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Image processing in perspective images

• Images obtained through perspective 
projection undergo local mappings:
– Translations
– Similitude
– Affine
– Projective (Collineations). 

• This assumption is implicit in template 
matching and filtering.
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Template deformation in an omni-image is not 
covered by any of these mappings
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Spherical imageOriginal image
calibration
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Definitions

ICCV 2003 COURSE DANIILIDIS 6

How does convolution look like on the sphere?

• What is the “shift” in the convolution?
• It is a 3D-rotation acting as an operator:

North pole
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What about a Fourier transform on the sphere?

Look for a decomposition of functions on the 
sphere into subspaces invariant under SO(3): 
Eigenfunctions of the Laplace equation, the 
spherical harmonics
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Spherical Harmonics
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Spherical Harmonic Transform
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Reconstruction with Spherical Harmonics
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Spherical range images
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Some facts on groups and homogeneous spaces

Lie group is a group with its elements on a 
smooth manifold and the group operation and 
inversion being smooth maps.

Examples: The real line and the circle with the 
addition operation are Lie groups.  Also real 
square invertible matrices GL(n), the rotation 
groups SO(2) and SO(3), and the Lorentz
groups SO(3,1). 
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A group G is acting  on a space X when 
there is a map G x X -> X such 
– that the identity element of the group 

leaves X as is and 
– a composition of two actions has the 

same effect as the action of the 
composition of two group operations. 

For example, the isometry group SE(2) 
acts on the plane R2. The rotation group 
SO(3) can act on the sphere S2.
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The set of all gx in X for any g in G is called the orbit of 
x. If the group possesses an orbit, that means for any 
a,b in X, ga=b for a g in G, then the group action is 
called transitive.  For example, there is always a 
rotation mapping one point on the sphere to another.

If a subgroup H of G fixes a point x in X then H is called 
the isotropy group. A typical example of an isotropy 
group is the subgroup SO(2) of SO(3) acting on the 
north-pole of a sphere. 

A space X with a transitive Lie group action G is called 
homogeneous space. 

If the isotropy group is H, it is denoted with G/H. 
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SO(3) irreducible unitary representation
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Problem 1: Rotation estimation
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Shift Theorem
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Shift Theorem
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Image Invariants
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Convolution Theorem (scanned from 
Driscoll-Healy-94)
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Approach
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To begin, examine two simple cases:

1. Estimate rotation around Z-axis
• beta and either alpha or gamma are known
• beta is zero: solution is not unique.  

Assume only alpha needs estimating.

2. Estimate rotation around Y-axis
• alpha and gamma are known

Parameter Estimation
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Estimating Rotation Around Z-axis

Without loss of generality, we 
assume that only alpha needs to 
be estimated. 

A rotation alpha is equivalent to…

• A translation along Phi in
the Theta-Phi plane.

• A translation along Phi in
the Theta-Phi plane.

• A rotation around the origin
in the original catadioptric
image plane.
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Estimating Rotation Around Z-axis

Re-examining the shift property
we see that the angle alpha 
appears only once.

Z

X

Y

We can generate an over-constrained system 
using multiple coefficients with m>0
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Estimating Rotation Around Y-axis

Without loss of generality, we 
assume that only beta is nonzero 
(apply known alpha and gamma 
rotations to images prior to 
estimation).  

Rewriting the shift property we get
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Estimating All Parameters
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Estimation is done in two steps
1.Generate estimates for beta and 

gamma.

2.Use beta and gamma as input to 
solving for alpha, which we 
already know how to calculate.
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Estimating beta and gamma
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The first rotation of alpha is not 
reflected in the coefficients f_l0

Using only the equations for the 
coefficients f_l0, we get an over-
constrained system for the two 
unknowns beta and gamma
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Estimation from very few coefficients!
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Resistant to clutter

6%, 10%, and 13% clutter
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Problem 2: Template matching
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Harmonic analysis
• Global shape descriptors (moment, Fourier-

descriptors) of the 60’s-80’s have been 
abandoned because of occlusions. 

• Omnidirectional images give you large closed 
areas persistent in images (many appearance 
based techniques)

• Classical Fourier can not be applied anyway due 
to the new deformations.

• Let us re-think Fourier-transforms!
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