Omnidirectional image processing

Kostas Daniilidis
GRASP Laboratory
University of Pennsylvania

With contributions of Ameesh Makadia, Thomas Buelow,
Daniel Rudoy, and Lorenzo Sorgi

Template deformation in an omni-image is not covered by any of these mappings

Image processing in perspective images

- Images obtained through perspective projection undergo local mappings:
- Translations
- Similitude
- Affine
- Projective (Collineations).
- This assumption is implicit in template matching and filtering.

The rotation of a function $f(\eta)$ by an element $g \in S O(3)$ is defined with the operator \wedge_{g} as $\wedge_{g} f(\eta)=f\left(g^{-1} \eta\right)$

The integration of a function $f(\eta) \in L^{2}\left(S^{2}\right)$ is defined as

$$
\int_{\eta \in S^{2}} f(\eta) d \eta=\int_{0}^{2 \pi} \int_{0}^{\pi} f(\theta, \phi) \sin (\theta) d \theta d \phi
$$

What about a Fourier transform on the sphere?

Look for a decomposition of functions on the sphere into subspaces invariant under SO(3): Eigenfunctions of the Laplace equation, the spherical harmonics

$$
\begin{gathered}
Y_{m}^{l}(\theta, \phi)=(-1)^{m} \sqrt{\frac{(2 l+1)(l-m)!}{4 \pi(l+m)!}} P_{m}^{l}(\cos \theta) e^{i m \phi} \\
P_{m}^{l}(x)=\frac{\left(1-x^{2}\right)^{\frac{m}{2}}}{2^{l} l!} \frac{d^{l+m}}{d x^{l+m}}\left(x^{2}-1\right)^{l}
\end{gathered}
$$

Spherical Harmonic Transform

$$
\begin{aligned}
f(\theta, \phi) & =\sum_{l \in \mathbb{N}} \sum_{|m| \leq l} \widehat{f}_{l m} Y_{m}^{l}(\theta, \phi) \\
\widehat{f}_{l m} & =\int_{\eta \in S^{2}} f(\eta) \overline{Y_{m}^{l}}(\eta) d \eta
\end{aligned}
$$

The $(2 l+1) \widehat{f}_{l m}$ are the spherical harmonic coefficients of degree l.

Spherical range images

A group G is acting on a space X when
 there is a map $G \times X->X$ such

-that the identity element of the group leaves X as is and
-a composition of two actions has the same effect as the action of the composition of two group operations.
For example, the isometry group $\mathrm{SE}(2)$ acts on the plane R^{2}. The rotation group SO(3) can act on the sphere S^{2}.

Let us think of images as homogeneous spaces G / H with the group G acting on them (\mathbf{G} is a Lie group and for any $x, y \in G / H$ exists a g such that $y=g x)$:

- Planar pictures are defined on $S E(2) / S O(2)$ with rigid motions acting on them.
- Spherical images are defined on $S O(3) / S O(2)$ with 3Drotations acting on them.

The set of all gx in X for any g in G is called the orbit of x. If the group possesses an orbit, that means for any a, b in $X, g a=b$ for $a g$ in G, then the group action is called transitive. For example, there is always a rotation mapping one point on the sphere to another.

If a subgroup H of G fixes a point x in X then H is called the isotropy group. A typical example of an isotropy group is the subgroup $\mathrm{SO}(2)$ of $\mathrm{SO}(3)$ acting on the north-pole of a sphere.

A space X with a transitive Lie group action G is called homogeneous space.
If the isotropy group is H, it is denoted with G / H.

A representation of a group G is a homomorphism T $G \rightarrow G L(V)$.

A representation is unitary if for all $g \in G$

$$
(T(g) v, T(g) w)=(v, w) \quad \forall v, w \in V .
$$

A representation T is reducible if there is a proper subspace W of V which is invariant under T. Otherwise, T is irreducible.

Let T be representation of group \mathbf{G} in vector space V Then T is irreducible if and only if the only $A: V \rightarrow V^{\prime}$ satisfying $T(g) A=A T(g), \forall g \in G$ are $A=\lambda I$.

If the acting group is unimodular and locally compact, the group has an irreducible representation $U(g, p)$.

The Fourier transform of a function on the homogeneous space G / H exists:

$$
F(p)=\int_{\eta \in G / H} f(\eta) U\left(g^{-1}, \operatorname{proj}(p)\right) d \eta
$$

In the case of the sphere $S^{2}=S O(3) / S O(1)$

$$
\hat{f}_{m}^{l}=\int_{\eta \in G / H} f(\eta) U_{m 0}^{l}(\eta) d \eta
$$

where $U_{m n}^{l}$ the irreducible unitary representation of $S O(3)$.

Framework for image processing in various domains

- Identify the domain of definition of the signal as a homogeneous space and the group acting on it.
- Check whether an irreducible unitary representation exists for the acting group. Compute the generalized Fourier transform of the image.
- Compute the transformation (group action) from a generalized shift theorem. Compute invariants from the magnitude of the Fourier coefficients.

SO(3) irreducible unitary representation

$$
U_{m n}^{l}(g(\gamma, \beta, \alpha))=e^{-i m \gamma} P_{m n}^{l}(\cos (\beta)) e^{-i n \alpha}
$$

Problem 1: Rotation estimation

```
Sphere SO(3)/SO(2)
```

Problem: Compute the rotation of a spherical image directly from its spherical harmonic coefficients (no correspondence).

Current methods: Iterative closest point gradient decent minimization or hierarchical flow algorithms.

Shift Theorem

$$
\wedge_{g} Y_{m}^{l}(\eta)=\sum_{|n| \leq l} U_{m n}^{l}(g) Y_{n}^{l}(\eta)
$$

$$
\begin{aligned}
& U_{m n}^{l}(g(\gamma, \beta, \alpha))=e^{-i m \gamma} P_{m n}^{l}(\cos (\beta)) e^{-i n \alpha} \\
& =\left[\begin{array}{cccc}
U_{-l,-l}^{l} & U_{-l,-l+1}^{l} & \cdots & U_{-l, l}^{l} \\
U_{-l+1,-l}^{l} & & \cdots & \vdots \\
\vdots \\
U_{l,-l}^{l} & U_{l,-l+1}^{l} & \cdots & U_{l, l}^{l}
\end{array}\right] Y^{l}=\left[\begin{array}{c}
Y_{-l}^{l} \\
\vdots \\
Y_{l}^{l}
\end{array}\right] \hat{f}^{l}=\left[\begin{array}{c}
\hat{f_{l,-l}} \\
\vdots \\
\hat{f}_{l, l}
\end{array}\right]
\end{aligned}
$$

$$
\wedge_{g} Y^{l}=U^{l}(g) Y_{\text {UAN니오 }}^{l} \wedge_{g} \widehat{f}_{l}=U^{l}(g)_{\text {_. }}^{T} \widehat{f}_{l}
$$

Image Invariants

$$
\wedge_{g} \widehat{f}_{l}=U^{l}(g)^{T} \widehat{f}_{l}
$$

Since U^{l} is a unitary matrix, its rows form a unitary basis. The rows (and columns) have length 1 and their Hermitian inner product is zero. Thus, a transformation by a unitary matrix does not affect a vector's length.
$K_{l}(f(\eta))=\sum_{|m| \leq l} \overline{\hat{f}_{l m}} \widehat{f}_{l m}$

Approach

Problem: Determine if two spherical images A and B are related by a rotation $g(\alpha, \beta, \gamma)$, and if so, what are α, β, and γ.

We can use our invariant function $K_{l}(f(\eta))$ to determine if two images are identical up to a rotation.

We extract Euler angles of rotation from the Shift Theorem.

U^{l} gives $U^{l}\left(g_{1} g_{2}\right)=U^{l}\left(g_{1}\right) U^{l}\left(g_{2}\right)$

$$
g(\alpha, \beta, \gamma)=g_{1}\left(\alpha+\frac{\pi}{2}, \frac{\pi}{2}, 0\right) g_{2}\left(\beta+\pi, \frac{\pi}{2}, \gamma+\frac{\pi}{2}\right)
$$

$\wedge_{g_{2} g_{1}} \hat{f}_{l}=\left(U^{l}\left(g_{1}\right)\right)^{T}\left(U^{l}\left(g_{2}\right)\right)^{T} \hat{f}_{l}$
$\tilde{f}_{l m}^{g}=e^{-i m\left(\gamma+\frac{\pi}{2}\right)} \sum_{|p| \leq l} e^{-i p\left(\alpha+\frac{\pi}{2}\right)} \widehat{f}_{l p} \sum_{|k| \leq l} P_{p k}^{l}(0) P_{k m}^{l}(0) e^{-i k(\beta+\pi)}$

ICCV 2003 COURSE

Parameter Estimation

To begin, examine two simple cases:

1. Estimate rotation around Z -axis

- beta and either alpha or gamma are known
- beta is zero: solution is not unique.

Assume only alpha needs estimating.
2. Estimate rotation around Y -axis

- alpha and gamma are known

Estimating Rotation Around Z-axis
Without loss of generality, we assume that only alpha needs to be estimated.

A rotation alpha is equivalent to...

- A translation along Phi in the Theta-Phi plane.
- A rotation around the origin in the original catadioptric image plane.

Re-examining the shift property we see that the angle alpha appears only once.

$\hat{f}_{l m}^{g}=e^{-i m\left(\gamma+\frac{\pi}{2}\right)} \sum_{|p| \leq l} e^{-i p\left(\alpha+\frac{\pi}{2}\right)} \widehat{f}_{l p} \sum_{|k| \leq l} P_{p k}^{l}(0) P_{k m}^{l}(0) e^{-i k(\beta+\pi)}$
We can generate an over-constrained system using multiple coefficients with $\mathrm{m}>0$

Without loss of generality, we assume that only beta is nonzero (apply known alpha and gamma rotations to images prior to estimation).

Rewriting the shift property we get

$$
\begin{aligned}
\Lambda_{g} \hat{f}_{l m} & =\sum_{|p| \leq l} e^{-i p \beta} C_{m p}^{l} \\
C_{m p}^{l} & =e^{-i m\left(\frac{\pi}{2}\right)}\left(\sum_{| | \leq l} e^{-i k\left(\frac{\pi}{2}\right)} \hat{f}_{l k} P_{k p}^{l}(0) P_{p m}^{l}(0) e^{-i k \pi}\right)
\end{aligned}
$$

Estimating All Parameters

Estimation is done in two steps

1. Generate estimates for beta and gamma.
2. Use beta and gamma as input to solving for alpha, which we already know how to calculate.

Estimating beta and gamma

The first rotation of alpha is not reflected in the coefficients f_IO

Using only the equations for the
 coefficients f_I0, we get an overconstrained system for the two unknowns beta and gamma

Estimation from very few coefficients!

ICCV 2003 COURSE

Angle	$l \leq 5$	$l \leq 8$	$l \leq 16$	Flow
$\alpha=-2.4^{\circ}$	-2.2°	-2.3°	-2.2°	-2.7°
$\beta=9.3^{\circ}$	7.2°	7.6°	7.3°	8.1°
$\gamma=2.2^{\circ}$	2.5°	2.4°	2.7°	1.9°

Resistant to clutter

Angle	$l \leq 8$	$l \leq 16$	Flow	$l \leq 8$	$l \leq 16$	Flow	$l \leq 8$	$l \leq 16$	Flow
$\alpha=15^{\circ}$	14.96°	14.96°	14.88°	14.57°	14.83°	14.76°	14.19°	14.19°	14.45°
$\beta=13.8^{\circ}$	13.87°	14.03°	13.88	13.87°	13.81°	13.90	13.96°	13.96°	13.98
$\gamma=12.8^{\circ}$	13.01°	12.89°	12.94°	13.11°	13.11°	13.41°	13.74°	13.68	13.50

ICCV 2003 COURSE
$6 \%, 980$ \% $\%$, ald and 13% clutter

Given $f(\eta), h(\eta) \in L^{2}\left(S^{2}\right)$, the correlation between $f(\eta)$ and $h(\eta)$ is defined as

$$
g(\alpha, \beta, \gamma)=\int_{S^{2}} f(\eta) \Lambda(R) h(\eta) d \eta
$$

Correlation can be obtained from the spherical harmonics \hat{f}_{m}^{l} and \hat{h}_{m}^{l} via the 3-D Inverse Discrete Fourier Transform as

$$
g(\alpha, \beta, \gamma)=I D F T\left\{\sum_{l} \hat{f}_{m}^{l} \overline{\hat{h}_{k}^{l}} U_{m, h}^{l}(\pi / 2) U_{h, k}^{l}(\pi / 2)\right\}
$$

Harmonic analysis

- Global shape descriptors (moment, Fourierdescriptors) of the 60's-80's have been abandoned because of occlusions.
- Omnidirectional images give you large closed areas persistent in images (many appearance based techniques)
- Classical Fourier can not be applied anyway due to the new deformations.
- Let us re-think Fourier-transforms!

References - Papers

J.R. Driscoll and D.M. Healy. Computing fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics, 15:202-250, 1994.
J.-P. Gaulthier, G. Bornard, and M. Silberman. Motion and pattern analysis: harmonic analysis on motion groups and their homogeneous spaces. IEEE Trans. Systems, Man, and Cybernetics, 21:159-172, 1991.

Th. Bulow. Spherical diffusion for 3d surface smoothing. In Proc. 1st International Symposium on 3D Data Processing, Visualization, and Transmission, Padova, Italy, 2002.
A. Makadia, K. Daniilidis, Direct 3D rotation estimation via a generalized shift theorem, Computer Vision Pattern Recognition, 2003
G.S. Chirikjian and A.B. Kyatkin. Engineering Applications of Noncommutative Harmonic Analysis: WIth Emphasis on Rotation and Motion Groups. CRC Press, 2000.
A. Deitmar. A first course in harmonic analysis. Springer Verlag, 2001.
W. Miller, Topics in Harmonic Analysis, manuscript in the web math.umn.edu, 2002
W. Rossman, Introduction to Lie Groups, Oxford University Press, 2002.

