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Fig. 1. State-of-the-art techniques for SLAM optimize robot trajectory via iterative methods (e.g. Gauss-Newton), starting from the odometric
estimate (red). This strategy is doomed to fail when odometry is inaccurate. In this paper we show that if we solve for rotations first, and
then use this estimate as initialization for iterative methods, we have an astonishing boost in robustness and speed: the initialization (blue)

is visually correct and very close to the optimal solution (green). For 3D rotation estimation, we leverage results from related work;
for instance, the initialization in the figure relies on the chordal relaxation from Martinec and Pajdla [1].

Abstract— Pose graph optimization is the non-convex op-
timization problem underlying pose-based Simultaneous Lo-
calization and Mapping (SLAM). If robot orientations were
known, pose graph optimization would be a linear least-
squares problem, whose solution can be computed efficiently
and reliably. Since rotations are the actual reason why SLAM
is a difficult problem, in this work we survey techniques for
3D rotation estimation. Rotation estimation has a rich history
in three scientific communities: robotics, computer vision, and
control theory. We review relevant contributions across these
communities, assess their practical use in the SLAM domain,
and benchmark their performance on representative SLAM
problems (Fig. 1). We show that the use of rotation estimation
to bootstrap iterative pose graph solvers entails significant boost
in convergence speed and robustness.

I. INTRODUCTION

Pose graph optimization is a state-of-the-art formulation
for SLAM: robot poses are estimated by solving the non-
convex optimization resulting from maximum a-posteriori
estimation. Pose graph solvers rely on nonlinear optimization
techniques (e.g., Gauss-Newton method), which iteratively
refine the trajectory estimate, starting from an initial guess.
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A good initial guess has two merits. First, initializing the
estimate near the optimal solution enables fast convergence.
Second, a good initialization wards off the risk of conver-
gence to local minima, which imply large estimation errors.

Related work in robotics tackles local convergence by
resorting to iterative techniques with larger basin of con-
vergence (e.g., Levenberg-Marquardt, stochastic gradient de-
scent [2], [3]), or exploiting robust kernels [4]. These tech-
niques are usually slow as the improved convergence results
from more conservative updates. For this reason, recent
interest from the robotics community has been devoted to
the computation of a good initial guess (the initialization
problem), including contributions on 2D SLAM [5], [6], [7],
visual-inertial navigation [8], [9], [10], and calibration [11].

In this work we address the initialization problem for 3D
pose graph optimization. Standard approaches for batch pose
graph optimization commonly use robot odometry as initial
guess. As shown in this work, in most cases, this is not a
convenient choice. As specified in the title, the initialization
techniques we discuss in this paper leverage results on
rotation estimation. The interest towards rotation estimation
stems from the fact that, if robot rotations were known, pose
graph optimization would be a linear least-squares problem,
whose global minimizer can be computed efficiently. Recent
work [5], [6], [7] showed that estimating rotations first,
and then using the rotation estimate to initialize 2D pose
graph optimization entails consistent advantages in terms of
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computation and robustness. In this work we show that this
initialization is beneficial in the 3D case as well (Fig. 1).
While in 2D it is possible to devise exact closed-form
solutions for rotation estimation [7], no closed-form solution
is known in the 3D case (beside the simple case of pose
graphs with a single cycle). However, related work offers
many approaches that work well in practice.

Our survey spans contributions to 3D rotation estimation
across three research communities. First, rotation estimation
(a.k.a. rotation averaging) has been studied in computer vi-
sion, where accurate camera orientation estimation is critical
to solve Bundle Adjustment in Structure from Motion [12],
[1], [13], [14], [15], [16], [17]. Second, rotation estimation
has been investigated in the control theory community, where
it finds application to vehicle coordination [18], sensor
network localization and camera network calibration [19],
[20], attitude synchronization [21], [22], and distributed
consensus on manifold [23], [24]. Third, techniques to solve
for rotations have been studied in robotics [18], [7], [25].

Since our goal is to initialize 3D SLAM, we omit pla-
nar approaches. Moreover, we exclude techniques based on
discretization [26], since these techniques usually have poor
scalability [27]. Finally, we purposely avoid the problem of
outlier rejection, and we assume that gross outliers have been
removed using suitable techniques, e.g., [28], [29].

The paper is organized as follows. Section II introduces
pose graph optimization and discusses the importance of
rotation estimation. Section III surveys five technique for
rotation estimation. In particular, Section III-A reviews the
closed-form solution for graphs with a single cycle, proposed
by Sharp et al. in [15], and further studied by Dubbel-
man et al. [25], and Peters et al. [30]. Section III-B reviews
the chordal relaxation of Martinec and Pajdla [1]. Section III-
C reviews the quaternion relaxation of Govindu [12], and the
recent analysis of Hartley et al. [16]. Section III-D reviews
the semidefinite programming relaxation of Fredriksson and
Olsson [17]. Section III-E discusses the gradient descent
technique of Tron and Vidal [31]. Section IV provides
numerical comparisons and elucidates on the use of these
techniques in SLAM. Section V concludes the paper.

Beyond the survey contribution, we propose three minor
contributions. First, we extend the technique of Section III-
B to incorporate vertical direction measurements; this is im-
portant when rotation estimation can be informed by gravity
measurements from an IMU. Second, we show how to exploit
rotation estimation in SLAM and we compare the surveyed
techniques in simulated and real robotics benchmarking
problems. Third, we release an open source implementation
of the best performing techniques as part of the gtsam
suite [32], which is a widely used library for SLAM.

Note that computer vision literature offers an excellent
survey on rotation averaging [16]. In this work, we comple-
ment [16] by covering other techniques (3 of the 5 techniques
reviewed in this paper are not discussed in [16]) and by
presenting numerical evaluation on robotic problems.

II. WHY IS ROTATION ESTIMATION IMPORTANT?
In this section we remark why rotation estimation is central

to pose graph optimization (Section II-A) and we introduce
standard distance metrics in SO(3) (Section II-B).

A. Pose Graph Optimization and Rotation Initialization
Pose graph optimization estimates n robot poses from m

relative pose measurements. Both robot poses and relative
measurements are quantities in SE(3)

.
= {(R, t) : R ∈

SO(3), t ∈ R3}. SO(3) is the set of 3D rotations which
is formally defined as SO(3)

.
= {R ∈ R3×3 : RTR =

I3,det(R) = 1}, where I3 is the 3 × 3 identity matrix and
det(·) is the matrix determinant.

The problem can be easily visualized as a directed graph,
in which nodes correspond to robot poses (to be estimated)
while edges E correspond to relative measurements. An edge
(i, j) ∈ E encodes a relative pose measurement between pose
i and j. Each relative pose measurement includes a relative
rotation Rij and a relative translation tij :

tij = RT
i (tj − ti) + tεij , Rij = RT

i RjR
ε
ij , (1)

where the pair (Ri, ti) defines the pose of node i (resp. j),
and tεij ∈ R3, Rε

ij ∈ SO(3) denote measurement noise.
Pose graph optimization estimates robot positions {ti} and

rotations {Ri} by solving the optimization problem

min
{Ri}∈SO(3)

{ti}∈R3

∑
(i,j)∈E

dR3

(
tij ,R

T
i (tj−ti)

)2
+dSO(3)

(
Rij ,R

T
i Rj

)2
(2)

where dR3(ta, tb) denotes the Euclidean distance between
two vectors ta, tb ∈ R3, while dSO(3)(Ra,Rb) denotes a
distance metric between two rotations in SO(3). Roughly
speaking, Problem (2) looks for the estimates (Ri, ti), i =
1, . . . , n that minimize the mismatch with respect to the
measurements (tij ,Rij), ∀(i, j) ∈ E , according to the
distance metrics dR3(·, ·) and dSO(3)(·, ·).

The Euclidean distance dR3(·, ·) is simply:

dR3

(
tij ,R

T
i (tj−ti)

) .
=
∥∥RT

i (tj−ti)−tij
∥∥=‖tj−ti−Ritij‖ ,

(3)
while different choices for the distance dSO(3)(·, ·) are dis-
cussed in Section II-B.1

The following observations motivate our interest in rota-
tion estimation. First, if rotations were known, say Ri = R̂i,
∀i = 1 . . . , n, Problem (2) would simplify to:

min
{ti}∈R3

∑
(i,j)∈E

∥∥∥tj − ti − R̂itij

∥∥∥2 (4)

which is a linear least squares problem, hence easy to solve.
Second, translations appear linearly in the residual errors
in (3), and this implies that the initial guess for translations
is irrelevant. Third, in common SLAM problems, the first
term in (2) has a minor influence on the rotation estimate,
and an accurate rotation initialization can be computed by
minimizing only the second term:

P : min
{Ri}∈SO(3)

∑
(i,j)∈E

dSO(3)

(
Rij ,R

T
i Rj

)2
(5)

Therefore, in this paper we propose to solve (5) to compute
a good rotation estimate, and then use this rotation estimate
to bootstrap (standard) iterative solvers that minimize (2).

1Note that we consider isotropic distances. One may use anisotropic
distances (i.e., nondiagonal covariance matrices) in the nonlinear refinement
that usually follows the initialization techniques discussed in this paper.
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The same insight was exploited in [6] to devise fast solutions
to 2D pose graph optimization.

Towards this goal, Section III reviews existing techniques
to solve or approximate the solution of Problem P in (5),
for different choices of the distance metric.

B. Distance Metrics in SO(3)

We consider three different distance metrics between two
rotations Ra and Rb in SO(3):
• Angular distance: it is the rotation angle corresponding

to the relative rotation RT
aRb. More formally:

dang(Ra,Rb) =
∥∥Log (RT

aRb

)∥∥ =
∥∥Log (RT

bRa

)∥∥
where Log (R) denotes the logarithm map (at the
identity) for SO(3). In this paper, Log (R) = θu, where
u is a unit vector corresponding to the rotation axis of
R, and θ ∈ [0, π] is the corresponding rotation angle2.

• Chordal distance: it is the Frobenius norm of Ra−Rb

dchord(Ra,Rb) = ‖Ra −Rb‖F =
∥∥RT

aRb − I3
∥∥
F

• Quaternion distance: If we call qa (resp. qb) the unit
quaternion representation of the rotation matrix Ra

(resp. Rb), the quaternion distance is:

dquat(Ra,Rb) = min (‖qa − qb‖ , ‖qa + qb‖) (6)

The min operator in the definition (6) is used to
solve the sign ambiguity, since the quaternions qa and
−qa represent the same rotation (for this reason, unit
quaternions constitute a double cover of SO(3)).

If we call θ the rotation angle of RT
aRb, the following

equalities hold [16]:

dang(Ra,Rb) = θ (7)

dchord(Ra,Rb) = 2
√
2 sin (θ/2) ≈

√
2 θ (8)

dquat(Ra,Rb) = 2 sin (θ/4) ≈ θ/2 (9)

where after the sign ≈ we report the first-order approxima-
tions. The equalities ensure that the metrics are essentially
the same (up to a constant factor) for small rotation errors.

III. TECHNIQUES FOR 3D ROTATION ESTIMATION

Sections III-A to III-E describe 5 different techniques to
solve or approximate the solution of Problem P in (5), for
some choice of the distance metric dSO(3)(·, ·).

A. Single Loop Solution [15], [25], [30]

This technique returns the optimal solution of Problem P
with the angular distance and for the specific case of graphs
with a single loop (Fig. 2). While this technique first ap-
peared in computer vision [15], it is known in robotics as tra-
jectory bending [33], [25]. It also appeared recently in [30].
Let us define the ordered set L = {(1, 2), (2, 3), . . . , (n −
1, n), (n, 1)}, which collects the edges along the loop. Using
this definition Problem P becomes:

min
{Ri}∈SO(3)

∑
(i,j)∈L

∥∥Log (RT
ijR

T
i Rj

)∥∥2 (10)

Fig. 2. Single-loop pose graph with odometric edges (solid line) and a
single loop closure (dotted line).

The intuition to solve (10) is that relative rotations should
compose to the identity along the loop. Since the measure-
ments are noisy, the measured rotations do not compose
to the identity and the rotation estimator has to optimally
distribute this rotation “excess” among the edges.

To exploit this insight, we re-parametrize (10) in terms of
relative, rather than absolute rotations. Let us define:

R̃ij
.
= RT

i Rj , (i, j) ∈ L (11)

By construction, the rotations R̃ij in (11), has to compose
to the identity along the loop. Therefore, we write (10) as:

min
{R̃ij}∈SO(3)

∑
(i,j)∈L

∥∥∥Log (RT
ijR̃ij

)∥∥∥2
subject to

∏
(i,j)∈L R̃ij = I3, (12)

where the product
∏

(i,j)∈L is ordered according to the set L
(3D rotations do not commute). Eq. (12) has a very intuitive
explanation: we look for rotations R̃ij that are close to the
measurements Rij (in the sense of the angular distance), and
that compose to the identity along the loop.

Our second change of variable is:

Ẽij
.
= RT

ijR̃ij , (i, j) ∈ L, (13)

that, applied to (12), gives:

min
{Ẽij}∈SO(3)

∑
(i,j)∈L

∥∥∥Log (Ẽij

)∥∥∥2
subject to

∏
(i,j)∈L RijẼij = I. (14)

Also here the interpretation is simple: we look for small
corrections Ẽij that can help to satisfy the loop constraint
in (14). Rearranging the rotations, the constraint in (14) can
be written as (see [15] for a complete derivation):∏

(i,j)∈L

SjẼijS
T
j = ST

L, (15)

where Sj
.
=
∏

(k−1,k)∈L,k≤jRij , and SL
.
=
∏

(i,j)∈L R̃ij ;
SL represents the total rotation “excess” we need to com-
pensate, while each term in the product of (15) represents
the error on each edge, all in the reference frame of node 1.

This justifies our last change of variables:

T̃ij
.
= SjẼijS

T
j , (i, j) ∈ L. (16)

Substituting (16) and (15) in (14), and recalling that
‖Log(ST

j T̃ijSj)‖= ‖ST
j Log(T̃ij)‖= ‖Log(T̃ij)‖, we get:

min
{T̃ij}∈SO(3)

∑
(i,j)∈L

∥∥∥Log (T̃ij

)∥∥∥2
subject to

∏
(i,j)∈L T̃ij = ST

L (17)

2Formally, the logarithm map returns an element of the tangent space (a
skew symmetric matrix), whose exponential is R. Since every 3× 3 skew
symmetric matrix can be unequivocally mapped to a vector in R3 (via the
vee operator [24]), our notation comes without loss of generality.
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which essentially requires to find rotations T̃ij whose compo-
sition is a known rotation ST

L, and such that the rotation an-
gles are small, in the sense of the angular norm ‖Log(T̃ij)‖.

It is possible to show [15] that the minimum of (17) is
attained when the rotations T̃ij have the same rotation axis
of ST

L and rotation angle equal to ‖Log
(
ST
L
)
‖/m:

T̃ ?
ij = Exp

(
Log

(
ST

L
)

m

)
(18)

where Exp (·) is the exponential map for SO(3).
Substituting T̃ ?

ij back into (16) and (13), we get the opti-
mal relative rotations. We then retrieve the desired absolute
rotations from (11), by chaining the relative rotations.

Related work [15], [34], [30] also discusses extensions to
the multi-loop case; these extensions are iterative in nature
and have no global convergence guarantees.

B. Chordal Relaxation [1]
This section reviews the approach proposed by Martinec

and Pajdla [1]. This technique does not return the optimal so-
lution of Problem P in general, but, as shown in Section IV,
it performs astonishingly well in practice.

Let us use the chordal distance in Problem P:

min
{Ri}∈SO(3)

∑
(i,j)∈E

∥∥Rij−RT
i Rj

∥∥2
F
=

min
{Ri}∈SO(3)

∑
(i,j)∈E

∥∥RijR
T
j −RT

i

∥∥2
F
. (19)

If we call rki the k-th row of Ri (k = 1, 2, 3), and we
write each row as a column vector, eq. (19) becomes:

min
{rk

i }

∑
(i,j)∈E

∑
k=1,2,3

∥∥Rijr
k
i − rkj

∥∥2
subject to

[
r1i r2i r3i

]T ∈ SO(3), i = 1, . . . , n, (20)

where the constraint restricts the choices of rki to vectors
that form meaningful rows of a rotation matrix (essentially,
orthonormal vectors that follow the right-hand rule).

The idea behind the second technique is a very simple one.
Rather than solving directly problem (20), one first solves an
unconstrained version of (20):

min
{rk

i }

∑
(i,j)∈E

∑
k=1,2,3

∥∥Rijr
k
i − rkj

∥∥2 (21)

and obtains n matrices Mi
.
=
[
r1i r2i r3i

]T
(which are not

rotations in general). Each rotation is then computed as:

R?
i = argmin

Ri∈SO(3)

‖Mi −Ri‖2F (22)

which looks for the closest rotation matrix (in the Frobenius
norm sense) to Mi. The advantage is that (21) is a linear
least-squares problem. Moreover, problem (22) admits a
closed-form solution [16]: if we compute the singular value
decomposition Mi = SDV T, then:

R?
i = S diag

(
[1 1 det(SV T)]

)
V T. (23)

Remark 1 (Homogeneous least squares): Problem (20) is
a homogeneous least squares problem, hence admits a trivial
solution in which the vectors are all zero. This reflects

an observability issue as we are trying to estimate global
rotations from relative measurements (the global frame is
unobservable). We can solve this indetermination by includ-
ing a prior on a rotation (e.g., the first rotation is R1 = I3),
or imposing a norm constraint as in [1]. We adopt the first
solution as it easily extends to the presence of other priors,
such as the one in the following subsection.

1) Including vertical priors: In this subsection we present
an original extension of the chordal relaxation technique [1]
to include vertical direction measurements. Assume that the
robot can measure the vertical direction vi in the local
frame Ri. For instance, it can sense the gravity vector
using an IMU. In the global frame the vertical direction is
g = [0 0 1]T. The measurement model is:

vi = RT
i g + vεi (24)

where vεi represents measurement noise and the matrix RT
i

transforms the vector g to the local frame. Exploiting the
fact that g = [0 0 1]T, it is easy to see that RT

i g = r3i , i.e.,
vi is a noisy measurement of the last row of Ri. Therefore,
if we have a set of vertical measurements V , problem (21)
can be easily extended to:

min
{rk

i }

∑
(i,j)∈E

∑
k=1,2,3

∥∥Rijr
k
i − rkj

∥∥2 +∑
i∈V

∥∥r3i − vi
∥∥2 (25)

which is still a linear least squares problem. A small example
in which we estimate rotations via (25) is reported in the
supplementary material [35].

C. Quaternion Relaxation [12], [16]

This section reviews the rotation estimation approach of
Govindu [12] and the recent analysis of Hartley et al. [16].
This approach uses the quaternion distance in Problem P:

min
{qi},{bij}

∑
(i,j)∈E

∥∥qij − bij q−1i · qj∥∥2
subject to ‖qi‖2= 1, i = 1, . . . , n

bij ∈ {−1,+1}, (i, j) ∈ E (26)

where · denotes quaternion multiplication, and we use bij ∈
{−1,+1} to model the sign ambiguity (compare with (6)).

Problem (26) is hard for the presence of integer variables
bij and because the norm constraints are nonconvex.

Hartley et al. [16] propose to solve (26) in two steps. First,
determine the signs bij , and then solve (26) with fixed bij .
This two-stage solution is suboptimal in general, but it works
well for low levels of noise (Section IV). Let us review the
two steps required to (approximately) solve (26).

1) Computing the signs bij: Hartley et al. [16] propose
to determine bij using a spanning tree of the graph. Here
we give a different interpretation, based on the cycles of the
graph. We believe this interpretation is interesting as (i) it
shows that there are only ` integer variables to determine,
where ` = m− n+ 1 is the number of cycles in the graph,
and (ii) it draws connections with the planar solution [7].

As we did in Section III-A, we apply a change of variables,
so to work on the relative rotations:

q̃ij
.
= bij q

−1
i · qj (27)
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From the definition (27), the relative rotations q̃ij satisfy:∏
(i,j)∈Lk

bij q̃ij = I4, k = 1, . . . , ` (28)

where
∏

(i,j)∈Lk
is the ordered product over the edges

within the k-th cycle in the graph, denoted with Lk. This
equality imposes that the (to-be-estimated) quaternions have
to compose (up to sign) to the identity rotation along loops.

For reasonable measurement noise, the estimates q̃ij will
be close to the measurements qij , and for this reason, we
can approximate the constraint in (28) as:∏

(i,j)∈Lk

bijqij ≈ I4, k = 1, . . . , ` (29)

Since bij are scalars, the previous expression is the same as:

bk
∏

(i,j)∈Lk

qij ≈ I4, k = 1, . . . , ` (30)

where bk
.
=
∏

(i,j)∈Lk
bij . From (30), one can determine the

signs as follows: for each cycle, one computes
∏

(i,j)∈Lk
qij :

if the product is close I4 then bk = 1; if the product is
close to −I4, one chooses bk = −1. One can build cycles
of the graph from a spanning tree, such that each chord of
the spanning tree belongs to a single cycle. This explains
the approach of [16]: one sets bij = +1 for all edges in
the spanning tree, and controls the sign bk of the k-th cycle,
using the sign of the corresponding chord.

Two interesting insights stem from reasoning in terms of
cycles. First, we see there are only ` signs bk to determine,
rather than m as in Problem (26). Second, for large levels of
noise, the product

∏
(i,j)∈Lk

qij can be far from ±I4 and can
lead to a bad decision on bk. Since the product

∏
(i,j)∈Lk

qij
quantifies the accumulation of measurement error along a
cycle, this suggests that, to have better decisions on bk, we
have to choose small cycles. Hence, we arrive to the same
conclusion of [7], that tells us that the cycle structure of the
graph and the use of a minimum cycle basis are the keys of
robust (2D) rotation estimation.

2) Solving Problem (26) with known bij: After computing
the signs bij problem (26) becomes:

min
{qi}

∑
(i,j)∈E

∥∥q+
ij − q−1i · qj

∥∥2
subject to ‖qi‖2= 1, i = 1, . . . , n (31)

where we denote with q+
ij = bijqij the sign-corrected

measurements. Recalling that the multiplication between two
quaternions qc = qa · qb can be computed using standard
matrix-vector multiplication, and using compact matrix no-
tation, we rewrite (31) as:

min
q

‖Qq‖2

subject to qNiq = 1, i = 1, . . . , n (32)

where Q is a suitable sparse matrix, q ∈ R4n is a vector
stacking all (unknown) quaternions, and Ni is a sparse
matrix that writes the i-th norm constraint in compact form.

The work [12] relaxes the norm constraint in (32), and
reduces (32) to a homogeneous least-squares problem, which

can be solved as prescribed in Remark 1. From the relaxed
solution we can extract the 4-vectors, corresponding to each
rotation: q?i , i = 1, . . . , n. In general, these vector q?i
do not have unit norm, hence they do not represent valid
rotations. Therefore, after computing q?i from (32), one has
to normalize the resulting vectors to have unit norm.

D. Semidefinite Programming (SDP) Relaxation [17]
This technique has been proposed in [17] and aims at

solving (32), without resorting to relaxation of the norm
constraints. While the original presentation is based on
duality theory, we here provide a simpler explanation that
does not require the introduction of the dual problem. Note
that the approach [17] implicitly assumes that the signs of
the measurements have been corrected (Section III-C.1).

The key observation behind the SDP relaxation is that
for any vector y and matrix W , it holds: yTWy =
tr
(
W (yyT)

)
. This allows rewriting (32) as:

min
q

tr
(
QTQ(qqT)

)
subject to tr

(
Ni(qq

T)
)
= 1, i = 1, . . . , n (33)

The product qqT defines a positive semidefinite matrix with
rank 1, i.e., the following sets are identical:

{qqT : q ∈ R4n} = {Z ∈ R4n×4n : Z � 0, rank (Z) = 1}

Therefore, problem (33) is the same as:

min
Z�0

tr
(
QTQZ

)
subject to tr (NiZ) = 1, i = 1, . . . , n

rank (Z) = 1 (34)

Problem (34) is still nonconvex, due to the rank constraint.
The idea of the SDP relaxation is to solve (34) without
enforcing the rank constraint. The resulting problem is a
semidefinite optimization problem (SDP), which can be
solved via convex programming. The interesting observation
is that, if the solution Z? of the SDP has rank 1, then it is also
optimal for (33), and it can be factored as Z? = (q?)(q?)T,
which solves the original problem (32). While it is not
guaranteed to have a rank-1 Z?, the work [17] shows that it
is often the case in practice, for low levels of noise.

E. Riemannian Gradient Descent [31]
The approach presented in this section has been proposed

in [31]; it is iterative in nature and it is included in our survey
as it has been shown (in its consensus variant [20]) to have
global convergence properties. The work [31] shows that, in a
noiseless case, Problem P can be formulated as a consensus
problem; however, in presence of noise the equivalence is
not exact and the strong convergence result of [20] is not
guaranteed for Problem P . For this reason, we will evaluate
the convergence properties numerically, in Section IV.

The basic idea is to work on a reshaped version of the
cost function in Problem P:

min
{Ri}∈SO(3)

∑
(i,j)∈E

f
(
dSO(3)

(
Rij ,R

T
i Rj

))
(35)

where f : [0,+π] 7→ R is a given reshaping function. Intu-
itively, rather than using the distance dSO(3)

(
Rij ,R

T
i Rj

)
,
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Fig. 3. (a) Cost VS rotation noise (std σR in radians) for the circle scenario and for all techniques; (b) Cost VS number of nodes for the circle scenario;
(c) CPU time VS number of nodes for the circle scenario; (d) Cost VS noise for the torus scenario; (e) Cost VS noise for the cube scenario.

that can be prone to convergence to local minima, one
works on the function f

(
dSO(3)

(
Rij ,R

T
i Rj

))
, which is

well-behaved, if we choose f(·) wisely.
The work [20] proposes to use the angular distance θ =

‖Log
(
RT
ijR

T
i Rj

)
‖ and the following reshaping function:

f(θ) =
π2

2f0(π)
f0(θ), with f0(θ) =

1

b
−
(
1

b
+θ

)
exp(−bθ)

(36)
where b is a constant. The cost (35) is then optimized using a
gradient descent method, which –given the current estimate
R

(t)
i , i = 1, . . . , n– updates the rotations via:

R
(t+1)
i = R

(t)
i Exp

(
ε s(t)

)
(37)

where s(t) is the gradient of the cost function evaluated at
R

(t)
i , and ε is a given stepsize.
The algorithm is iterative in nature, hence it needs initial

guess R
(0)
i , i = 1, . . . , n. When applied to consensus

problems, it guarantees almost sure convergence to a global
minimum ([20], Theorem 16), as long as the stepsize satisfies
ε < 2f0(π)

π2b deg(G) , where deg(G) is the maximum node degree of
the graph. The basic intuition is that the reshaping function
makes local minimizers unstable equilibria points, and the
estimate is unlikely to converge to those.

IV. EXPERIMENTAL EVALUATION AND COMPARISON

We first test the 5 techniques of Section III on Problem P
(Section IV-A). Then we use the best performing techniques
to initialize pose graph optimization (Section IV-B).

A. Comparison on Rotation Estimation
Here we show that the chordal relaxation (Martinec and

Pajdla [1]) and the gradient method (Tron and Vidal [31])
outperform the other techniques in solving Problem P .

Compared techniques. We use the following short names
for the 5 techniques: 1loop (Section III-A), chord (Section III-
B), quat (Section III-C), SDP (Section III-D), and grad
(Section III-E). The results of this section are based on a
Matlab implementation of the 5 techniques. For the SDP
technique, we used CVX/MOSEK [36] as parser/solver. The
gradient method is initialized at the odometric trajectory and
we set b = 1 in eq. (36). When interesting, we include results
from a standard Gauss-Newton method (implemented using
gtsam [32]) initialized at the odometric trajectory (label: GN).

Benchmarking scenarios. We created different bench-
marking scenarios. In the circle scenario (Fig. 2) poses are
uniformly spaced along a single loop and a random rotation
is assigned to each pose. In the torus scenario (Fig. 1) the
trajectory is simulated as the robot were traveling on the

surface of a torus. Random loop closures are added between
nearby nodes. Similarly, in the cube scenario (Fig. 1) the
trajectory is simulated as the robot were traveling on a 3D
grid world. We created different instances of these scenarios
by changing the number of nodes n, and by simulating
different noise levels for the rotation measurements (std σR).

Performance metrics. For each technique, we evaluate
the cost attained in Problem P , using the angular distance
as metric (we are solving a minimization problem hence the
lower the better). The angular distance is a common choice
in pose graph optimization and Section II-B assures that for
small residual errors the distances differ by a constant (that
vanishes in the optimization). In the figures we normalize
this cost by the number of measurements m, such that
the resulting curve describes the average (squared) residual
error for each rotation measurement. Timing results are also
discussed when relevant. Results are averaged over 10 runs.

Results. Fig. 3(a) shows the cost for the scenario circle
with n = 100 nodes and for different rotation noise σR.
The single loop scenario can be managed pretty easily by
all techniques. chord performs slightly worse than the others,
but –observing the scale of the plot– the difference is small
(compare with Fig. 3(d)-(e)). Fig. 3(b) shows cost versus
numbers of nodes, for the circle scenario, with σR = 0.1.
Also here the differences among the techniques are minor.

Fig. 3(c) shows the CPU time required by each techniques
(we excluded GN, that is implemented in c++). The plot is
on log scale: while the techniques chord, quat, 1loop are very
cheap, SDP and grad require 3 orders of magnitude more time
and are impractical, even for small problems.

Fig. 3(d) shows cost versus rotation noise for the torus
scenario (200 nodes). Here, we have multiple loops, hence
we exclude the 1loop technique. GN has the lowest breakdown
point, and easily converges to a local minimum. The quat and
SDP techniques are slightly more resilient, but they still have
larger errors for σR > 0.15: for large noise, one can select
the wrong integers using the approach of Section III-C.1.
The grad and chord techniques have a graceful decrease in
performance for increasing rotation noise.

Fig. 3(e) shows cost versus rotation noise for the cube
scenario (103 nodes). This scenario was too large for the
SDP approach: while SDPs are convex problems, they do no
scale well with problem size [17], and CVX was not able to
produce a solution. The remaining techniques have a trend
similar to the one of Fig. 3(d): grad and chord are the only
techniques that can tolerate large levels of noise.

CPU times for the torus and cube scenarios have the same
trend of Fig. 3(c) and are omitted for space reasons: timing
plots and extra results can be found at [35].
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odometry g2o g2oST gtsam chord+gtsam grad+gtsam
sphere Iter. − 5 5 7 1 4 1 5 }

1435n = 2500 Cost 1.29 · 106 4.39 · 103 7.91 · 102 6.76 · 102 9.63 · 102 6.76 · 102 1.24 · 104 6.76 · 102
m = 4949 Time − 1.19 1.23 0.96 0.52 0.85 6.40 6.89

sphere-a Iter. − 5 5 1 1 4 1 1 }
8155n = 2200 Cost 1.34 · 108 5.32 · 1010 5.43 · 106 5.71 · 1010 1.51 · 106 1.49 · 106 1.9 · 106 1.9 · 106

m = 8647 Time − 2.46 2.48 0.46 0.79 1.28 50.26 50.87

torus Iter. − 5 5 2 1 4 1 12 }
1231n = 5000 Cost 1.99 · 106 6.04 · 108 1.27 · 104 4.71 · 1010 1.24 · 104 1.21 · 104 5.85 · 104 2.81 · 104

m = 9048 Time − 3.90 3.90 0.83 1.18 1.97 11.35 14.45

cube Iter. − 5 5 2 1 4 1 4 }
1045n = 8000 Cost 7.32 · 107 5.39 · 107 4.6 · 104 6.58 · 1011 4.51 · 104 4.22 · 104 4.61 · 104 4.22 · 104

m = 22236 Time − 188.08 187.32 15.80 31.33 53.78 31.60 54.80

garage Iter. − 5 5 4 1 4 1 4 }
234n = 1661 Cost 8.36 · 103 6.43 · 10−1 6.43 · 10−1 6.35 · 10−1 1.51 · 100 6.35 · 10−1 1.12 · 101 6.35 · 10−1

m = 6275 Time − 0.32 0.33 0.43 0.32 0.48 1.23 1.42

cubicle Iter. − 5 5 1 1 4 1 5 }
10000n = 5750 Cost 4.99 · 106 5.16 · 1021 8.65 · 1023 5.91 · 107 8.02 · 104 1.62 · 103 1.7 · 106 1.62 · 103

m = 16869 Time − 4.25 4.28 0.78 1.34 2.50 145.46 145.60

rim Iter. − 5 5 1 1 5 1 1 }
10000n = 10195 Cost 4.5 · 107 9.37 · 1021 1.82 · 1025 6.78 · 108 1.31 · 106 6.63 · 104 4.86 · 107 4.86 · 107

m = 29743 Time − 7.52 7.83 1.42 2.59 5.06 293.18 289.08

TABLE I
COST ATTAINED IN (2), CPU TIME, AND NUMBER OF GAUSS-NEWTON ITERATIONS FOR DIFFERENT BENCHMARKING PROBLEMS, COMPARING THE

ODOMETRIC COST, THE COST ATTAINED BY g2o AND gtsam, AND THE PROPOSED INITIALIZATION chord+gtsam AND grad+gtsam.

B. Initialization for Pose Graph Optimization

In this section we show that the use of the chordal
relaxation (Martinec and Pajdla [1]), as initialization for pose
graph optimization, entails a performance boost in terms
of speed and robustness. The gradient method (Tron and
Vidal [31]) is less competitive, as it requires many iterations
to converge, and sometimes is trapped in local minima.

Compared techniques. We use chord and grad techniques
to initialize pose graph optimization. Here, computation
speed is important, hence we implemented the two tech-
niques in c++ and released the code in gtsam [32]. The
initialization works as follows: we first solve for the rota-
tions, and then use the rotation estimate as initial guess for
a Gauss-Newton method (available in gtsam) that solves (2).
The techniques using this initialization are called chord+gtsam
and grad+gtsam, depending on the approach used for rotation
estimation. We compare these techniques against state-of-
the-art solvers that apply Gauss-Newton from the odometric
guess: g2o [37] and gtsam [32]. We also compare against a
technique that applies Gauss-Newton from a spanning tree
initialization (label: g2oST); this technique is available in g2o.

Benchmarking scenarios. We consider 7 benchmarking
problems: sphere, sphere-a, garage, torus, cube, cubicle, rim. The
sphere dataset is a test problem released in gtsam [32]. The
sphere-a dataset (Fig. 1) is a more challenging version with
larger noise and is released in g2o [37]. The garage datasets
is a real dataset from Vertigo [37]. Besides these standard
benchmarks, we test the approaches on the torus and cube
datasets (σR = 0.1rad), and on two real datasets (cubicle and
rim) collected at the RIM center at Georgia Tech. In the cubicle
and rim datasets, the relative pose constraints are obtained via
ICP on the point clouds acquired from a 3D laser scanner.

Results. Table I reports the cost attained in (2) (using
the angular distance) and the CPU time for the compared
approaches. Values highlighted in red indicate that the
technique was stuck in a local minima, while values in
blue correspond to visually correct estimates. For a visual
evaluation, we refer the reader to [35], which shows the
trajectory estimates for each cell in Table I.

The sphere dataset is fairly easy and all techniques have
good results. g2o stops after 5 iterations by default; gtsam
uses a stopping criterion based on the cost and for this
reason performs more iterations and attains a slightly smaller
cost. For chord+gtsam and grad+gtsam we report the cost
obtained doing a single Gauss-Newton iteration from the
initialization, and the cost attained by letting gtsam perform
multiple iterations. A single iteration in chord+gtsam already
produces comparable results w.r.t. 5-7 iterations in g2o and
gtsam. The optimal value in attained in 4 iterations. The
proposed initialization reduces the CPU time from 1.19s
(g2o) to 0.52s (chord+gtsam with 1 iteration). The results are
less encouraging for grad+gtsam: the technique produces good
results, but implies a large increase in CPU time.

(a) (b) (c)

Fig. 4. (a) Estimate from g2oST in the scenario sphere-a. (b) Estimate
from grad+gtsam in the scenario sphere-a. (c) Estimate from grad+gtsam in
the scenario torus. Trajectories in (a)-(c) correspond to local minima.

While in easy scenarios (as sphere and garage) there is
some advantage in using chord+gtsam, the initialization if
extremely beneficial in difficult scenarios as sphere-a, torus,
cube, cubicle and rim: in those scenarios the initial guess
is inaccurate and the state-of-the-art techniques fail. gtsam
exits after few iterations as it is not able to reduce the cost.
g2o perseveres till 5 iterations and often gets worse costs
compared with the initial odometric cost. The spanning tree
initialization is more resilient but it still fails to produce good
trajectories in sphere-a, cubicle, and rim, see Fig. 4(a) and [35].

In all scenarios, chord+gtsam produced very accurate re-
sults. The initialization in Fig. 1 is given by chord+gtsam, with
a single Gauss-Newton iteration. The initialization is accurate
enough to produce a globally consistent 3D reconstruction, as
shown in Fig. 5. In all cases, performing multiple iterations
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in chord+gtsam resulted in the lowest observed cost and a
visually correct trajectory. The grad+gtsam approach, besides
being very expensive in practice, converged to a local mini-
mum in the sphere and torus datasets, see Fig. 4(b)-(c).

Fig. 5. cubicle: Reconstruction obtained by aligning the 3D laser scan in
a global map, using the pose estimate from chord+gtsam (1 iteration).

V. CONCLUSION

We survey 3D rotation estimation techniques and we
show how to use them to initialize pose graph optimization.
Some of the surveyed techniques (in particular the one
from Martinec and Pajdla [1]) have excellent performance
in challenging benchmarking scenarios. On the easy datasets,
a good initialization implies a computational advantage, as
iterative techniques require less iterations to converge. On
datasets with large noise, state-of-the-art approaches are
doomed to fail, while the proposed initialization showed
extreme resilience and global convergence capability. We
released c++ implementations of the best performing tech-
niques and we extended one of the techniques to include
vertical prior measurements, as the ones obtained from an
IMU sensing gravity. Extra results and visualizations are
given in the supplementary material [35].
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