp = 0.85 to yield good control
performance and not too many missed deadlines. The
execution-time estimation forgetting factor is chosen
as λ = 0.99. This gives smooth estimates but will

cause the scheduler to react slowly to mode switches
if the feedforward action is not used.

The experiment is repeated for different schedul-
ing approaches. First, open-loop scheduling is at-
tempted. Then, feedback scheduling without the
feedforward mechanism is tried. Then, feedback-
feedforward scheduling is studied. In the end, open-
loop EDF scheduling is also studied.

It is important to specify the behavior of the periodic
tasks in the case of missed deadlines. No matter
when a task finishes, the next release time is set to
be the current release time plus the assigned period
of the task. Thus, a task which has missed many
deadlines may have a release time which is far back
in time compared to the actual starting time of the
task. This kind of implementation of periodic tasks
penalizes especially the low-priority tasks in the case
of overload under fixed-priority dispatching.

To measure the performance of a controller, the
accumulated cost is recorded,

Ji(t) =
∫ t

0
(y2(τ ) + u2(τ ))dτ . (24)

Compared to the criterion in Eq. (19), this quantity
is not rescaled by the time horizon. If the pendulum
falls down, the accumulated cost is set to infinity.
The pendulums are subjected to identical sequences
of process noise and measurement noise in all simu-
lations. The execution times also consist of identical
random sequences in all cases.

During each experiment, the schedule, i.e. the execu-
tion trace, is also recorded, together with an estimate
of the current requested utilization. This quantity is
computed as

Ureq =
n∑

i=1

ci

hi
, (25)

where ci is the execution time of the latest invocation
of task i and hi is the sampling period currently as-
signed to task i. Proper regulation of the utilization
should keep this quantity approximately equal to or
less than Usp.

5.3 The Simulation Environment

The complete set-up, including the scheduler, the
tasks, and the pendulums are simulated using the
Matlab/Simulink-based tool described in [Eker and
Cervin, 1999]. The top level view of the simulation
model is shown in Figure 6. Here, the performance
of the pendulums can be studied. Opening the Com-
puter block, details about the execution may be stud-
ied, see Figure 7.

The Real-Time Kernel block simulates a tick-based,
preemptive kernel with an arbitrary, user-defined
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Figure 7 Opening up the Computer block in Figure 6,
details about the execution may be studied.

dispatch policy. In the experiments, the tick-size is
set to 0.5 ms. The controllers and the feedback sched-
uler are implemented as functions that the kernel ex-
ecutes repeatedly during a simulation. The scheduler
and the controllers communicate information using
message-passing primitives in the simulated kernel.

5.4 Simulation Results
The simulation results in the four different schedul-
ing cases are presented and discussed below.

Open-Loop Scheduling Under open-loop
scheduling, the controllers attempt to execute at
their nominal sampling periods. The accumulated
costs for the pendulums are shown in Figure 8, the
requested processor utilization is shown in Figure 9,
and a close-up of schedule at t = 4 is shown in Fig-
ure 10.

From time t = 0, Tasks 1 and 2 consume (in
average) C/h01 + C/h02 = 0.72 CPU and control
performance is good. The accumulated costs are
expected to increase by about 3 per second according
to the optimal costs in (23), and this holds in practice
as well.

At t = 2, Task 3 starts to execute. Together with
Task 2, the two tasks consume C/h01+C/h02 = 0.85
CPU, which leaves only 0.15 CPU to Task 1, which
is the lowest-priority task. The resulting average
period is h1 = C/0.15 = 37 ms, which is actually
sufficient to stabilize the pendulum, although the
cost increases more rapidly.

At t = 4, Task 4 is turned on. Together with Task 3,
the two tasks request C/h03 + C/h04 = 1.01 CPU,
and this blocks Tasks 1 and 2 completely. The result
is that both pendulums fall down.

Feedback Scheduling Under feedback
scheduling, the tasks starts to execute at their nom-
inal sampling periods when turned on. The feedback
scheduler then adjusts the periods every 200 ms.
The accumulated costs for the pendulums are shown
in Figure 11, the requested processor utilization is
shown in Figure 12, and a close-up of schedule at
t = 4 is shown in Figure 13.

At t = 2, Task 3 is turned on and the requested
utilization raises above the utilization setpoint of
0.85. At t = 2.1, the feedback scheduler adjusts
the periods, and the overload condition is eventually
removed. The same thing is repeated at t = 4 when
Task 4 is turned on. The transient overload causes
the performance of Controller 1 to degrade, but the
situation is soon stabilized. The slow response is due
to the forgetting factor λ = 0.99. A lower value
would correct the overload situation faster, but it
would also increase the variance of the utilization
in stationarity.

Feedback-Feedforward Scheduling Under
feedback-feedforward scheduling, tasks that switch
modes also immediately activate the feedback sched-
uler. The accumulated costs for the pendulums are
shown in Figure 14, the requested processor utiliza-
tion is shown in Figure 15, and a close-up of schedule
at t = 4 is shown in Figure 16.

The results are similar to those under feedback
scheduling, except at the mode changes. Here, the
overloads are avoided thanks to immediate rescaling
of the task periods at t = 2 and t = 4. The
transients are avoided, and the performance of all
the controllers is good throughout.

Open-Loop EDF Scheduling Under open-
loop EDF scheduling, all tasks attempt to execute
at their nominal periods. The accumulated costs for
the pendulums are shown in Figure 17 and a close-
up of schedule at t = 4 is shown in Figure 18. The
requested processor utilization is identical to the one
under open-loop rate-monotonic scheduling, shown
in Figure 9.



Strategy J1 J2 J3 J4
∑

Ji

Ideal (computed
expected value)

18 19 13 6 56

Open-loop scheduling ∞ ∞ 13 5 ∞
Feedback scheduling 32 22 16 7 77

Feedback-feedforward
scheduling

23 22 16 7 68

Open-loop EDF
scheduling

23 25 19 ∞ ∞

Table 1 Final accumulated costs for the four pendulums
under different scheduling strategies. The symbol ∞
indicates that the pendulum has fallen down.

Although the system is overloaded from t = 2, the
performance of Controllers 1–3 is good throughout.
The reason is that ordinary EDF scheduling acts as
a natural period rescaling mechanism in overload
situations. This property is discussed further in
Section 6.

Task 4 experiences some problems, however. When it
is released at t = 4, the system has been overloaded
for two seconds. This means that the absolute dead-
lines of Tasks 1–3 lie somewhere backwards in time,
and they will have priority over Task 4, which ini-
tially has the absolute deadline 4+ h04 = 4.010. The
result is that Task 4 is blocked until around t = 4.35,
before which the pendulum has fallen down.

Summary of Results and Discussion The
final accumulated costs for the four pendulums in
the different cases are summarized in Table 1.

Feedback-feedforward scheduling gives the best
overall control performance, although open-loop
EDF scheduling does a quite good job at schedul-
ing Tasks 1–3. The reason that the control perfor-
mance is slightly better under feedback-feedforward
scheduling than under open-loop EDF scheduling is
that, in the EDF case, the controllers do not adjust
their parameters according to the actual sampling
periods.

Also indicated in the table are the ideal expected ac-
cumulated costs of the controllers. They are trivially
computed from knowing the optimal costs (23) and
the duration that each controller is running.

The true expected cost, in stationarity, of the con-
troller in the real-time system can also, with some
restrictions, be numerically calculated using analysis
techniques from the theory of control systems with
random delays [Nilsson, 1998]. The transient behav-
ior of the controllers at the mode changes is much
harder to analyze, and there we must rely on simu-
lations.

6. EDF as a Feedback Scheduling
Mechanism?

As seen in the simulations in the previous section,
the performance of the controllers under open-loop
EDF scheduling was quite good, despite the system
being permanently overloaded and all deadlines be-
ing missed. This can be explained by the following
theorem, which to the best of the authors’ knowledge
has not been formulated before:

THEOREM 2
Assume a set of n periodic tasks, where each task i
is described by a fixed period, Ti, a fixed execution
time, Ci, a relative deadline, Di, and a release offset,
Oi. The jobs of the tasks are scheduled according
to their absolute deadlines (i.e., EDF scheduling).
If U = ∑n

j=1 Cj/Tj > 1, then the average actual
resulting task period of task i in stationarity, T̄i, will
be given by T̄i = TiU .

Proof: See appendix A.

Theorem 1 and Theorem 2 taken together gives the
following:

COROLLARY 1
An ordinary EDF scheduler can be interpreted, in
stationarity, as an optimal feedback scheduler for
control tasks that have cost functions that can be
described by quadratic or linear functions of the
sampling period.

However, this result rests upon several assumptions,
and there are pitfalls. First, it is assumed that
the controller samples the plant when it starts to
execute, and not when it is released. This way, the
control delay will be bounded, even though the task
latency (the finish time minus the release time)
might approach infinity.

Second, it is assumed that jitter has only negligi-
ble impact on the control performance. This may
not be true during a permanent overload situation
where the tasks start to execute non-preemptively.
While the average period of a task is given by The-
orem 2, the jitter may be unbounded because of the
non-preemptive execution pattern. In the feedback
scheduling example in the previous section this was
not a problem, since all the tasks had execution times
and periods of the same magnitude.

As seen in the example, problems may occur when
tasks switch mode (and this is when feedback
scheduling is really needed). Since tasks are sched-
uled using old deadlines, it will take time for a re-
source redistribution to have effect. One solution
would be to reset the release time of all tasks to the
current time immediately following a mode change.



Another problem with the open-loop EDF approach
is that the period information is not communicated
to the controllers. Thus, they cannot use the correct
control parameters, and this degrades the perfor-
mance to some degree. This could be corrected by
letting the control tasks measure their own actual
periods.

7. Conclusions
A scheduler architecture has been proposed that
combines feedback and feedforward action in order
to optimize control performance while maintaining
high resource utilization. The feedback part relaxes
the requirement on known execution-time bounds
for multitasking control systems. The feedforward
part allows for rapid adaptation to changing load
conditions.

The control performance, or Quality-of-Control
(QoC), is considered as a quality-of-service mea-
sure that should be maximized. Optimal adjustment
strategies for the controller task periods have been
derived for the cases when the cost function is a
quadratic function of the sampling period and when
it is a linear function of the sampling period. The
adjustment strategy uses linear rescaling, making it
computationally efficient, and hence, possible to use
on-line.

The different strategies have been evaluated on
a realistic simulation example. The proposed ap-
proach gives substantially better results than what
is achieved using classical open-loop scheduling
methods. A new result for periodic tasks with EDF
scheduling under overload conditions makes it possi-
ble to, in certain situations, to interpret a plain EDF
dispatcher as a feedback scheduler for control tasks.
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A. Proof of Theorem 2
The release time of job number k of task i is kTi+Oi.
The deadline of job number k of task i is kTi+Oi+Di.
Let ki(t) be the number of finished jobs of task i at
time t. After a while, CPU is never idle, therefore,

Iidle(t) +
∑

i

(ki(t)Ci + ei(t)) = t (26)

where Iidle(t) is the accumulated idle time, ei is how
long the current invocation of task i has executed.
Both Iidle(t) and ei are bounded and 0 ≤ ei ≤ Ci.
Furthermore, due to the overload situation, tasks are
finished in the order of their deadlines. Therefore,

kl(t)Tl + Dl + Ol ≤ (ki(t) + 1)Ti+ Di + Oi (27)

(Otherwise task l would not have finished job num-
ber kl(t) before task i finished job number ki(t) + 1).
Symmetrically,

ki(t)Ti+ Di + Oi ≤ (kl(t) + 1)Tl + Dl + Ol (28)

The two equations above give

kl(t)Tl + Dl + Ol − Ti ≤ ki(t)Ti+ Di + Oi

≤ (kl(t) + 1)Tl + Dl + Ol
(29)

Hence,

kl(t)Tl + Dl − Ti + Ol

kl(t)Tl
≤ ki(t)Ti+ Di + Oi

kl(t)Tl

≤ (kl(t) + 1)Tl + Dl + Ol

kl(t)Tl

(30)

Here, the limit of the left-hand side and the right-
hand side are both equal to one, so,

lim
t→∞

kj (t)Tj

kl(t)Tl
= 1 (31)

Rearranging the terms in Eq. (26) and letting t →∞,



we have

1 = lim
t→∞

1
t

∑
i

ki(t)Ci

= lim
t→∞

1
t

∑
i

ki(t)Ti
Ci

Ti

= lim
t→∞

∑
j kj(t)Tj

t

∑
i

ki(t)Ti∑
j kj (t)Tj

Ci

Ti

= lim
t→∞

ki(t)Ti
∑

j
kj(t)Tj

ki(t)Ti

t

∑
i

1∑
j

kj(t)Tj

ki(t)Ti

Ci

Ti

= lim
t→∞

ki(t)Tin
t

∑
i

1
n

Ci

Ti

= lim
t→∞

ki(t)Ti

t

∑
i

Ci

Ti

(32)

Hence,

T̄i = lim
t→∞

t
ki(t) = Ti

∑
j

Cj

Tj
= TiU (33)
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Figure 8 Accumulated costs under open-loop schedul-
ing.
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Figure 9 Requested utilization under open-loop
scheduling.
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Figure 10 Close-up of schedule at t = 4 under open-
loop scheduling.
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Figure 11 Accumulated costs under feedback schedul-
ing.
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Figure 12 Requested utilization under feedback
scheduling.
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Figure 13 Close-up of schedule at t = 4 under feedback
scheduling.
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Figure 14 Accumulated costs under feedback-
feedforward scheduling.
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Figure 15 Requested utilization under feedback-
feedforward scheduling.
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Figure 16 Close-up of schedule at t = 4 under feedback-
feedforward scheduling.
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Figure 17 Accumulated costs under open-loop EDF
scheduling.
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Figure 18 Close-up of schedule at t = 4 under open-
loop EDF scheduling.


