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Abstract We address the problem of object detection and
segmentation using global holistic properties of object
shape. Global shape representations are highly susceptible
to clutter inevitably present in realistic images, and thus can
be applied robustly only using a precise segmentation of
the object. To this end, we propose a figure/ground segmen-
tation method for extraction of image regions that resem-
ble the global properties of a model boundary structure and
are perceptually salient. Our shape representation, called the
chordiogram, is based on geometric relationships of object
boundary edges, while the perceptual saliency cues we use
favor coherent regions distinct from the background. We
formulate the segmentation problem as an integer quadratic
program and use a semidefinite programming relaxation to
solve it. The obtained solutions provide a segmentation of
the object as well as a detection score used for object recog-
nition. Our single-step approach achieves state-of-the-art
performance on several object detection and segmentation
benchmarks.
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1 Introduction

A multitude of different object representations have been ex-
plored, ranging from texture and local features to region de-
scriptors and object shape. Although local features based on
image gradients and texture perform relatively well for some
object classes, many classes are not modeled sufficiently by
local descriptors. For objects primarily characterized by dis-
tinctive shape, local texture features typically provide weak
descriptions. In this paper we focus on the problem of ex-
ploiting global shape properties for object detection. More-
over, we tightly couple these properties to object segmen-
tation, which makes shape-based detection possible in clut-
tered scenes.

Shape is commonly defined in terms of the set of con-
tours that describe the boundary of an object. In contrast to
gradient- and texture-based representations, shape is more
descriptive at a larger scale, ideally capturing the object of
interest as a whole. This has been recognized by the Gestalt
school of perception, which has established the principle
of holism in visual perception (Palmer 1999; Koffka 1935).
This principle suggests that an object should be perceived in
its totality and not merely as an additive collection of indi-
vidual parts. The essential goal of a holistic representation
for object recognition is to capture not just the presence of
object parts but also non-local relationships between these
parts. In this work, our response to the mantra ‘the whole is
greater than the sum of its parts’ is ‘the whole is the sum of
all the relationships between its parts’, as we make precise
below.

Some of the most notable holistic representations are
based on global transforms, such as Fourier transform
(Zhang and Lu 2003) or the Medial Axis Transform (Blum
1973). Unfortunately, such transforms assume a pre-seg-
mented object shape as input. As a result, the above rep-
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Fig. 1 Using BoSS to perform simultaneous shape-based object de-
tection and segmentation in a cluttered scene

resentations cannot be used directly for object detection in
realistic scenes which inevitably contain clutter.

To address the problems arising from clutter, a number
of structural theories for object perception were introduced.
According to this paradigm, an object can be decomposed
and described as a configuration of atomic parts. Structural-
ism has inspired a number of approaches such as general-
ized cylinders (Marr 2010; Binford 1971), Recognition by
Components Theory (Biederman 1987), and superquadrics
(Pentland 1986). Although being well motivated from a per-
ceptual point of view, the above approaches have not found
wide applicability. First, the theories assume that one can ex-
tract the shape primitives in images, which is very difficult in
realistic images. Second, even if one can obtain good prim-
itive candidates from an image, the search for the correct
shape is typically not straightforward and tractable (Grim-
son and Lozano-Perez 1987).

To alleviate the above problems, a number of approaches
were proposed in recent years that use primitives which are
simpler and easier to extract such as edgels (Huttenlocher et
al. 1993), contour segments (Ferrari et al. 2008) or statisti-
cal descriptors of local or semi-local contours such as Shape
Context (Belongie et al. 2002). The above local primitives
are combined in a global configuration model. Depending
on expressiveness of the model, inference can be intractable,
such as graph matching where one captures all pairwise de-
pendences among parts (Leordeanu et al. 2007), or tractable,
such as, for example, dynamic programming (Ling and Ja-
cobs 2007) in which case many of the dependences are left
out. Another strategy is to capture all global dependences
among parts in a less expressive model such as Thin-Plate
Splines (Belongie et al. 2002) or Procrustes (Mcneill and
Vijayakumar 2006). The above shape models present a step
towards recognition in cluttered scenes but depart from the
idea of holism.

In this work we advocate holistic shape-based recog-
nition in realistic cluttered scenes. In particular, we pro-
pose a recognition method, called Boundary Structure
Segmentation (BoSS).1 This method relates the object de-
tection, based on a novel holistic shape descriptor, to fig-
ure/ground segmentation and performs them simultaneously
(see Fig. 1). While matching an input image with an object

1A preliminary version of this work appeared in CVPR 2010 (Toshev
et al. 2010).

model, BoSS selects a foreground region with the following
properties:

– Similarity in Shape: captured by a top-down process ex-
ploiting object-specific knowledge. Evidence from human
perception indicates that familiarity with the target shape
plays a large role in figure/ground assignment (Palmer
1999).

• Perceptual Saliency: captured by a bottom-up process
based on general grouping principles, which apply to
wide range of objects. In particular, the perceptual group-
ing component is based on configural cues of salient con-
tours, color and texture coherence, and small perimeter
prior.

Furthermore, the shape-based detection costs of matching
several models to an image can be used to detect the cor-
responding object class as the one whose model has the
smallest matching cost. In this way, object segmentation and
detection are integrated in a unified framework. More pre-
cisely, the contributions of the approach are threefold:

Shape Representation We introduce a global, boundary-
based shape representation, called chordiogram, which is
defined as the distribution of all geometric relationships
(relative location and normals) between pairs of boundary
edges—called chords—whose normals relate to the segmen-
tation interior. This representation captures the boundary
structure of a segmentation as well as the position of the in-
terior relative to the boundary. Moreover, the chordiogram
is translation invariant and robust to shape deformations.

The chordiogram can be theoretically related to corre-
spondence estimation techniques and thus to other common
shape matching approaches. In particular, we show that the
cost of chordiogram matching is a lower bound on the cost of
the point correspondence estimation problem between two
shapes. Furthermore, it is also equal to the cost of chord cor-
respondence problem between two shapes. Thus the chor-
diogram provides approximate means to measure the cost of
point correspondence estimation without the need of explicit
inference.

Figure/Ground Segmentation We match the chordiogram
while simultaneously extracting figure/ground segmenta-
tion. This is a key advantage of the representation, which
relates the object boundary to its interior and thus to region
segmentation. The perceptual grouping component of the
segmentation model, which is defined in terms of configu-
ral cues of salient contours, color and texture coherence, and
small perimeter prior, ensures that the detections constitute
salient regions. More importantly, the joint matching and
segmentation removes the irrelevant image contours during
matching and allows us to obtain correct object detections
and segmentation in highly cluttered images.
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Inference We pose BoSS in terms of selection of superpix-
els obtained via an initial over-segmentation. The selection
problem is a hard combinatorial problem which has a con-
cise formulation as an integer quadratic program consisting
of two terms—a boundary structure matching term defined
over superpixel boundaries, and a perceptual grouping term
defined over superpixels. The terms are coupled via linear
constraints relating the superpixels with their boundary. The
resulting optimization problem is solved using a Semidefi-
nite Programming relaxation and yields shape similarity and
figure/ground segmentation in a single step.

We achieve state-of-the-art results on two challenging ob-
ject detection tasks—94.3% detection rate at 0.3 fppi on
ETHZ Shape Dataset (Ferrari et al. 2006) and 92.4% detec-
tion rate at 1.0 fppi on INRIA horses (Ferrari et al. 2007) as
well as accurate object boundaries, evaluated on the former
dataset.

2 Chordiogram

We introduce a novel shape descriptor, called chordiogram.
This descriptor adheres to the principle of holistic visual
perception by describing each object contour in the con-
text of the whole object. In other words, the contribution of
an edge or a contour to the whole object representation de-
pends on all other object contours. Furthermore, it captures
both the boundary as well as the interior of the object. In
addition, it is invariant to certain rigid transformations and
robust to shape deformations. Most importantly, however, it
can be applied in images with severe clutter, which allows
for recognition in unsegmented images.

To define the chordiogram, consider the outline of a pre-
segmented object as shown in Fig. 2(a) and denote by C a
set of sampled boundary points of this outline (in the follow-
ing we will include in C all the pixels lying on the outline).
A pair of boundary edges p and q from C will be referred
to as a chord. We can think of a chord as a way to express
a dependency between edges p and q . We define features
describing the geometry of the chord:

– Length lpq and orientation ψpq of the vector p → q .
– Normalized normals θp and θq to the boundary at p and q

with respect to the chord orientation ψpq : θp = θ ′
p − ψpq

and θq = θ ′
q − ψpq , where θ ′

p and θ ′
q are the normals at p

and q respectively.

Thus, the chord features can be written as a four-tuple:

fpq = (lpq,ψpq, θp, θq)T . (1)

We describe the shape of a segmented object by capturing
the features of all chords. In this way we attempt to capture
all dependencies among object boundary points and achieve

Fig. 2 Chord features and orientation of the normals at boundary
edges

Fig. 3 For an input shape, all chord features are binned in the quan-
tized chord feature space which is the resulting chordiogram

a holistic description. More precisely, the chordiogram (de-
noted by ch) is defined as a K-dimensional histogram of all
chord features, where the features are quantized into bins
and the mth chordiogram element is given by:

chm(C) = #
{
(p, q) | p,q ∈ C, fpq ∈ bin(m)

}
. (2)

Note that the above definition can be applied not only to
contours but also on any unordered point set C for which
the points have normals associated with them.

The chordiogram construction process is visualized in
Fig. 3. The length features lpq are binned in bl bins in log
space, which allows for larger shape deformation between
points lying further apart. The length h of the largest bin
determines the scale of the descriptor—every chord whose
two boundary points lie within distance h will be captured
by the descriptor. To guarantee that the descriptor is global,
we set h equal to the diameter of the object in case of pre-
segmented object masks. The remaining three features are
angles lying in [0,2π) and are binned uniformly—the chord
orientation in br bins; the normal angles are binned in bn

angles. This binning strategy results in a N = bl × br × b2
n

dimensional shape descriptor at scale h.
The chord features are chosen such that they completely

describe the geometry of a chord. When it comes to the chor-
diogram, the features capture different shape properties. The
chord length and orientation capture global coarse shape
properties (see Fig. 4(a)), while the fine information is cap-
tured by the normals (see Fig. 4(b)).

The chord features determine the invariance of the chor-
diogram to geometric transformations. Since we do not cap-
ture absolute location information, the resulting descriptor
is translation invariant. However, the chord orientation fea-
ture prevents the descriptor from being rotation invariant.
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Fig. 4 For each pair of shapes (upper row), we show two chordio-
grams: one computed over the normal features θ only (middle row)
and one over the chord length l and orientation ψ (lower row)

Similarly, the chord length feature prevents the chordiogram
from being scale invariant. Removing those features would
make the descriptor rotation and scale invariant, however,
less descriptive. Hence, we have chose to keep these features
and perform a search over scale and rotation.

To evaluate the dissimilarity between two shapes we can
use any metric between the chordiograms extracted from the
shapes. In the subsequent experiments we use L1 distance
between L1-normalized chordiograms, which we will call
chordiogram distance:

d(u, v) = ∥∥u/‖u‖1 − v/‖v‖1
∥∥

1 (3)

for two chordiograms u and v.

3 Properties and Analysis of the Chordiogram

In this section, we explore the properties of the chordiogram
as a shape descriptor, motivate its holistic nature and present
a theoretical analysis of the connection between chordio-
grams and point-set correspondence methods. In the next
section, we show how chordiograms can be used in cluttered
images via joint segmentation and detection.

3.1 Figure/Ground Organization

An important difference with most contour-based shape
representations, is that the chordiogram captures the con-
tour orientation relative to the object interior. Orienting the
boundary normals with respect to the interior allows us to
capture different interpretations of a contour, as shown in
Fig. 5. This property will allow us to relate the descriptor
to the segmentation of the image, as we will see in Sect. 4.
In addition, it contributes to better discrimination, for exam-
ple, between concave and convex structures (configurations
fp1q1 and fp2q2 respectively in Fig. 2(b)), which otherwise
would be indistinguishable.

Fig. 5 Rubin’s vase, whose contours are shown in (a), can have two
different interpretations depending on the figure (see (a) and (b)).
A purely contour-based shape descriptor would not be able to differ-
entiate between these two interpretations. The chordiogram, however,
is able to make this distinction through the orientation of the normals
of its chords

Fig. 6 Two shapes which are perceptually different and have one iden-
tical part—torso. Since the chordiogram captures the parts in the con-
text of the whole shape, the chordiogram distance between the two
shapes is larger than the distance between the parts together (see text)

3.2 Gestaltism

The introduced descriptor is a global since it takes into
account all possible chords—long chords as well as short
chords. Thus we capture short-range as well as long-range
geometric relations. To give some intuition about the holis-
tic nature of the descriptor, consider the example of a horse
and a centaur in Fig. 6, each of which can be thought of be-
ing composed of two parts—a head and a torso. Since the
chordiogram captures not only the shape of the individual
parts but also their relationship, the chordiogram distance
between the two shapes:

d
(
chhorse, chcentaur

) = 0.72

is larger than the distance between the isolated parts to-
gether:

d
(
chhorse

torso + chhorse
head , chcentaur

torso + chcentaur
head

) = 0.46

In other words, each object part is captured in the context of
the whole object, which we interpret is a holistic representa-
tion.

3.3 Shape Part Correspondence

A common paradigm in shape matching is to try to quan-
tify the similarity between two shapes by establishing corre-
spondences between points on the shapes. Correspondences
between the points serve as an explanation of the match,
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while the quality of the match is determined using a match-
ing model (Yoshida and Sakoe 1982; Basri et al. 1998). The
chordiogram, as defined in Sect. 2, does not capture any
absolute boundary point information as part of the chord
features, neither it captures any location relations among
chords. As a result, it is not clear whether the chordiogram,
as a histogram, can be used to establish correspondences
among boundary points of two shapes.

In this section we relate the chordiogram to the graph
matching problem, which is a widely used approach to
the correspondence problem (Shapiro and Haralick 1979;
Gold and Rangarajan 1996; Umeyama 1988), and obtain the
following insights:

1. We provide a different interpretation of the chordiogram
matching as bipartite matching among chords. We show
that the chordiogram can be used to compute the cost of
this bipartite matching efficiently without recovering any
explicit correspondences.

2. We bound the chordiogram matching from above with
the cost of a graph matching among points on the shape.
This relates our descriptor to correspondence estimation.

3. Finally, we show how to estimate correspondences be-
tween shapes starting from the bipartite matching inter-
pretation of our descriptor.

Next we set up the notation and tools needed for the sub-
sequent analysis.

Graph matching Suppose that the two shapes, whose sim-
ilarity needs to be assessed, are defined in terms of point
sets:

P s = {
ps

1, . . . , p
s
n

}
for s ∈ {1,2}

For simplicity, we assume that both point sets have the same
cardinality n. In this case, we can think of a shape as a com-
plete graph, whose nodes are the above point set and the
edges are the chords (see Sect. 2).

Chord distances Furthermore, a chord (i, j) from shape
described with point set P s , can be described by the bin into
which it falls using a predefined binning scheme b. This can
be written as a chordiogram chb,s

ij built only on the point set
{i, j}:

chb,s
ij = ch

({i, j})

Using the definition from (2), the above chordiogram can be
considered as a binary indicator vector which describes in
which bin the chord falls into:

(
chb,s

ij

)
m

=
{

1 if f s
ij ∈ binb(m)

0 otherwise

Fig. 7 Top: two similar shapes. Middle: for each of the two shapes,
we show chords of different lengths for fixed orientation and normals.
The colors of the chords correspond to the bins they fall in. Bottom:
(a) One can use the feature vectors of the chords to compute a distance
between them, or (b) a chordiogram for each chord can be defined and
the distance between them can be used

Denote further by chb,s the chordiogram for shape s using
binning scheme b and N = (

n
2

) = ‖ch1‖ = ‖ch2‖ the number
of chords.

In the following exposition we will use a sequence of
nested binning schemes, as defined in Indyk and Thaper
(2003). Suppose that Δ is the diameter of the chord set of
both shapes, where the diameter is defined in terms of the
L1 distance on the feature vector fij of a chord (i, j). Fur-
ther, δ is the smallest L1 distance among a pair of chords.
We assume that each chord has a unique feature vector so
that δ > 0. Then the bth binning scheme is defined by par-
titioning each feature space using a grid of size δ2b . The
values of b are {−1,0,1, . . . , �log2(Δ/δ)�} such that they
define together a fine to coarse hierarchical binning, where
at the finest level each bin contains a single chord, while at
the coarsest level all chords are contained in a single bin.

Using the above descriptors of a chord, we can define the
following three distances Wij ;kl between chords (i, j) and
(k, l) from two different shapes, which characterize their
dissimilarity:

– Distance in feature space (see Fig. 7(a)):

W
orig

ij ;kl
= ∥

∥f 1
ij − f 2

kl

∥
∥

1 (4)

– Chordiogram-based distance: For a particular binning
scheme b, one can declare two chords similar if they lie
in the same bin, and dissimilar otherwise (see Fig. 7(b)).
This can be expressed as follows:

Wb
ij ;kl = ∥∥chb,1

ij − chb,2
kl

∥∥
1 (5)
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Fig. 8 For the two shapes from Fig. 7, we visualize chords and their
bin membership for three different nested binning schemes. Note that
for the two coarse binning schemes, the chords ij and kl fall in the
same bin, while in the finer binning scheme they are assigned to differ-
ent bins. Aggregating the distances over all binning schemes gives an
approximation of chord distance in the original feature space (see text)

– Multilevel chordiogram-based distance: In addition to
the above bin comparison distance, one can combine mul-
tiple binning schemes into a single distance (see Fig. 8):

Wmbins
ij ;kl =

B∑

b=−1

αb

∥∥chb,1
ij − chb,2

kl

∥∥
1 (6)

with positive weights αb.

Graph Matching Formulation We would like to recover
one-to-one correspondence between both graphs. For this
purpose, we define a correspondence indicator variable

xik =
{

1 if p1
i and p2

k are in correspondence

0 otherwise
(7)

Then, the graph matching problem, which evaluates the
structural similarity between the graphs, can be formulated
as follows:

(GM): min
x

∑

ijkl

Wij ;klxikxjl (8)

subject to
∑

k

xik = 1 for all i (9)

∑

i

xik = 1 for all k (10)

xik ∈ {0,1} for all i, k (11)

where w can be any positive chord distance, such as the one
defined in (4–6). The constraints (9–10) guarantee one-to-
one correspondence, while the integral constraints (11) as-
sure that the solution to the problem is a correspondence
indicator variable, as defined in (7).

Graph Matching via Chord Matching Following Chekuri
et al. (2005), we reformulate the above problem into an
equivalent one, in which we introduce a new set of variables
X : Xijkl = xikxjl . These variables can be thought of as cor-
respondence variables between chords. Then problem (GM)
from (8) can be formulated in terms of the chord correspon-
dence variables. This new formulation has correspondence
uniqueness and integrability constraints as GM. In addition,
it has consistency constraints which guarantee that the ob-
tained chord correspondences are consistent with a set of
point correspondences (see Fig. 9):

(GMC): min
X

∑

ijkl

Wij ;klXijkl (12)

subject to
∑

k,l

Xijkl = 1 for all i, j (13)

∑

i,j

Xijkl = 1 for all k, l (14)

∑

l

Xij1kl =
∑

l

Xij2kl

for all i, k, j1, j2 (15)
∑

j

Xijkl1 =
∑

l

Xijkl2

for all i, k, l1, l2 (16)

Xijkl ∈ {0,1} for all i, k (17)

Constraints (13–14) stem directly from the definition of
X and the constraints (9–11) on x. Further, the constraints
(15–16) assure that corresponding chords agree on a unique
correspondence between the points. This constraint can be
derived from the following relationship between point and
chord correspondences:

xik = xik

∑

l

xj l =
∑

l

Xijkl for all j (18)

Relaxation of Graph Matching To solve the integer pro-
gram (GMC), one needs to resort to relaxations of the prob-
lem (see Fig. 10).
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Fig. 9 Equivalent formulations of the graph matching problem. Left:
The original graph matching formulation (GM) through point corre-
spondence variables. Right: An equivalent formulation using chord
correspondence variables (GMC)

The first tractable problem can be obtained by relaxing
the integral constraints (17) to non-negativity constraints.
As a result, one obtains the following exactly solvable linear
program (Chekuri et al. 2005), which we call point match-
ing (PM) indicating that it aims to recover point correspon-
dences:

(PM): min
X

W · X subject to X ∈ PPM (19)

where W · X = ∑
ijkl Wij ;klXijkl . The above constraint set

PPM is defined in terms of the following constraints:

PPM =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
k,l Xijkl = 1 for all i, j

∑
i,j Xijkl = 1 for all k, l

∑
l Xij1kl = ∑

l Xij2kl for all i, k, j1, j2
∑

j Xijkl1 = ∑
l Xijkl2 for all i, k, l1, l2

X ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

A different relaxation would be to retain the integral con-
straints (17), but to remove the constraints (15–16) which
guarantee that the chord correspondences translate into point
correspondences. This corresponds to bipartite matching
among the chords of the two shapes, which we will call
chord matching (CM):

(CM): min
X

W · X subject to X ∈ PCM (20)

Fig. 10 Relaxation of GMC. Left: Point Matching (PM) is obtained
by relaxing the integrability constraint. Right: Chord Matching (CM)
is obtained by relaxing the consistency constraints

with constraints

PCM =

⎧
⎪⎨

⎪⎩

∑
k,l Xijkl = 1 for all i, j

∑
i,j Xijkl = 1 for all k, l

Xijkl ∈ {0,1} for all i, j, k, l

⎫
⎪⎬

⎪⎭

The latter program does not guarantee that the resulting
chord correspondence can be directly translated to point cor-
respondences. However, it is an integer program, which can
be solved exactly using Max-Flow estimation algorithms.

Relations Between Graph Matching and Chordiogram Dis-
tance Using the above definition of graph matching and its
relaxations, one can show that the chordiogram distance is
closely related to the correspondence problem between two
shapes. First, we show the relationship between the chordio-
gram and bipartite matching among chords:

Theorem 1 Consider the chord matching problem (CM)
(see (20)) with the multilevel chordiogram-based distance
(see (6)):

min
X

Wmbins · X subject to X ∈ PCM

The solution of this problem can be characterized as follows:

– The minimum can be analytically computed using the
chordiogram distance:

min
X∈PCM

Wmbins · X =
B∑

b=−1

αb

∥∥chb,1 − chb,2
∥∥

1

for weights αb = 2b.
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– All the minimizers can be described in terms of the chor-
diograms of the individual shapes with the following set:

P ∗
CM =

{
X ∈ PCM

∣∣∣∣
∑

(i,j)∈binb(m)
(k,l)∈binb(m)

Xijkl = min
{
chb,1

m , chb,2
m

}

for all bins m and schemes b

}
(21)

Furthermore, we can relate the chordiogram distance to
point matching between shapes:

Theorem 2 Suppose that X∗
cm,orig is a minimizer of the

chord matching problem (see (20)) using data terms Worig

based on the distance in the original feature space (see (4)):

X∗
cm,orig ∈ arg min

X
Worig · X subject to X ∈ PCM

Further, X∗
pm,mbins is a minimizer of the point matching

problem (see (19)) using data terms Wmbins based on the
multilevel chordiogram-based distance (see (6)):

X∗
pm,mbins ∈ arg min

X
Wmbins · X subject to X ∈ PPM

Then, the following relationship holds:

αWorig · X∗
cm,orig ≤

B∑

b=−1

αb

∥∥chb,1 − chb,2
∥∥

1

≤ Wmbins · X∗
pm,mbins

for a positive constant α.

The proof of both theorems is given in Appendix A.
There are several insights we gain from the above theorems
which relate our shape representation to matching points on
the two shapes.

1. As shown in Theorem 1, the chordiogram distance is a
minimizer of a bipartite matching among chords for a
specific form of the chord distances. Thus, it quantifies
the best possible correspondences among chords on two
shapes without explicitly giving those correspondences.
In addition, the chordiogram distance does not require
any inference and thus it is more efficient.

2. As shown in the first inequality of Theorem 2, the chor-
diogram over several binning schemes is an upper bound
of the bipartite matching for which the similarities are
defined in the original chord feature space. This shows
that by choosing several binning schemes for the chor-
diogram, we can obtain an approximation to the original
distance in the chord feature space.

3. As shown in the second inequality of Theorem 2, the dis-
tance based on our shape descriptor is a lower bound of
the linear programming approximation for establishing
correspondences among points on two shapes.

Correspondence Recovery The above theorem is based on
the fact that we can think of the chordiogram distance as a
different relaxation of the original graph matching formula-
tion. This allows for recovery of point correspondences—if
we have X ∈ PPM, then we can use (18) for an arbitrary
j to estimate point correspondences. To obtain such an X,
however, we will not solve (PM) directly, but rather use the
solution for (CM) obtained from the chordiogram distance.
More precisely, we will try to find X ∈ PPM closest to any
minimizer of (CM):

min
X

{∥∥X − X∗
cm

∥∥
2

∣∣X ∈ PPM,X∗
cm ∈ P ∗

CM

}
(22)

Note the above problem is an integer quadratic program, and
thus NP-hard. To obtain an approximate solution, one can
relax the above problem by replacing the integral constraints
with nonnegativity constraints in the definition of P ∗

CM:

P ∗∗
CM =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑
k,l Xijkl = 1 for all i, j

∑
i,j Xijkl = 1 for all k, l

Xijkl ≥ 0 for all i, j, k, l
∑

(i,j),(k,l)∈bin(m) Xijkl = min{ch1
m, ch2

m}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The above polytope P ∗∗
CM is a convex set and if we replace

P ∗
CM with P ∗∗

CM in problem (22), then we obtain a convex
program. The correspondence recovery procedure is sum-
marized in Algorithm 1.

Algorithm 1 Correspondence estimation from chordio-
grams

Require: Chordiograms ch1, ch2 of two shapes.
1: Define P ∗∗

CM using ch1 and ch2.
2: Solve program (22) and obtain minimizer X∗ ∈ PPM.
3: Recover correspondence indicator variables x from X∗

using (18).
4: Obtain discrete indicators

x̂ij =
{

1 iff j = arg maxj1{xij1}
0 otherwise

Examples We show results of the correspondence recovery
algorithm on selected pairs of shapes from MPEG 7 dataset
(Latecki et al. 2000). From each shape, defined by the out-
line of the shape mask, we sample uniformly 30 points,
which are to be put in correspondence. The chordiogram is
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Fig. 11 Examples of recovered correspondence on pairs of shapes.
Points, colored in the same color, are in correspondence

computed using only the sample points. For the optimiza-
tion problem in step 2 of the algorithm, we use the CVX
optimization package (Grant and Boyd 2010). Results are
shown in Fig. 11. As we can see, correct correspondences
are recovered for most of the points for articulated as well
as rigid objects. The main difficulties are in cases of strong
articulation (see lizard in row 1, column 2, where animal’s
torso and tail are articulated differently), or lack of matching
points (see elephant in row 1, column 3, where in the left ob-
ject two legs are visible, while in the right object three legs
are visible).

4 Boundary Structure Segmentation and Detection
Model

The introduced chordiogram as a holistic and global repre-
sentation can potentially suffer from all the irrelevant struc-
ture present in images, such as interior contours and back-
ground clutter. This is a major challenge in applying global
object representations in realistic images, which include
multiple objects and rich background structure.

To address this problem, we propose a chordiogram-
based object detection model called Boundary Structure
Segmentation (BoSS) model, which solves simultaneously
for object segmentation and detection. First, we show how
to relate region segmentation to chordiogram matching in
Sects. 4.1 and 4.2. The bottom-up perceptual principles are
described in Sect. 4.3. The BoSS model and inference are
explained in full detail in Sects. 4.4 and 4.5.

4.1 Chordiogram Parameterization

In order to relate the chordiogram to image segmentation,
we parameterize it in terms of variables that track selected
segments and segment boundaries.

Oversegmentation As a starting point for our method, we
assume that we have an over-segmentation of the input im-
age. The property we require from the segments is that they
do not cross object boundaries (most of the time). In this
way, every object in the image is representable as a set of
such segments and the object boundary as a set of segment
boundary.

Fig. 12 There are two cases in which boundary b can be an object
boundary

Segment Parametrization For each segment k obtained via
the oversegmentation we introduce a segment indicator vari-
able sk ∈ {−1,1}:

sk =
{

1 segment k is foreground

−1 otherwise
(23)

We use N to denote the number of segments.

Segment Boundary Parameterization We denote by B the
set of all boundary segments between pairs of neighboring
segments, where the number of such boundary segments is
M = |B|. Note that a contour b is a boundary because ex-
actly one of its neighboring segments k and m is foreground
and the other is background (see Fig. 12). To differentiate
between those two cases, for each contour b and its two
neighboring segments k and m we include in B two bound-
aries: bm and bk . The first denotes the case when m is fore-
ground and k is background; the second denotes the opposite
case.

We introduce boundary indicator variables which indi-
cate whether a segment boundary is an object boundary.
This variable not only captures the state of the boundary but
tracks which segment configuration causes this state. More
precisely, for each boundary bk ∈ B we introduce a bound-
ary indicator variable tkb ∈ {0,1}:

tkb =

⎧
⎪⎨

⎪⎩

1 segment k is foreground and

segment m is background

0 otherwise

(24)

As a result, there are two variables associated with
each boundary. If a segment boundary designates an ob-
ject boundary, then exactly one of the variables has value 1.
Otherwise both are 0. The relationship between the values
of the boundary and segment variables is summarized in Ta-
ble 1. This relationship can be expressed in terms of two
constraints:

tkb − tmb = 1

2
(sk − sm) (25)

tkb tmb = 0 (26)
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Fig. 13 The chordiogram of an object can be decomposed in terms
of chordiograms which relate pair of boundaries, as shown on the left.
If the object is not segmented, the boundaries can be selected via the
boundary indicator variables

Table 1 We present the relationship between boundary and segment
indicator variables

Boundary Segments

tkb tmb sk sm

1 0 1 −1

0 1 −1 1

0 0 1 1

0 0 −1 −1

Chordiogram Additivity To parameterize the chordiogram
using the above variables, it will prove useful to provide an
equivalent definition to (2). For a given segmented object,
the chords connecting points on two boundaries b and c,
caused by segments k and m being foreground respectively,
can be described by a chordiogram chkm

bc ∈ R
K , bk, cm ∈ B

(see Fig. 13(a)):

(
chkm

bc

)
l
= #

{
(p, q) | fpq ∈ bin(l),p ∈ bk, q ∈ cm

}
(27)

The above quantity can be considered as boundary-pair
chordiogram. Note that the boundary-pair chordiogram is a
subset of the overall chordiogram. Then (2) can be expressed
as a sum of all boundary-pair chordiograms for all pairs of
boundaries. This has the following linear form:

ch =
∑

bk,cm∈B
chkm

bc (28)

The above decomposition will be referred to as chordiogram
additivity—the descriptor can be expressed in an additive
form in terms of relations between object parts. Note that
this is not a contradiction to the holistic nature of the de-
scriptor since the additive components are not object parts,
but configurations between parts.

Chordiogram Parameterization If we do not have a seg-
mented object, we can select the object boundaries using the
indicator variables (see Fig. 13(b)) and express the resulting

image chordiogram as follows:

ch(t) =
∑

bk,cm∈B
chkm

bc tkb tmc (29)

The value of the lth bin can be expressed as a quadratic func-
tion:

ch(t)l =
∑

bk,cm∈B

(
chkm

bc

)
l
t kb tmc = tT Qlt (30)

for a matrix Ql which contains the values of the boundary-
pair chordiogram: (Ql)bk;cm = (chkm

bc )l .
Note that in the above parameterization one needs to

indicate not only the boundary but also its relationship to
the neighboring segments. This information is already con-
tained in the chordiogram, since as defined in Sect. 2, each
chord captures the object interior via the orientation of the
normals.

4.2 Shape Matching

After we have parameterized the chordiogram in terms of
the boundary indicators (see (29)), we chose to compare it
with the model chmodel using L1 distance:

match(t,m) = ∥∥chmodel − ch(t)
∥∥

1 (31)

The above shape matching cost evaluates the shape similar-
ity between a model and a particular selection of segment
boundaries. This motivates us to formulate the problem of
shape matching as minimization of the above cost while tak-
ing into account the relation between boundaries and seg-
ments, as expressed in constraints in (25):

(SM): min
t,s

∥∥chmodel − ch(t)
∥∥

1 (32)

s.t. tkb − tmb = 1

2
(sk − sm) for all bm,bk ∈ B

tkb tmb = 0, t ∈ {0,1}2M, s ∈ {−1,1}N.

Solving the above optimization problem produces:

– Figure/ground segmentation: The optimal values of the
boundary and segment indicators encode the object inte-
rior and boundary.

– Shape-based detection cost: The minimum of the objec-
tive function quantifies the quality of the match based on
shape similarity.

Solving the optimization problem for several object mod-
els, and selecting the best match, accomplishes joint shape-
based detection and segmentation.

4.3 Perceptual Grouping

Our model can express grouping principles relating regions
as well as boundaries.
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Fig. 14 Left: input image. Middle: if we use all segment boundaries,
than non-existing objects can be easily hallucinated. Right: if we rely
on an edge/contour detection, then we can miss correct boundaries,
which the segmentation can potentially hallucinate

4.3.1 Region Grouping Principles

While matching the input image to a model, we would like
to ensure that the resulting figure represents a perceptually
salient segmentation, i.e. the resulting figure should be a co-
herent region or set of regions distinct from the background.
This property can be expressed using the segment indica-
tor variables, as introduced in Sect. 4.1, and a Min-Cut-type
smoothness criterion. If we denote by we,g the similarity be-
tween the appearance of segments k and m, then we can en-
courage region coherence by the standard graph cut score:

groupr (s) = −sT Ws = −1T W1 + 2
∑

k∈figure
m∈ground

wk,m (33)

for s ∈ {−1,1}N .

4.3.2 Boundary Grouping Principles

In many cases an edge/contour detector cannot detect all
object boundaries since there is no evidence in the image
(see Fig. 14, right). However, if we use segmentation we can
hallucinate object boundaries and recover the missing ones
(see Fig. 14, left). This comes with the danger that one can
also hallucinate non-existing objects in the maze of segment
boundaries.

To address this issue we propose to use all segment
boundaries, while at the same time incurring a cost if we
choose hallucinated ones. In this way we will be able to
complete the bottom of the bottle in Fig. 14 by paying a
small cost, while we will never detect the apple since the
cost for hallucinating all boundaries will be prohibitively
large.

For a boundary segment b, we denote by cb the percent of
the pixels of b not covered by image edges extracted using
thresholded Probability of Boundary edge detector (Martin
et al. 2004). Then the boundary cost is defined as

groupb(t) = cT t =
∑

bk∈B
cbt

k
b (34)

for tkb ∈ {0,1}2M .

Fig. 15 For an input image and model, as shown in the first row, our
algorithm computes an object segmentation displayed in (a) row. We
present three solutions by using only the matching term from (31) in
first column; the matching term together with the superpixel segmenta-
tion prior (see (33)) in second column; and the whole cost function con-
sisting of the matching, segmentation and the boundary term in third
column (see (35)). (b) We also show for the three cost combinations the
relaxed values of the segmentation variable s, as explained in Sect. 4.5

4.4 BoSS Model

The BoSS model combines the costs from the previous
sections. It solves for a shape match using cost (31) from
Sect. 4.2, while at the same time applies grouping principles
as formulated in costs (33) and (34) from Sect. 4.3:

min
t,s

match(t,m) + δgroupr (s) + γ groupb(t)

s.t. tkb − tmb = 1

2
(sk − sm) for bk, bm ∈ B (35)

tkb tmb = 0, t ∈ {0,1}2M, s ∈ {−1,1}N

where δ and γ are weights of the different terms. The differ-
ence from the problem (SM) in (32) lies in the addition of
two grouping terms.

Term Contributions We examine the contribution of each
term of the model on one concrete example presented in
Fig. 15. The shown results were obtained using the opti-
mization described in Sect. 4.5. By using only the matching
term we are able to localize the object and obtain a rough
mask, which however extends the back of the horse and ig-
nores its legs (first column). The inclusion of the superpixel
grouping bias helps to remove some of the erroneous su-
perpixels above the object which have a different color than
the horse (second column). Finally, if we add the bound-
ary term, it serves as a sparsity regularization on t and re-
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sults in a tighter segmentation (third column). Thus, the in-
correct superpixels above the horse get removed, since they
contain hallucinated boundaries not supported by edge re-
sponse. Additionally, it recovers some of the legs, since they
exhibit strong edge response along their boundary.

4.5 Inference

Both the Shape Matching problem formulated as an inte-
ger quadratic program (SM) in (32) and the BoSS program
in (35) are in general NP-hard. This is not surprising since
it is the problem of selecting from a set of exponentially
many segments such that the resulting region has a de-
sired shape and perceptual properties. To compute an ap-
proximate solution, we apply the Semi-definite Program-
ming (SDP) relaxation (Goemans and Williamson 1995;
Boyd and Vandenberghe 2004). Since the latter program is
a superset of the former, we present an optimization scheme
for the BoSS program only.

First, we re-write the objective as a linear function and
a set of quadratic constraints. We introduce for the lth bin
a variable βl , which denotes the difference of the model
and image chordiogram at this bin. Then the objective of
the BoSS program can be expressed in terms of β and a
quadratic constraint for each bin:

(BoSS): min
t,s,β

1T β − δsT Ws + γ cT t (36)

s.t. tT Qlt − chmodel
l ≤ βl (37)

chmodel
l − tT Qlt ≤ βl (38)

tkb − tmb = 1

2
(sk − sm) (39)

tkb tmb = 0 (40)

t ∈ {0,1}2M, s ∈ {−1,1}N (41)

for all pairs of segment boundaries bk, bm ∈ B. In the first
two constraints (37) and (38) we use the chordiogram pa-
rameterization as defined in (30).

To apply the SDP relaxation, we introduce variables T

and S, which bring both the quadratic terms (37) and (38)
into linear form: T = t tT ; and the quadratic terms in (36)
into linear form: S = ssT . This allows us to state the relax-
ation as follows:

(BoSSsdp): min
t,s,β

1T β − δtr
(
WT S

) + γ cT t (42)

s.t. tr
(
QT

l T
) − chmodel

l ≤ βl (43)

chmodel
l − tr

(
QT

l T
) ≤ βl (44)

tkb − tmb = 1

2
(sk − sm) (45)

Tbk;bm = 0 (46)

tkb = Tbk;bk for bk ∈ B (47)

diag(S) = 1n (48)
(

T t

tT 1

)
� 0 (49)

(
S s

sT 1

)
� 0 (50)

The above problem was obtained from problem (36) in
two steps. First, we relax the constraints T = t tT to T � t tT

and S = ssT to S � ssT respectively, which by Schur com-
plement are equivalent to (49) and (50) (Boyd and Vanden-
berghe 2004). Second, we weakly enforce the domain of the
variables from the constraint (41). The −1/1-integer con-
straint on s is expressed as diagonal equality constraint on
the relaxed S (see (48)), which can be interpreted as bound-
ing the squared value of the elements of s by 1. The 0/1-
integer constraint (see (47)) is enforced by requiring that
the diagonal and the first row of T have the same value.
Since T = t tT , this has the meaning that the elements of t

are equal to their squared values, which is only true if they
are 0 or 1. Finally, the boundary-region constraints, one of
which is quadratic, naturally translate to linear constraints.

The above problem is a linear program with inequality
constraints in the cone of positive semi-definite matrices. As
such, it is convex and can be solved exactly with any stan-
dard optimization package which supports such problems.

Discretization Discrete solutions are obtained by thresh-
olding s. Since s has N elements, there are at most N differ-
ent discretizations, all of which are ranked using their dis-
tance to the model. If a threshold results in a set of sev-
eral disconnected regions, we consider all possible subsets
of this set. For each of the discretized segmentations, the
matching cost function is evaluated. The algorithm outputs
the top 5 ranked non-overlapping masks. Note that we are
capable of detecting several instances of an object class
since they result in several disconnected regions which are
evaluated independently.

BoSS Algorithm The BoSS algorithms starts with an input
image and a set of models. It solves the above optimization
problem for each image-model pair at each scale. The best
matching model gives the object segmentation as well as a
detection cost—the chordiogram distance of the model to
the obtained segmentation. The full details are presented in
Algorithm 2.

5 Related Work

In the context of the proposed method, we review in this
section relevant work.
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Algorithm 2 BoSS algorithm.
Input: Model masks m1, . . . ,mk ; image segmentation
parametrized by t and s; scales h1, . . . , hp .
for i = 1 . . . k do

for j = 1 . . . p do
mi,j ← rescale mi to scale hj :
Compute chmod

i,j of mi,j at scale hj using (2).

Solve relaxed BoSS problem (42) using chmodel
i,j .

Discretize to obtain segmentation si,j .
Compute chi,j from si,j at scale hj using (2).

Detection cost: di,j ← ∥∥ chi,j

‖chi,j ‖ − chmodel
i,j

‖chmodel
i,j ‖

∥∥
1.

end for
end for
(i∗, j∗) ← arg mini,j di,j .
Output: Segmentation si∗,j∗ and detection cost di∗,j∗ .

Holistic Representations Some of the first attempts to de-
fine holistic representations are based on global transforms
of the input object shape. Examples include Fourier coeffi-
cients of a contour distance function (Zhang and Lu 2003)
and Zernicke moments applied on the object mask (Zhang
and Lu 2003). Another class of holistic shape representa-
tions was initiated by the development of the Medial Axis
Transform by Blum, which is defined as the set of centers of
maximally inscribed circles in a closed shape (Blum 1973).
This set can be thought of as a skeleton of the shape, which is
computed globally, and reveals geometrical as well as topo-
logical shape properties. Depending how those properties
are captured, the medial axis has led to the development of
Shocks, Shock graphs (Kimia et al. 1995; Siddiqi et al. 1999;
Sebastian et al. 2004; Trinh and Kimia 2011) as well as M-
reps in medical imaging (Pizer et al. 1999). To deal with the
instability of the medial axis to small boundary protrusions
a more robust transform based on the Poisson equation has
been proposed (Gorelick and Basri 2009).

More recently, Zhu et al. (2008) proposed a holistic shape
matching approach which selects relevant object contours
while matching Shape Contexts (Belongie et al. 2002). In
a follow-up work, the above matching has been combined
with discriminative learning to leverage salient object con-
tours (Srinivasan et al. 2010).

The presented BoSS model does not try to establish a
point correspondence between the model and the object
shape. In many cases, however, an explicit correspondence
estimation between the two shapes lies in the core of a shape
matching technique. Spectral graph matching in conjunction
with geometric features of edgels and pairs of edgels has
been used by Leordeanu et al. (2007). A parametric statisti-
cal framework, which models the shape deformation of the
point set is the Active Shape Model (Cootes 1995).

Simpler models which do not capture all pairwise rela-
tionships between shape parts depart from the idea of holism

but allow for tractable inference. This is commonly done by
treating a shape as a linearly ordered point set instead of un-
organized point set as the chordiogram assumes. Lu et al.
(2009) explore particle filtering to search for a set of object
contours. Felzenszwalb and Schwartz (2007) propose a hier-
archical representation by decomposing a contour into a tree
of subcontours and using dynamic programming to perform
matching. A globally optimal shape matching and segmen-
tation based on the Minimum Ratio Cycle algorithm was
introduced by Schoenemann and Cremers (2007). Dynamic
programming has been also applied in a multi-stage frame-
work to search for a chain of object contours (Ravishankar et
al. 2008). A similar approach to shape-based recognition is
to search for a chain of image contours which best matches
to a model in a contour network extracted from the image
(Ferrari et al. 2006).

The chordiogram uses edgels as atomic shape parts. A
different approach is to use contour segments as parts. For
example, a descriptor of groups of adjacent contour seg-
ments was introduced in conjunction with an SVM classifier
for the purpose of recognition (Ferrari et al. 2008). Bound-
ary fragments scored using a classifier and geometrically re-
lated to an object center have been explored as well (Opelt et
al. 2006; Shotton et al. 2005). The simple fragment config-
uration model allows for efficient inference using a voting
scheme.

Statistical Representations The presented descriptor in
this work captures relationships among edgels in a statis-
tical fashion. Similarly, geometric hashing has been used to
describe purely geometric properties (Lamdan et al. 1990)
as well as topological properties at a global scale (Carls-
son 1999). A widely used descriptor, called Shape Context
(Belongie et al. 2002) captures a semi-local distribution of
edges. Its descriptive power has been extended to more de-
formed and articulated shapes (Ling and Jacobs 2007).

Histograms of geometric properties of sets of points have
been used to match 3D models (Osada et al. 2002). These
histograms can be interpreted as distributions of shape func-
tions, where each function represents a property of a small
set of points.

Recognition and Segmentation Close interplay between
segmentation and recognition has been studied by Yu and
Shi (2003) who guide segmentation using part detections
and do not use global shape descriptors. Segment shape
descriptors based on the Poisson equation have been used
for detection and segmentation (Gorelick and Basri 2009).
Leibe et al. (2008) combine recognition and segmentation
in a probabilistic framework. Recently, Gu et al. (2009) use
global shape features on image segments. However, segmen-
tation is a preprocessing step, decoupled from the subse-
quent matching.
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Object dependent segmentation has been addressed in
prior work (Borenstein et al. 2004; Levin and Weiss 2006).
Both methods combine bottom-up segmentation with top-
down matching, using templates of object parts as a way
to match shape. An explicit reasoning about figure/ground
organization has been proposed by Ren et al. (2005) who
use shapemes for local shape matching. Although these ap-
proaches have segmentation and boundary priors they em-
ploy only local shape descriptors.

6 Experiments

In this section we evaluate both the chordiogram on its own
as well as BoSS on several established benchmarks. The pa-
rameter of the model and its implementation details are de-
scribed in Sect. 6.1. In Sect. 6.2 we evaluate the performance
of the chordiogram on the task of recognition of preseg-
mented objects. In Sect. 6.3 we present recognition and seg-
mentation results of our chordiogram-based method BoSS
on two datasets of real cluttered images.

6.1 Implementation Details

We use the chordiogram on presegmented objects with
parameters bl = 4, br = 8, bn = 8, resulting in a 2048-
dimensional descriptor. The number of bins was selected
such that on the one hand it results in a discriminative de-
scriptor and on the other hand the dimensionality of the de-
scriptor is not too large. When we use the chordiogram in
the BoSS model, we use bl = 3, br = 4, bn = 4, resulting in
a 196-dimensional descriptor. A lower dimensional descrip-
tor is used for computational reasons—in the BoSS infer-
ence in (36) we introduce a variable for each chordiogram
bin and thus a larger descriptor would result in a harder op-
timization.

To obtain superpixels we oversegment the image using
NCuts (Cour et al. 2005) with n = 45 segments. The num-
ber of segments was chosen such that the resulting segmen-
tation covers most of the object boundaries. The grouping
cues used to define the affinity matrix Wpixels are color and
intervening contours (Yu and Shi 2003) based on Probability
of Boundary edge detector (Martin et al. 2004).

To define the segmentation term (33) in our model we
can use any affinity matrix. We choose to use the same
grouping cues as for segmentation above. For each pair of
superpixels k and m we average the pixel affinities to ob-
tain an affinity matrix over the superpixels: W

superpixels
km =

1
akam

∑
p∈k,q∈m Ŵ

pixels
pq , where ak and am are the size of

the superpixels k and m respectively. Above, Ŵpixels is ob-
tained from the top n eigenvectors E of Wpixels : Ŵpixels =
EΛET ≈ Wpixels , where Λ are the corresponding eigen-
values. This low-rank approximation represents a smoothed

version of the original matrix and reduces the noise in the
original affinities. Finally, the weights of the term in (35)
were chosen to be δ = 0.01 and γ = 0.6 on five images from
ETHZ dataset and held constant for all experiments.

For the optimization we use SeDuMi (Sturm 1999) which
is based on the Primal-Dual Interior Point Method. To com-
pute the number of variables in the SDP, one can assume
that each superpixel has at most C neighboring superpixels.
Hence we obtain M = Cn boundary variables. Thus, if we
denote by D the dimensionality of the chordiogram, then
the total variable number in the relaxed problem is bounded
by n2 + C2n2 + D ∈ O(n2). In our experiments, we have
n = 45 and the value of C is less than 5 which results in less
than 200 boundary segment variables. The empirical run-
ning time of the optimization is around 30–45 seconds on
a 3.50 GHz processor. Note that for other applications the
number of needed superpixels n to segment an object might
be larger than 45 which will increase the running time of the
algorithm.

6.2 Chordiogram Evaluation

To evaluate the performance of the chordiogram for the
task of object recognition, we perform experiments on the
MPEG-7 CE-Shape 1 part B dataset (Latecki et al. 2000).
This dataset is used for evaluation of shape-based classifi-
cation and retrieval. It consists of 1400 binary object masks
representing 70 different classes, each class having 20 ex-
amples. The recognition rate reported for this dataset is the
Bullseye score: each shape is matched to all shapes and the
percentage of the 20 possible correct matches among the top
40 matches is recorded; the score is the average percentage
over all shapes.

To compute a distance between two binary object masks
using the chordiogram, we first scale-normalize the masks.
Since the chordiogram is not rotation invariant, we rotate
each mask br times using br rotations of angle {0, 2π

br
, . . . ,

(br −1) 2π
br

} around the object mask center of mass, compute
the chordiogram and normalize it by setting its L1 norm to 1.
Thus, we obtain br descriptors {ch(1)

i , . . . , ch(br )
i } for the ith

object. The distance between two objects i and j is defined
as the smallest distance in L1 sense among all rotated chor-
diograms:

d(i, j) = min
θi ,θj

{∥∥ch(θi )
i − ch

(θj )

j

∥∥
1|θi, θj ∈ {1, . . . , br}

}

The bullseye score of the chordiogram in comparison to
other shape matching approaches is presented in Table 2.
Using the above setup, we achieve a score of 80.85%. We
outperform most of the approaches with exception of Shape
Trees by Felzenszwalb and Schwartz (2007), Hierarchical
Procrustes by Mcneill and Vijayakumar (2006) and Inner
Distance Shape Context by Ling and Jacobs (2007). The
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Table 2 Bullseye score of the chordiogram and other shape matching
methods on the MPEG dataset

Method Bulleye score

Mokhtarian et al. (1997) 75.44%

Latecki and Lakamper (2000) 76.45%

Belongie et al. (2002) 76.51%

Sebastian et al. (2003) 78.16%

Tu and Yuille (2004) 80.03%

chordiogram 80.85%

Ling and Jacobs (2007) 85.40%

Mcneill and Vijayakumar (2006) 86.35%

Felzenszwalb and Schwartz (2007) 87.70%

main reason is that the latter methods are based on metrics
which are computed along the shape contour, while our ap-
proach uses Euclidean distances to capture shape. As a re-
sult these methods deal better with non-rigid deformations
and articulations than the chordiogram.

However, the use of rigid metrics to capture relationships
between contours allows for a parameterization of the chor-
diogram in terms of image segmentation and thus deals with
image clutter, as we will see in the next section. An addi-
tional advantage of the chordiogram is that its distance is
simply a L1 norm computation, while the above approaches
require an inference of some sort.

6.3 BoSS Evaluation

In this section we turn to the evaluation of our complete
model BoSS on two datasets consisting of real images.

6.3.1 ETHZ Shape Dataset

The ETHZ Shape Dataset (Ferrari et al. 2010) consists of
255 images of 5 different object classes—Applelogos (40
images), Bottles (48 images), Mugs (48 images), Giraffes
(87 images) and Swans (32 images). The dataset is designed
in such a way that the selected object classes do not have dis-
tinctive appearance and the only representation, which can
be used to detect object class instances, is their shape. As
a result, this dataset has been widely used for evaluation of
shape-based detection methods. Some of the challenges in
this dataset are highly cluttered images—in the background
as well as internal spurious contours; wide variation of ob-
ject scale; multiple instances of an object in the same image.
However, the depicted objects are fully included in the im-
ages and are not occluded. Also, the used objects vary in
shape but are not articulated (detection of the giraffe’s legs
is not part of the task).

We apply the BoSS model using hand-drawn object out-
lines as shape models, one model per class. These models

were supplied with the dataset. We use 7 different scales,
such that the scale of each model, defined as the diame-
ter of its bounding box, ranges from 100 to 300 pixels. We
use non-maximum suppression—for every two hypotheses,
whose bounding boxes overlap by more than 50%, we retain
the one with the higher score and discard the other one.

Detection Results In order to compute precision, recall and
detection rates, traditionally two detection criteria were es-
tablished. According to the 20% overlap detection criterion
we declare a detection if the intersection of the hypothesis
and ground truth bounding boxes overlap more than 20%
with the each of them. A stricter criterion is the Pascal cri-
terion which declares a detection if the intersection of the
hypothesis and groundtruth bounding boxes is at least 50%
of their union.

The results of BoSS under both criteria are presented and
compared to other methods in Table 3 and Fig. 16. Under
the 20% overlap criterion we achieve state-of-the-art perfor-
mance of 91.2%/93.0% detection rate at 0.3/0.4 false pos-
itives per image (fppi). Under the stricter Pascal criterion
we achieve 86.1%/88.6% detection rate at 0.3/0.4 fppi with-
out any learning. With learning, which we call reranking
(see below), we achieve state-of-the-art detection rates of
94.3%/96.0%.

For Applelogos, Swans and Bottles, the results for both
criteria are almost the same, which shows that we achieve
good localization of the objects. For Giraffes and Mugs re-
sults are slightly lower due to imperfect segmentation (some
segments leak into the background or missed parts)—the de-
tections which are correct under the weaker 20% overlap cri-
terion, are not counted as correct under the Pascal criterion.

In Fig. 17 we show examples of typical detections in the
datasets described above. Our method is capable of detect-
ing objects of various scales in highly cluttered images, even
when the object is small and most of the image contours
and segments are not part of the object. Note that the trans-
lation invariance of the chordiogram allows us to find the
object without having to search exhaustively for location.
Additionally, the segmentation gives us a pixel-level object
localization which is much more precise compared to the
bounding-box localization used by other methods.

Our approach is robust against local shape variations as
well as global transformations. As shown in Fig. 18(a), us-
ing a single mug model BoSS obtains detections of objects
whose shape deviates from the model in various ways: as-
pect ration, global shape, shape of parts, etc. In addition, it
tolerates global transformations as minor rotations and fore-
shortening (see Fig. 18(b)).

The major sources for incorrect detections are accidental
alignments with background contours, which we call hallu-
cinations, and partially incorrect boundaries (see Fig. 19).
The former cause shows the limitation of shape—one can
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Table 3 Detection rates at 0.3/0.4 false positives per image, using the
20% overlap and Pascal criteria. († use only hand-drawn models; ∗
use strongly labeled training data with bounding boxes, while we use
hand-drawn models and weakly labeled data (no bounding boxes) in

the reranking; � considers in the experiments only at most one object
per image and does not detect multiple objects per image; ◦ uses a
slightly weaker detection criterion than Pascal)

Algorithm Apple logos Bottles Giraffes Mugs Swans Average

20% over. BoSS† 86.4%/88.6% 96.4%/98.2% 97.8%/97.8% 84.8%/86.4% 93.4% /93.4% 91.2%/93.0%

(Lu et al. 2009)†� 92.5%/92.5% 95.8%/95.8% 86.2%/92.0% 83.3%/92.0% 93.8%/93.8% 90.3%/93.2%

(Fritz and Schiele 2008)∗ –/89.9% –/76.8% –/90.5% –/82.7% –/84.0% –/84.8%

(Ferrari et al. 2010)† 84.1%/86.4% 90.9%/92.7% 65.6%/70.3% 80.3%/83.4% 90.9%/93.9% 82.4%/85.3%

Pascal crit. BoSS† 86.4%/88.6% 96.4%/96.4% 81.3%/86.8% 72.7%/77.3% 93.9%/93.9% 86.1%/88.6%

BoSS∗
rerank 100%/100% 96.3%/97.1% 86.1% /91.7% 90.1%/91.5% 98.8%/100% 94.3%/96.0%

(Maji and Malik 2009)∗ 95.0%/95.0% 92.9%/96.4% 89.6%/89.6% 93.6%/96.7% 88.2%/88.2% 91.9%/93.2%

(Srinivasan et al. 2010)∗ 95.0%/95.0% 100%/100% 87.2% /89.6% 93.6%/93.6% 100%/100% 95.2%/95.6%

(Gu et al. 2009)∗ 90.6%/– 94.8%/– 79.8%/– 83.2%/– 86.8%/– 87.1%/–

(Ravishankar et al. 2008)†◦ 95.5%/97.7% 90.9%/92.7% 91.2%/93.4% 93.7%/95.3% 93.9%/96.9% 93.0%/95.2%

Fig. 16 Results on ETHZ Shape dataset. Results using BoSS are shown using 20% overlap as well as after reranking using the stricter Pascal
criterion. Both consistently outperform other approaches, evaluated using the weaker 20% overlap criterion

sometimes find a constellation of contours which resemble
the model outline. Some of those cases can be ruled out by
using perceptual grouping principle. However, in other cases
the lack of an appearance model is limiting.

Reranking In order to compare with approaches on the
ETHZ Shape Dataset which use supervision, we use weakly
labeled data to rerank the detections obtained from BoSS.
We use only the labels of the training images to train a clas-
sifier but not the bounding boxes. This classifier can be used
to rerank new hypotheses obtained from BoSS.

More precisely, we use half of the dataset as training and
the other half as test (we use 5 random splits). We use BoSS
to mine for positive and negative examples. The top de-
tection in a training image using a model which represents
the label of that image is considered a positive example; all
other detections are negative examples. The chordiograms of
these examples are used as features to train one-vs-all SVM
(Joachims 1999) for each class. During test time, each de-
tection is scored using the output of the SVM corresponding
to the model used to obtain this detection.

Note that this is a different setup of supervision which re-
quires less labeling—while we need one hand-drawn model
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Fig. 17 Example detection on
ETHZ Shape Dataset. For each
example, we show on the left
side the input image and in the
middle and the right side the
segmentation for the best
matching model. In particular,
we show in the middle the
selected segment boundaries in
green. On the right the selected
object mask and the best
matching model are displayed
(Color figure online)

per class to obtain detections via BoSS, we do not use the
bounding boxes but only the labels of the training images
to score them. We argue that the effort to obtain a model
is constant while segmenting images by hand is much more
time consuming. Although the hand-drawn models are the
driving force for object detection, the weakly labeled data
is used to learn a discriminative chordiogram-based model
which takes into account the shape deformations present in
the dataset and not captured in the hand-drawn model. The
majority of the approaches in Table 3, which use learning,
use bounding-boxes as labeling but no hand-drawn models.

The results are shown in Table 3. The weak supervision
leads to 94.3%/96.0% detection rate under Pascal criterion,

which is an improvement of approx. 5% over BoSS. It is at-
tributed to the discriminatively learned weights of the chor-
diogram’s bins. This corresponds to discriminatively learn-
ing object shape variations and builds on the power of BoSS
to deal with clutter.

Segmentation In addition to the detection results, we eval-
uate the quality of the detected object boundaries and object
masks. For evaluation of the former we follow the test set-
tings of Ferrari et al. (2010).2 We report recall and precision

2A detected boundary point is considered a true positive if it lies within
t pixels of a ground truth boundary point, where t is set to 4% of the
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Table 4 Precision/recall of the detected object boundaries and pixel
classification error of the detected object masks for the ETHZ Shape
Dataset. We present results using only the shape matching cost

(see (32)) as well as the full cost—BoSS—which consists of shape
matching as well as perceptual grouping terms (see (35))

Boundary precision/recall Pixel error

SM BoSS Ferrari et al. (2010) SM BoSS

Applelogos 91.9%/97.1% 91.8%/97.5% 91.6%/93.9% 2.0% 1.6%

Bottles 89.4%/91.1% 90.3%/92.5% 83.4%/84.5% 2.8% 2.7%

Giraffes 75.4%/81.3% 76.8%/82.4% 68.5%/77.3% 6.2% 5.9%

Mugs 77.7%/89.1% 86.5%/90.5% 84.4%/77.6% 5.5% 3.6%

Swans 81.0%/86.8% 85.8%/87.6% 77.7%/77.2% 6.7% 4.9%

Fig. 18 Example detections on the ETHZ Shape Dataset which show
the robustness of the chordiogram and BoSS to shape variations. For
each example, we show on the left side the selected segment bound-
aries in green, and on the right the selected object mask. We use the
same model to obtain those detections. Note, however, that the detected
mugs may have different aspect ratio, largely varying shape of the body
(rectangle or cone), and shape and size of the handle

of the detected boundaries in correctly detected images in
Table 4. We achieve higher recall at higher precision com-
pared to Ferrari et al. (2010).3 This is mainly result of the
fact that BoSS attempts to recover a closed contour and in
this way the complete object boundary. These statistics show
that the combination of shape matching and figure/ground
organization results in precise boundaries (>87% for all
classes except Giraffes). The slightly lower results for Gi-
raffes is due to the legs which are not fully captured in the
provided class models. We also provide object mask eval-
uation as percentage of the image pixels classified incor-
rectly by the detected mask (see Table 4). For all classes we

diagonal of the ground truth mask. Based on this definition, one com-
putes recall and precision.
3It should be noted that we use hand-drawn models while Ferrari et al.
(2010) uses the models learned from the labeled data.

Fig. 19 Examples of missdetections

achieve less than 6% error, and especially classes with small
shape variation such as Bottles and Applelogos we have pre-
cise masks (< 3% error).

To analyze the contribution of the perceptual terms, we
apply BoSS on the ETHZ Shape Dataset without the percep-
tual terms (see program SM in (32)) and compare the result-
ing segmentations and object boundaries to the one obtained
using the full BoSS model. The results are compared in Ta-
ble 4. Although SM performs pretty comparable to the full
model, its boundary and pixel precisions are slightly below
the ones obtain via BoSS—on average SM has 4.6% pixel
error, while BoSS reduces it to 3.7%. Perceptual grouping
tends to correct shape-based segmentation in cases where
the shape match is not very good, but the bottom-up group-
ing is based on a strong signal.

6.3.2 INRIA Horses Dataset

The INRIA Horses Dataset has 340 images, half of which
contain horses and the other half have background objects.
This dataset presents challenges not only in terms of clutter
and scale variation, but also in articulation, since the horses
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(a)

Method Det. rate

BoSS 92.4%
Maji and Malik (2009) 85.3%
Ferrari et al. (2008) 80.8%
Ferrari et al. (2010) 73.8%

(b)

Fig. 20 (a) Detection rate vs false positives per image (fppi) for our
and other approaches on INRIA Horse dataset. (b) Detection rates at
1 fppi

are in different poses. Also, some of the objects are partially
occluded.

We use 6 horse models representing different poses for
the INRIA Horse Dataset (see Fig. 21). In these experi-
ments we used 10 scales such that the scale of the model,
defined as the diameter of its bounding box, ranges from 55
to 450 pixels. Similarly to the previous dataset, we use non-
maximum suppression—for every two hypotheses, whose
bounding boxes overlap by more than 50%, we retain the
one with the higher score and discard the other one.

Detection Results On INRIA Horses dataset, we achieve
state of the art detection rate of 92.4% at 1.0 fppi (see
Fig. 20). Examples of detections of horses in different poses,
scales and in cluttered images are shown in Fig. 21.

6.3.3 BoSS vs. Multiple Segmentation-Based Approaches

Most of the applications of segmentation in computer vision
serve as coarsening of the input space. In the case of gen-
eral object recognition, one often computes texture-based
descriptors for each segment (Shotton et al. 2009), groups
of segments (Malisiewicz and Efros 2008) or bag-of word
descriptors of segments (Russell et al. 2006). In such ap-
proaches, a pre-segmentation is considered useful if a seg-
ment or groups of segments overlap sufficiently well with

Fig. 21 Examples of detections on the INRIA Horses Dataset. For
each image we show the selected superpixel boundaries on the left and
the detected object segmentation on the right. Bottom right: 6 models
used in the experiments

the object of interest. Therefore, using small groups of seg-
ments or multiple segmentations is often enough to capture
an object.

In the case of shape-based object detection, it is impor-
tant to capture the correct object boundaries in a segment
selection. Therefore, even if the overlap of a segment or a
group of segments with an object of interest is large, these
segments may not capture the shape of the object at all.

To see the importance of being able to select all possi-
ble groups of segments, we compare the BoSS model to
chordiogram-based detection over segments computed via
multiple segmentations. More precisely, we use three differ-
ent segmentations per image with 10, 20, and 30 segments.
For each segmentation, we compute groups of connected
segments of up to 5 segments. This results on average in
5337 groups of segments per image. We consider each group
of segments as a hypothesis for an object segmentation. To
evaluate how likely a hypothesis is an object of a particu-
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Fig. 22 We present three different measures for the quality of the seg-
mentation. For each measure, we use all images from the ETHZ Shape
Dataset and pre-segmentations with 10, 20, 30, and 45 segments. We

display for each measure and pre-segmentation, the median in red, the
25% and 75% quantile as blue boxes, and the range of the values as
black lines (Color figure online)

Table 5 Detection rates of Group of Segments (GoS) and BoSS at 0.3
and 0.4 fppi for the five classes of the ETHZ Shape Dataset

Applelogos Bottles Giraffes

GoS 38.6%/43.2% 85.5%/87.3% 46.2%/52.8%

BoSS 86.4%/88.6% 96.4%/96.4% 81.3%/86.8%

Mugs Swans Average

GoS 50%/50% 78.8%/78.8% 59.1%/62.4%

BoSS 72.7%/77.3% 93.9%/93.9% 86.1%/88.6%

lar class, we compute the chordiogram distance between the
hypothesis and the object model.

The detection rates for the five classes of the ETHZ Shape
Dataset are presented in Table 5. We can see that using only
groups of segments, the detection rate drops, the main rea-
son being that a selection of up to 5 segments is not suf-
ficient to capture all object boundaries. This is apparently
drastic for Applelogos and Mugs, which are large and oc-
cupy most of the image. Of course, one can increase the size
of the groups, however their number groups exponentially
with their size. Therefore, it would become less feasible to
compute the chordiogram for all groups of larger sizes.

6.3.4 Number of Input Superpixels

As justified above, being able to select any possible combi-
nation of segments as a figure segmentation is of paramount
importance when it comes to shape-based object detection.
Using more segments could potentially result in a better ob-
ject segmentation since one should be able to model finer
details of an object shape. However, having more segments
comes at a higher cost since the optimization problem in
Sect. 4.5 will be carried over a larger number of variables.

To evaluate the importance of the number of segments
in the final object segmentation, we run BoSS with a
pre-segmentation on the ETHZ Shape Dataset with 10,
20, 30 and 45 superpixels. For every level of input pre-
segmentation, we evaluate the obtained object segmentation
using the ground truth model and scale for each image. We
use the Pascal overlap score. To better evaluate the qual-
ity of the boundaries of the segmentation, we also compute
boundary precision/recall, as used in the evaluation of the
segmentation in Sect. 6.3.

The results for those three measures over the whole
dataset for the four setups are summarized in Fig. 22. We can
see that the Pascal overlap scores improve with increasing
number of segments. Moreover, the values become closer to
the median, which indicates that with increasing number of
segments the quality of the segmentation improves for more
images. Similar behavior can be observed for boundary pre-
cision/recall. The biggest improvement is in the recall—as
we have more segments, we obtain larger portions of the ob-
ject boundaries better. Also, we can see that there is a clear
improvement from 10 to 20 and from 20 to 30 segments.
However, the observed improvement beyond 30 segments is
small. This means that using 30 segments for this dataset is
sufficient to capture most of the objects. Hence, we use 45
segments in the preceding experiments.

7 Conclusion

In this paper we introduce a novel shape descriptor, called
chordiogram, and a shape-based segmentation and recog-
nition approach, called Boundary Structure Segmentation
(BoSS).

The chordiogram is a global descriptor, which is moti-
vated by the idea of holism introduced by the Gestalt school
of perception. As such, the descriptor capture the object
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shape as a whole. Moreover, the chordiogram can be param-
eterized in terms of image segments. As such it can be re-
lated to perceptual grouping principles in the image, such as
consistency in region appearance and small hallucinations
of object boundaries. This allows us to combine the chor-
diogram with perceptual grouping in the unified approach
(BoSS). We perform simultaneous shape matching and seg-
mentation and as a result, enable holistic shape-based object
detection in cluttered scenes.

The approach is analyzed both theoretically and empiri-
cally. We show that the chordiogram can be viewed as an ap-
proximation of graph matching techniques for shape match-
ing. Furthermore, we show very good performance of the
descriptor for the task of shape retrieval. We evaluated BoSS
for both object recognition and precise object localization on
two datasets of realistic images and achieves state of the art
results on both tasks.
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Appendix A: Proofs of Theorems 1 and 2

Theorem 1 Consider the chord matching problem (CM)
(see (20)) with the multilevel chordiogram-based distance
(see (6)):

min
X

Wmbins · X subject to X ∈ PCM

The solution of this problem can be characterized as follows:

– The minimum can be analytically computed using the
chordiogram distance:

min
X∈PCM

Wmbins · X =
B∑

b=−1

αb

∥∥chb,1 − chb,2
∥∥

1

for weights αb = 2b.
• All the minimizers can be described in terms of the chor-

diograms of the individual shapes with the following set:

P ∗
CM =

{
X ∈ PCM

∣∣∣∣
∑

(i,j)∈binb(m)
(k,l)∈binb(m)

Xijkl = min
{
chb,1

m , chb,2
m

}

for all bins m and schemes b

}
(51)

Proof First we will show that the chordiogram matching
lower bounds the problem (CM) for all X ∈ PCM. In a sec-
ond step, we will show that for X∗ ∈ P ∗

CM the bound turns
into an equality.

Lower Bound for (CM) Suppose that X ∈ PCM. Then, one
can show that

B∑

b=−1

αb

∥∥chb,1 − chb,2
∥∥ (52)

=
B∑

b=−1

αb

∥∥∥
∥
∑

i,j

chb,1
ij −

∑

k,l

chb,2
kl

∥∥∥
∥

1

(def. of chordiogram)

=
B∑

b=−1

αb

∥∥∥∥
∑

i,j

(∑

k,l

Xijkl

)
chb,1

ij

−
∑

k,l

(∑

i,j

Xijkl

)
chb,2

kl

∥∥∥
∥

1
(53)

=
B∑

b=−1

αb

∥∥∥∥
∑

i,j,k,l

(
chb,1

ij − chb,2
kl

)
Xijkl

∥∥∥∥
1

≤
∑

i,j,k,l

B∑

b=−1

αb

∥∥chb,1
ij − chb,2

kl

∥∥
1Xijkl (54)

=
∑

i,j,k,l

Wmbins
ij ;kl Xijkl (by (6))

= Wmbins · X

Line (53) is derived using the correspondence uniqueness,
while line (54) uses the positivity of the variables.

Minimizers for (CM) As a second step, we will show that
for each X∗ ∈ P ∗

CM the above inequality turns into an equal-
ity.

Consider for a moment a concrete bin m using finest bin-
ning scheme b = −1. We can use the bin indices of the
chords to define a matching between them. More precisely,
we put chords in correspondence if they lie in the same bin.
After this procedure there will remain chords which are not
in any correspondence. The correspondence assignment for
such chords is deferred for a coarser binning scheme.

Now we turn to the description of the correspondence as-
signment for a particular binning scheme b. For the sake
of brevity we will skip the binning scheme index b. Sup-
pose that X gives a chord mapping for which dm denotes
the number of chords from shape 1 from bin m mapped to
chords from shape 2 which are also in bin m; am chords
from shape 1 from bin m mapped to chords not in bin m;



Int J Comput Vis

and cm chords from shape 1 not in bin m mapped to chords
from shape 2 in bin m. From the definition of dm we have

dm =
∑

(i,j)∈bin(m)
(k,l)∈bin(m)

Xijkl (55)

Since ch1
m counts all the chords lying in bin m from shape

1, which can be mapped either to chords in bin m or not in
bin m from the other shape, then ch1

m = am + dm. Similarly,
ch2

m = dm + cm. Therefore, |ch1
m − ch2

m| = |am − cm|.
Also, since the

∑
ijkl |(ch1

ij )m − (ch2
kl)m|1Xijkl = am +

cm. Thus, we can express the gap in the above inequality
derivation for a single binning scheme as:

Wb · X − ∥∥ch1 − ch2
∥∥

1 =
∑

m

(
am + cm − |am − cm|)

X is a minimizer for (CM) exactly when the above gap
equals zero, i.e. am + cm − |am − cm| = 0 for all m. This
is equivalent to min{am, cm} = 0, which holds iff dm =
min{ch1

m, ch2
m}. The latter identity together with (55) gives

the desired characterization.
Now, suppose that db

m = min{ch1,b
m , ch2,b

m } holds for all
binning schemes from the definition of multiple-bin distance
between chords from (6). This means that all gaps disappear:

Wb · X − ∥
∥chb,1 − chb,2

∥
∥

1 = 0 for all b ∈ {−1,0, . . . ,B}
with B = �log(Δ/δ)� as defined in Sect. 3.3. Combining the
above inequalities together with weights αb gives the equal-
ity relationship in the theorem. �

Theorem 2 Suppose that X∗
cm,orig is a minimizer of the

chord matching problem (see (20)) using data terms Worig

based on the distance in the original feature space (see (4)):

X∗
cm,orig ∈ arg min

X
Worig · X subject to X ∈ PCM

Further, X∗
pm,mbins is a minimizer of the point matching

problem (see (19)) using data terms Wmbins based on the
multilevel chordiogram-based distance (see (6)):

X∗
pm,mbins ∈ arg min

X
Wmbins · X subject to X ∈ PPM

Then, the following relationship holds:

αWorig · X∗
cm,orig ≤

B∑

b=−1

αb

∥
∥chb,1 − chb,2

∥
∥

1

≤ Wmbins · X∗
pm,mbins

for a positive constant α.

Proof We show both inequalities separately.

First Inequality The left inequality is result of a direct ap-
plication of Lemma 1 from Indyk and Thaper (2003). Note
that the point sets, which are considered in Indyk and Thaper
(2003), correspond to the chords sets in our setting. Then
there is a constant α such that the chordiogram distance is
lower bounded by the weighted bipartite matching among
the chords, where the weights are defined in terms of the L1

distance in the chord feature space:

α
(
Worig · X∗

cm,orig

) ≤
B∑

b=−1

αb

∥∥chb,1 − chb,2
∥∥

1

Second Inequality From the previous theorem, we have
that the middle term is the minimum of the (CM) problem
with data terms Wmbins . It is known that the minimum of the
(CM) problem interpreted as a bipartite matching is smaller
that the minimum of the (PM) problem interpreted as linear
programming relaxation of the graph matching. This gives
us the second inequality. �
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