ICCV 2003 Course on Omnidirectional Vision

lecture of

Tomáś Pajdla

with contributions from
B. Mičušík, M. Menem, H. Bakstein, and D. Martinec

Center for Machine Perception Department of Cybernetics
Faculty of Electrical Engineering Czech Technical University in Prague Karlovo nám. 13, 12135 Prague pajdla@cmp.felk.cvut.cz

Available at: http://cmp.felk.cvut.cz/~pajdla/Pajdla-Omni-Vision-ICCV-2003/

Part 1.

Estimation of multiple-view geometry of
central
dioptric \& catadioptric
omnidirectional cameras

Central Omnidirectional Cameras

omidirectional cameras

Spherical Model

$\mathbf{x},-\mathbf{x}$ represent two different image points

Rays are half-lines
$\mathbf{x},-\mathbf{x}$ represent one image point

From the camera to the sensor plane

Image Formation

Digital image

From the sensor
. plane to the digital \rightarrow image

Why two steps?
Scene coordinates - separated by non-linear projection from - image coordinates
1)

Mirrors \& lenses are axially symmetric

From the sensor
plane to the digital
image

or
\rightarrow

From the camera to the sensor plane

\qquad
2)

Sensor plane \perp optical axis

From the camera to the sensor plane - general form

Spherical image point $\mathbf{q}^{\prime \prime} \in S^{3}=\left\{\mathbf{x} \in \mathbb{R}^{3}:\|\mathbf{x}\|=1\right\}$, represented by the directional vector $\mathbf{p}^{\prime \prime}$ of its projection ray, projects to a sensor plane ploint $\mathbf{u}^{\prime \prime}$ so that

where functions $f, h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are rotationally symmetric, i.e. for every rotation R of the sensor plane plane

$$
\begin{aligned}
h\left(\mathrm{R} \mathbf{u}^{\prime \prime}\right) & =h\left(\mathbf{u}^{\prime \prime}\right) \\
f\left(\mathrm{R} \mathbf{u}^{\prime \prime}\right) & =f\left(\mathbf{u}^{\prime \prime}\right)
\end{aligned}
$$

From the camera to the sensor plane - examples

$$
\begin{aligned}
& \text { Parabolic mirror Hyperbolic mirror Nikon FC-E8 Lens Sigma Lens } \\
& \begin{array}{c}
\mathbf{p}^{\prime \prime}=\binom{1 \mathbf{u}^{\prime \prime}}{\frac{a^{\prime \prime 2}-\left\|\mathbf{u}^{\prime \prime}\right\|^{2}}{2 a^{\prime \prime}}} \quad\binom{h\left(\mathbf{u}^{\prime \prime}\right) \mathbf{u}^{\prime \prime}}{f\left(\mathbf{u}^{\prime \prime}\right)} \quad\binom{1 \mathbf{u}^{\prime \prime}}{\left.\frac{\left\|\mathbf{u}^{\prime \prime}\right\|}{\tan \frac{a^{\prime \prime}\left\|u^{\prime \prime \prime}\right\|}{1+b^{\prime \prime}\left\|u^{\prime \prime}\right\|}}\right)}\binom{1 \mathbf{u}^{\prime \prime}}{\frac{\left\|\mathbf{u}^{\prime \prime}\right\|}{\tan \left(\frac{1}{b^{\prime \prime}} \operatorname{asin} \frac{b^{\prime \prime}\left\|\mathbf{u}^{\prime \prime}\right\|}{a^{\prime \prime}}\right)}} \\
\downarrow
\end{array} \\
& h\left(\mathbf{u}^{\prime \prime}\right)=\frac{b^{\prime \prime 2}\left(F^{\prime \prime 2} \sqrt{a^{\prime \prime 2}+b^{\prime \prime 2}}+F^{\prime \prime} a^{\prime \prime} \sqrt{\left\|\mathbf{u}^{\prime \prime}\right\|^{2}+F^{\prime \prime 2}}\right)}{F^{\prime \prime 2} b^{\prime 2}-a^{\prime \prime 2}\left\|\mathbf{u}^{\prime \prime}\right\|^{2}} \\
& f\left(\mathbf{u}^{\prime \prime}\right)=h\left(\mathbf{u}^{\prime \prime}\right) F^{\prime \prime}-2 \sqrt{a^{\prime \prime 2}+b^{\prime \prime 2}}
\end{aligned}
$$

Perspective projection
Omnidirectional projection

$$
\begin{array}{ll}
\mathbf{p}^{\prime \prime}=\binom{\mathbf{u}^{\prime \prime}}{1} & \mathbf{p}^{\prime \prime}=\binom{h\left(\mathbf{u}^{\prime \prime}\right) \mathbf{u}^{\prime \prime}}{f\left(\mathbf{u}^{\prime \prime}\right)} \\
\mathbf{u}^{\prime \prime} \longrightarrow\binom{1 \mathbf{u}^{\prime \prime}}{1} & \mathbf{u}^{\prime \prime} \longrightarrow\binom{h\left(\mathbf{u}^{\prime \prime}\right) \mathbf{u}^{\prime \prime}}{f\left(\mathbf{u}^{\prime \prime}\right)}
\end{array}
$$

Catadioptric projection (Geyer \& Daniilidis ECCV 2000)

$$
\begin{aligned}
& h\left(\mathbf{u}^{\prime \prime}\right)=\frac{l(l+m)+\sqrt{\left\|\mathbf{u}^{\prime \prime}\right\|^{2}\left(1-l^{2}\right)+(l+m)^{2}}}{\left\|\mathbf{u}^{\prime \prime}\right\|^{2}+(l+m)^{2}} \\
& f\left(\mathbf{u}^{\prime \prime}\right)=h\left(\mathbf{u}^{\prime \prime}\right)(l+m)-l
\end{aligned}
$$

From the sensor plane to the digital image

Complete image formation model

Epipolar geometry

Epipolar constraint holds for every central camera

$$
\dot{\mathbf{p}}^{\top} \mathrm{F} \ddot{\mathbf{p}}=0
$$

Epipolar curves are

1. conics for central catadioptric cameras (Svoboda \& Pajdla IJCV 2002)
2. non-conics for wide-angle dioptric cameras (Micusik \& Pajdla CVPR 2003)

Let $C=\{\dot{\mathbf{u}} \leftrightarrow \ddot{\mathbf{u}}\}$ be a set of corresponding points in two omnidirectional images.
Find image formation parameters $\dot{\mathrm{A}}, \dot{\mathbf{t}}, a, b, \ldots$ and $\ddot{\mathrm{A}}, \ddot{\mathbf{t}}, a, b, \ldots$ so that there exists $\mathrm{F} \in \mathbb{R}^{3 \times 3}$, rank $\mathrm{F}=2$ such that for every correspondence $\dot{\mathbf{u}} \leftrightarrow \ddot{\mathbf{u}} \in C$ holds

$$
\dot{\mathbf{p}}^{\top} \mathrm{F} \ddot{\mathbf{p}}=0
$$

for

$$
\dot{\mathbf{p}}=\binom{h\left(\dot{\mathrm{~A}} \dot{\mathbf{u}}^{\prime}+\dot{\mathbf{t}}\right)\left(\dot{\mathrm{A}} \dot{\mathbf{u}}^{\prime}+\dot{\mathbf{t}}\right)}{f\left(\dot{\mathrm{~A}} \dot{\mathbf{u}}^{\prime}+\dot{\mathbf{t}}\right)} \quad \ddot{\mathbf{p}}=\binom{h\left(\ddot{\mathrm{~A}} \ddot{\mathbf{u}}^{\prime}+\ddot{\mathbf{t}}\right)\left(\ddot{\mathrm{A}} \ddot{\mathbf{u}}^{\prime}+\ddot{\mathbf{t}}\right)}{f\left(\ddot{\mathrm{~A}} \ddot{\mathbf{u}}^{\prime}+\ddot{\mathbf{t}}\right)}
$$

Remember: A, $\mathbf{t}, a, b, \ldots \quad \underset{\text { (in general) }}{\neq} \quad \mathrm{A}^{\prime}, \mathbf{t}^{\prime}, a^{\prime \prime}, b^{\prime \prime}, \ldots$
$\ldots \mathrm{A}^{\prime}, \mathbf{t}^{\prime}, a^{\prime \prime}, b^{\prime \prime}, \ldots$ cannot be often recovered
(Recall that perpspective cameras also cannot be fully calibrated from epipolar geometry)

Step 1.
$\cdots \mathbf{u}^{\prime \prime}=\mathrm{A}^{\prime} \mathbf{u}^{\prime}+\mathbf{t}^{\prime} \rightarrow$

Image Coord. s. Calibration

$$
\mathbf{u}=\mathrm{A}_{C} \mathbf{u}^{\prime}+\mathbf{t}_{C}
$$

$$
\mathrm{A}_{C}=\frac{1}{\rho} \mathrm{R}^{-1} \mathrm{~A}^{\prime}, \mathbf{t}_{C}=\mathbf{t}^{\prime}, \rho>0
$$

Step 2.

$$
\cdots \mathbf{u}^{\prime \prime}=\rho \mathbf{R u} \rightarrow
$$

Calibration of non-linear $f \& h$ by Epipolar geometry estimation

Step 1. - Calibration of image coordinate system

Step 2. - Calibration of non-linear $f \& h$
i.e. ... from an image point to its 3D ray

θ... angle w.r.t. the optical axis
$\|\mathbf{u}\|$. . . image point radius

Camera

Points

Rays

Coordinate system of the para-catadioptric camera. The origin is located in F.

The coordinate system in the calibrated image.

Calibration based on epipolar geometry

$$
\begin{aligned}
\dot{\mathbf{p}}^{\top} \mathrm{F} \ddot{\mathbf{p}} & =0 \\
\left(\begin{array}{lll}
-\dot{u} & \dot{v} & \frac{a^{2}-\dot{r}^{2}}{2 a}
\end{array}\right) \mathrm{F}\left(\begin{array}{c}
-\ddot{u} \\
\ddot{2} \\
\frac{a^{2}-\dot{r}^{2}}{2 a}
\end{array}\right) & =0
\end{aligned}
$$

Calibration based on epipolar geometry

Denote

$$
\mathbf{d}=\left(\begin{array}{lll}
f_{1} & \ldots & f_{9}
\end{array}\right)^{\top}, \quad \mathbf{F}=\left(\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{4} & f_{5} & f_{6} \\
f_{7} & f_{8} & f_{9}
\end{array}\right)
$$

Gather the point coordinates and radii into five design matrices \longrightarrow a quartic (degree 4) equation in parameter a and linear in \mathbf{d}

$$
\left(\mathrm{D}_{1}+a \mathrm{D}_{2}+a^{2} \mathrm{D}_{3}+a^{3} \mathrm{D}_{4}+a^{4} \mathrm{D}_{5}\right) \mathbf{d}=0
$$

$D_{1}, \ldots, D_{5} \in \mathbb{R}^{9 \times 9}$ for 9 correspondences

1. Generalization of (Fitzgibbon CVPR 2001) to omnidirectional cameras
2. Solution for 9 correspondences \rightarrow RANSAC can be used

Finding correspondences

Algorithm for computing 3D rays and an essential matrix F

1. Find the ellipse corresponding to the view field of the camera. Transform the image so that the ellipse becomes a circle. Establish 9 point correspondences $\{\dot{\mathbf{u}} \leftrightarrow \ddot{\mathbf{u}}\}$ between two images.
2. Create matrices $D_{1 \ldots . .5} \in \mathbb{R}^{9 \times 9}$ and solve PEP. Use Matlab: $[H \mathbf{a}]=\operatorname{polyeig}\left(\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, \mathrm{D}_{4}, \mathrm{D}_{5}\right), \mathrm{H}$ is a 9×36 matrix with columns \mathbf{d}, \mathbf{a} is a 36×1 vector with elements a.
3. Choose only real positive finite $a \neq 0$ (other solutions seem never be correct), $1-3$ solutions remain. For every a there is a corresponding essential matrix F .
4. Compute the angular error for all pairs $\{a \leftrightarrow \mathrm{~F}\}$ as a sum of errors for all correspondences. The pair with the minimum error is the solution and a, and the essential matrix F are obtained.

For integrating the algorithm into the RANSAC, 9 points are selected from whole set of automatically detected correspondences and steps 1-4 are repeated till the model captured the highest number of matches is found.

Reconstructed camera positions

Estimated rotation angles

Nikon FC-E8

$$
\theta=\frac{a^{\prime \prime \prime}\left\|\mathbf{x}^{\prime \prime}\right\|}{1+b^{\prime \prime \prime}\left\|\mathbf{x}^{\prime \prime}\right\|^{2}}
$$

Sigma $\quad \theta=\frac{1}{b^{\prime \prime \prime}}$ asin $\frac{b^{\prime \prime \prime}\left\|\mathbf{x}^{\prime \prime}\right\|}{a^{\prime \prime \prime}}$

Dioptric cameras - models

$$
\left.\mathbf{p}^{\prime \prime}=\binom{\mathbf{x}^{\prime \prime}}{z^{\prime \prime}}=\binom{h\left(\mathbf{u}^{\prime \prime}\right) \mathbf{u}^{\prime \prime}}{f\left(\mathbf{u}^{\prime \prime}\right)}=\binom{1 \mathbf{u}^{\prime \prime}}{f\left(\mathbf{u}^{\prime \prime}\right)}=\binom{\mathbf{u}^{\prime \prime}}{\frac{\left\|\mathbf{u}^{\prime \prime}\right\|}{\tan \theta}}=\begin{array}{c}
\binom{\mathbf{u}^{\prime \prime}}{\frac{\left\|\mathbf{u}^{\prime \prime}\right\|}{\tan \frac{d^{\prime}\left\|\mathbf{u}^{\prime \prime}\right\|}{1+b^{\prime \prime}\left\|\mathbf{u}^{\prime \prime}\right\|^{2}}}} \\
\binom{\mathbf{u}^{\prime \prime}}{\frac{\left\|\mathbf{u}^{\prime \prime}\right\|}{\tan \left(\frac{1}{b^{\prime \prime} a \sin \frac{b^{\prime \prime}\left\|u^{\prime \prime}\right\|}{a^{\prime \prime}}}\right)}} \\
\\
\end{array}\right)
$$

Linearization

$$
\dot{\mathbf{p}}^{\top} F \ddot{\mathbf{p}}=0
$$

$$
\binom{\dot{\mathbf{u}}}{\frac{\|\dot{\dot{u}}\|}{\tan \theta}}^{\top} \mathrm{F}\binom{\ddot{\ddot{u}}}{\frac{\|\ddot{\mathrm{u}}\|}{\tan \theta}}=0
$$

does not lead to a simple (Polynomial Eigenvalue) Problem for

$$
f(\|\mathbf{u}\|, a, b, \ldots)=\frac{\|\mathbf{u}\|}{\tan \theta(a, b, \ldots)}
$$

is too much non-linear

$$
\begin{aligned}
& \text { Linearization } \\
& f(\|\mathbf{u}\|, a, b, \ldots)=\frac{\|\mathbf{u}\|}{\tan \theta(a, b, \ldots)}
\end{aligned}
$$

$$
\begin{aligned}
\tilde{f}(\|\mathbf{u}\|, a, b, \ldots) & =f\left(\|\mathbf{u}\|, a_{0}, b_{0}, \ldots\right) \\
& +f_{a}\left(\|\mathbf{u}\|, a_{0}, b_{0}, \ldots\right)\left(a-a_{0}\right)+f_{b}\left(\|\mathbf{u}\|, a_{0}, b_{0}, \ldots\right)\left(b-b_{0}\right)+\cdots \\
\mathbf{p} & =\left[\binom{\mathbf{u}}{f(.)-a_{0} f_{a}(.)-b_{0} f_{b}(.)+a f_{a}(.)+b f_{b}(.)}\right] \\
& =\left[\binom{\mathbf{u}}{w}+a\binom{\mathbf{0}}{s}+b\binom{\mathbf{0}}{t}\right] \\
& =\mathbf{w}+a \mathbf{s}+b \mathbf{t}
\end{aligned}
$$

$$
\dot{\mathbf{p}}^{\top} \mathrm{F} \ddot{\mathbf{p}}=0
$$

$$
(\dot{\mathbf{w}}+a \dot{\mathbf{s}}+b \dot{\mathbf{t}})^{\top} \mathbf{F}(\ddot{\mathbf{w}}+a \ddot{\mathbf{s}}+b \ddot{\mathbf{t}})=0
$$

Denote $\quad \mathrm{F}=\left(\begin{array}{ccc}f_{1} & f_{2} & f_{3} \\ f_{4} & f_{5} & f_{6} \\ f_{7} & f_{8} & f_{9}\end{array}\right)$
Gather the point coordinates and radii into three design matrices \longrightarrow a quadratic equation in parameter a, b and linear in $\mathbf{d}(\mathrm{F}, b)$

$$
\left(\mathrm{D}_{1}+a \mathrm{D}_{2}+a^{2} \mathrm{D}_{3}\right) \mathbf{d}=0
$$

. . Quadratic Eigenvalue Problem (QEP) (Bai et al 2000) (polyeig in Matlab)
See Micusik \& Pajdla CVPR 2003 for details.

[^0]Algorithm for computing 3D rays and an essential matrix is an extension of the algorithm for para-catadioptric camera by the linearization.

See Micusik \& Pajdla SCIA 2003 for details.

3D Metric Reconstruction - II

[^1] Micusik \& Martinec \& Pajdla TR-20 2003.

1. Multiple view geometry of perspective cameras extended to omnidirectional cameras

$$
\mathbf{p}^{\prime \prime}=\binom{\mathbf{u}^{\prime \prime}}{1} \quad \longrightarrow \quad \mathbf{p}^{\prime \prime}=\binom{h\left(\mathbf{u}^{\prime \prime}\right) \mathbf{u}^{\prime \prime}}{f\left(\mathbf{u}^{\prime \prime}\right)}
$$

Perspective projection
Omnidirectional projection
2. Para-catadioptric camera \rightarrow Polynomial Eigenvalue Problem
3. Other cameras \rightarrow linearization \rightarrow Polynomial Eigenvalue Problem
4. Complexity given by the number of parameters of the model rather than by the form of h, f.
5. Non-iterative solution \rightarrow RANSAC (i.e. PEP is iterative but converges very fast).

Part 2.

Non-central cameras

models

\&

stereo geometries

Non-central cameras

Space is projected to images along more general arrangements of lines called non-central cameras

Central camera

a set of rays
incident with one point

Non-central camera

(just) a set of rays

T.Pajdla, H.Bakstein, D.Večerka, 'Office 111' 2003

Advantages: large view field, higher precision, interesting

Flat-bed scanners are non-central cameras

. they can be used to do 3D reconstruction

Reconstruction (by Soft Imaging System GmbH. http://www.soft-imaging.de)

[^2]Real para-catadioptric camera

Some history of non-central cameras

1843 Joseph Puchberger patented the 'slit camera' (similar to pushbroom camera).

1990 - ... Non-central cameras used in mosaicing (Ishiguro et. al 1992, Peleg et. al 1999, Shum et. al 1999, Huang et. al 2000, Nayar \& Karmarkar 2000), reconstruction (Gupta \& Hartley 1997), visualization (McMillan et. al 1995, Gortler et. al 1996, Levoy et. al 1996, Rademacher et. al 1998, Weinshall et. al 2002).

2001 T. Pajdla (Pajdla CVWW 2001) and S. Seitz (Seitz ICCV 2001) discoverd the generalization of epipolar planes to epipolar quadrics.

2001 - ... Non-central camera models developed camera models (Grossberg \& Nayar ICCV 2001, Swaminathan et al ICCV 2001, Pless CVPR 2003, Neumann et al CVPR 2003, Micusik \& Pajdla TR-19 2003), some stereo geometries analyzed (Pajdla IJCV 2001, Seitz \& Kim IJCV 2001, Feldman et al ICCV 2003),

1. Search for correspondences can be done along epipolar lines \longrightarrow constraints
2. Each epipolar line is solved almost (epipoles) independently \longrightarrow easier search

Every point in space that projects on an epipolar line in the left image projects on the corresponding epipolar line in the right image stereo geometry

There are many stereo geometries

Double ruled quadrics can be arranged in space in many different ways
Examples

Pushbroom camera
(Gupta \& Hartley 1997)
(Gupta \& Hartley 1997)

two intersecting lines

Stereo panorama
(Shum et. al 1999, Nayar \& Karmarkar 2000)

circle
the situation can be somewhat complicated in general \longrightarrow current research (epilinear geometries, example)
central camera
all other cameras
all rays intersect at \mathbf{C} \qquad
?

Definition
An oblique camera is a collection of lines such that every point in the projective space is contained in exactly one line.

Observation Rays of an oblique camera do not intersect.

?

Do oblique cameras exist

Oblique cameras exist - an example

A set of lines generated by the linear mapping σ (more)

$$
\begin{array}{ccc}
\text { point } X & \text { line }\left[\begin{array}{cc}
X & \sigma(X)] \\
\operatorname{span}\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right) & \longrightarrow
\end{array}\right. & \operatorname{span}\left(\begin{array}{cc}
x & -y \\
y & x \\
z & w \\
w & -z
\end{array}\right)
\end{array}
$$

Lines are reguli of pairwise non-intersecting rotational hyperboloids
$\mathbf{X}^{T}\left(\begin{array}{llll}s & & & \\ & s & & \\ & & s-1 & \\ & & & s-1\end{array}\right) \mathbf{X}=0, s \in[0,1]$

Remark: OC are called spreads \& wild spreads (not cospreads) exist!

Stereo geometry of oblique cameras

CD on a general plane in 3D seen by an Oblique Camera

Remarks:

Non-intersecting rotational hyperboloids

Circular search curves do not intersect

The best geometry: independent search curves
Oblique cameras can be realized

Real para-catadioptric camera - calibration \& reconstruction

Non-central projection \rightarrow Trajectory start \neq Trajectory end

Ray $=$ point $\mathrm{x}+$ direction vector p

Camera model is a mapping from

$$
\mathbf{u} \rightarrow \operatorname{rays}(\mathbf{x}, \mathbf{p})
$$

Point \mathbf{x}
is on the caustic
(Grossberg \& Nayar ICCV 2001
Swaminathan et al ICCV 2001)
Geometric, Radiometric, Photometric

Point \mathbf{x}
is on the mirror
(Micusik \& Pajdla TR-19 2003)

Geometric

Must be computed
Available

Rays are tangent to a caustic

Rays reflected by the mirror are tangent to a caustic surface

Calibration form a Stereo geometry

Marked polygons

Real para-catadioptric camera

Calibration \& Reconstruction

$>$

3D reconstruction

Tentative correspondences using similarity (Matas et al BMVC 2002) (many outliers)

Inliers satisfying epipolar geometry of central para-catadioptric camera model (Micusik \& Pajdla TR-18 2003)

Non-central vs. Central model
Central model (angles are wrong) Non-central model (angles are correct)
defined by two lines (slits) through which all projection rays must pass (generalization of Pushbroom cameras) (Weinshall et al ECCV 2002, Feldman et al ICCV 2003)

Dual Plücker matrices S_{1}^{*}, S_{2}^{*} are defined by the slits.
Plücker matrices $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$ are defined by the image plane π.

Plücker matrices $\quad \mathbf{Q}_{i} \propto \mathbf{x}_{i} \mathbf{y}_{i}^{\top}-\mathbf{y}_{i} \mathbf{x}_{i}^{\top}$, where $\mathbf{x}_{i}, \mathbf{y}_{i}$ are any 2 points that line on in \mathbf{l}_{i}.
Dual Plücker matrices $\mathrm{S}_{i}^{*} \propto \mathbf{u}_{i} \mathbf{v}_{i}^{\top}-\mathbf{v}_{i} \mathbf{u}_{i}^{\top}$, where $\mathbf{u}_{i}, \mathbf{v}_{i}$ are any 2 distinct planes that intersect in \mathbf{l}_{i}

X-Slits "Fundamental matrix" F

image point \rightarrow Plücker matrix of its ray

$$
\begin{array}{rll}
\dot{u} & \rightarrow & \dot{\mathrm{~L}}(\dot{u})=\left[\dot{l}_{i j}\right] \\
\ddot{u} & \rightarrow & \ddot{\mathrm{~L}}(\ddot{u})=\left[\ddot{l}_{k l}\right]
\end{array}
$$

$\dot{\mathrm{L}}$ intersects $\ddot{\mathrm{L}} \Leftrightarrow \dot{i}_{12} \ddot{l}_{34}+\dot{i}_{34} \ddot{l}_{12}+\dot{i}_{13} \ddot{l}_{42}+\dot{i}_{42} \ddot{l}_{13}+\dot{l}_{14} \ddot{l}_{23}+\dot{i}_{23} \ddot{1}_{14}=0$

$$
v(\ddot{u})^{\top} \mathrm{F} v(\dot{u})=0
$$

using the Veronese mapping $v:\left(u_{1}, u_{2}, u_{3}\right)^{\top} \rightarrow\left(u_{1}^{2}, u_{1} u_{2}, u_{1} u_{3}, u_{2}^{2}, u_{2} u_{3}, u_{3}^{2}\right)^{\top}$

1. Maps points in one image to conics in the other image
2. $\operatorname{rank} \mathrm{F}=4$
3. F exists even if there are no 'epipolar quadrics'

One sampling function \rightarrow ones slit

X-Slits Image

Image volume

X-Slits stereo geometry

Observation: A general pair of X-Slits cameras does not have stereo correspondence surfaces.

Theorem (Feldman \& Pajdla \& Weinshall ICCV 2003):
A pair of X-Slits cameras posseses epipolar quadrics iff
(a) slits intersect in four pairwise disjoint points, or
(b) the cameras share a slit (correspondence curves are "image rows").

b

No correspondence curves . . . search curves are conics (hyperbolas)
More at ICCV 2003: Feldman \& Pajdla \& Weinshall ICCV 2003

Reconstruction from Circular panorama \& Perspective image

Circular panorama

Perspective image

Applications

Circular panorama \& Perspective image

Reconstruction

Application: Image Based Rendering with Non-central cameras

1. Central omnidirectional images aquired along a circular trajectory
2. At every viewpoint \mathbf{v} inside the circle, a non-central image synthesized from acquired rays
3. by volume slicing . . . easy \& fast
4. No 3D reconstruction needed, only pixel manipulation

Application: IBR with Non-central cameras

Original sequence acquired by a central omni-camera along a circle

Application: Visualization with X-Slits

References: Epipolar geometry of central omnidirectional cameras (back)

1. Non-central cameras explain mosaics, panoramas, image volumes, ...
2. Models of Non-central cameras developed (pramatrization on caustics, reflectors, Plücker coordinates)
3. Stereo geometry understood for X-Slits cameras and circular panoramas . . . not known for many others
4. Applications in Reconstruction, Image Based Rendering, . . .
[Svoboda \& Pajdla \& Hlavac ECCV 1998] T. Svoboda, T. Pajdla, and V. Hlaváč. Epipolar geometry for panoramic cameras. ECCV 1998, vol. 1406 of Springer LNCS, pp. 218-232, June 1998.
[Svoboda \& Pajdla IJCV 2002] T. Svoboda and T. Pajdla. Epipolar Geometry for Central Catadioptric Cameras. International Journal of Computer Vision, 49(1):23-37, Kluwer 2002. http://cmp.felk.cvut.cz/ pajdla/Pajdla-Omni-Vision-ICCV-2003/
[Micusik \& Pajdla CVPR 2002] B. Micusik and T. Pajdla. Estimation of Omnidirectional Camera Model from Epipolar Geometry. CVPR 2003. Vol. 1, pp. 485-490. IEEE Press 2003. ftp://cmp.felk.cvut.cz/pub/cmp/articles/micusik/Micusik-CVPR2003.pdf
[Geyer \& Daniilidis ECCV 2000] C. Geyer and K. Daniilidis. A unifying theory for central panoramic systems. ECCV 2000, pp. 445-461, LNCS 1843, Springer 2000.
[Micusik \& Pajdla TR-18 2002] B. Micusik and T. Pajdla. Para-catadioptric camera auto-calibration from epipolar geometry. Research Report CTU-CMP-2003-18, CMP K13133 FEE Czech Technical University in Prague, 2003 http://cmp.felk.cvut.cz/ pajdla/Pajdla-Omni-Vision-ICCV-2003/

References: Omnidirectional camera calibration and epipolar geometry estimation (back)

[Bai et al 2000] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM 2000.
[Kang CVPR 2000] S. B. Kang. Catadioptric self-calibration. CVPR 2000, pp. I: 201-207, IEEE 2000.
[Fitzgibbon CVPR 2001] A. Fitzgibbon. Simultaneous linear estimation of multiple view geometry and lens distortion. CVPR 2001, pp. I: 125-132, IEEE 2001.
[Oliensis PAMI 2002] J. Oliensis. Exact two-image structure from motion. PAMI, 24(12):1618-1633, 2002.
[Micusik \& Pajdla CVPR 2003] B. Mičušík, T. Pajdla. Estimation of omnidirectional camera model from epipolar geometry. CVPR 2003, volume 1, pp. 485-490, IEEE 2003.
[Micusik \& Pajdla SCIA 2003] B. Mičušík, T. Pajdla. Omnidirectional camera model and epipolar geometry estimation by RANSAC with bucketing. SCIA 2003, vol. 1, pp. 83-90, LNCS. Springer-Verlag 2003.
ftp://cmp.felk.cvut.cz/pub/cmp/articles/micusik/Micusik-SCIA2003.pdf

References: Wide-Baseline-Stereo (back)

[Matas et al BMVC 2002] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, volume 1, pp. 384-393, London, UK, BMVA 2002.

References: Multiview reconstruction (back)
[Martinec \& Pajdla ECCV 2002]
D. Martinec and T. Pajdla. Structure from many perspective images with occlusions. ECCV 2002, II, pp. 355-369, Springer-Verlag. 2002
ftp://cmp.felk.cvut.cz/pub/cmp/articles/martinec/MartinecECCV2002.pdf
Micusik \& Martinec \& Pajdla TR-20 2003] 3D Metric Reconstruction from Uncalibrated Omnidirectional Images. Research Report CTU-CMP-2003-20, CMP K13333 FEE Czech Technical University, Prague, Czech Republic, 2003. http://cmp.felk.cvut.cz/ pajdla/Pajdla-Omni-Vision-ICCV-2003/

References: Non-central cameras - scanner (back)

[Richard Schubert] R. Schubert. Using a flatbed scanner as a stereoscopic near-field camera. IEEE Computer Graphics and Applications, pp. 38-45, issue: March/April 2000.

References: Non-central cameras (back)

[Pless CVPR 2003] R. Pless. Using Many Cameras as One. CVPR 2003. pp. II:587-593, IEEE, June 2003
[Neumann et al CVPR 2003] J. Neumann and C. Fermüller and Y. Aloimonos. Polydioptric Camera Design and 3D Motion Estimation. CVPR 2003. pp. II:292-3001, IEEE, June 2003.
[Feldman \& Pajdla \& Weinshall ICCV 2003] D. Feldman and T. Pajdla and D. Weinshall. On the Epipolar Geometry of the Crossed-Slits Projection. ICCV 2003, Nice, October 2003.
[Zomet \& Feldman \& Peleg \& Weinshall PAMI 2003] A. Zomet and D. Feldman and S. Peleg and D. Weinshall. Mosaicing New Views: The Crossed-Slits Projection. IEEE PAMI 25(6):741-754, June 2003
[Pajdla CVWW 2001] T. Pajdla. Epipolar geometry of some non-classical cameras. In B Likar, editor, Proceedings of Computer Vision Winter Workshop, pp. 223-233, Ljubljana, Slovenia Slovenian Pattern Recorgnition Society. February 2001 ftp://cmp.felk.cvut.cz/pub/cmp/articles/pajdla/Pajdla-CVWW2001.ps.gz
[Seitz ICCV 2001] S. Seitz. The space of all stereo images. ICCV 2001, pp. 26-33, July 2001
[Pajdla IJCV 2001] T. Pajdla. Stereo with oblique cameras. IJCV, 47(1-3):161-170, May 2002. http://cmp.felk.cvut.cz/ pajdla/Pajdla-Omni-Vision-ICCV-2003/

References: Ray representation for non-central catadioptric cameras (back)

[Grossberg \& Nayar ICCV 2001] M .D. Grossberg and S. K. Nayar. A General Imaging Model and a Method for Finding its Parameters. ICCV 2001. pp. II:108-115, IEEE, 2001.
[Swaminathan et al ICCV 2001] R. Swaminathan \& M. D. Grossberg \& S. K, Nayar Caustics of Catadioptric Cameras. ICCV 2001. pp. II:2-9, IEEE, 2001.
[Micusik \& Pajdla TR-19 2003] B. Micusik and T. Pajdla. Non-central para-catadioptric camera model. Research Report CTU-CMP-2003-19, CMP K13133 FEE Czech Technical University in Prague, 2003 http://cmp.felk.cvut.cz/ pajdla/Pajdla-Omni-Vision-ICCV-2003/

[^0]: Images \rightarrow Calibration form EG's \rightarrow Projective Factorization (Martinec \& Pajdla ECCV 2002), see details in Micusik \& Martinec \& Pajdla TR-20 2003.

[^1]: Images \rightarrow Calibration form EG's \rightarrow Projective Factorization (Martinec \& Pajdla ECCV 2002), see details in

[^2]: Courtesy of Richard Schubert (http://www.stereoscopicscanning.de/)

