
MSG-Cal: Multi-sensor Graph-based Calibration

Jason L. Owens∗

Army Research Laboratory
Philip R. Osteen∗

Engility Corporation
Kostas Daniilidis

University of Pennsylvania

Abstract—We present a system for determining a
global solution for the relative poses between multiple
sensors with different modalities and varying fields of
view. The final calibration result produces a tree of
transforms rooted at a single sensor that allows the
fusion of the sensor streams into a shared coordinate
frame. The method differs from other approaches by
handling any number of sensors with only minimal
constraints on their fields of view, producing a global
solution that is better than any pairwise solution,
and by simplifying the data collection process through
automatic data association.

I. INTRODUCTION

Most researchers who work with robots are familiar
with the requisite yet error-prone process of determining
the poses of multiple sensors in order to fuse the sensor
data into a single reference frame. Therefore, a valuable
goal would be the creation of a system in which a single
data collection can automatically produce a globally op-
timized calibration of an arbitrary sensor configuration.
In this work we describe a method and system that
computes the relative poses for multiple environment
sensors with differing modalities and varied acquisition
rates using graph optimization.

A significant aim for sensor fusion research in robotics
is to obtain a calibration procedure that can be run
interactively and online using only the capabilities of
a mobile robot and its current environment. While an
algorithm that does not require a calibration object
would be ideal, the data association problem makes this
difficult to achieve, which is made even more challenging
by differing sensing modalities. Therefore, we constrain
the data association problem by making use of a cus-
tom calibration object, shown in Figure 3a, with the
expectation that using the object will facilitate accurate
calibrations.

The system we present makes few assumptions about
the number, relative pose or fields of view of the sensors;
in fact, the only requirement is that any single sensor
has a partially overlapping field of view with at least
one other sensor, so that the calibration object is always
observed by at least one pair of sensors at the same time.
The sensor type determines the representation of the
object that is detected and stored at each distinct pose
of the target. We assume that the calibration target is

∗These authors contributed equally to this work.
Corresponding author: jason.l.owens.civ@mail.mil

Fig. 1: The top image shows an example colored 3-D LRF
frame from the calibration data collection.

planar, which allows us to construct the geometric rela-
tionships between individual sensor detections required
for calibration. Finally, we assume that each sensor has
been intrinsically calibrated, and do not include intrinsic
parameters as part of the problem formulation.

The calibration procedure can be divided into three
phases: data collection, pairwise calibration, and graph-
based global refinement. In short, the data collection
phase involves walking around the robot with the calibra-
tion object, and using a remote trigger to indicate a frame
capture. The frame is then transformed into a set of edges
where each edge represents a sufficient number of co-
occurring detections between a pair of sensors. Given the
edges collected during the previous phase, the pairwise
calibration phase computes the relative pose between
sensor pairs using RANSAC to filter outliers. Finally, the
inliers from the previous phase are used to construct a
hypergraph that uses non-linear optimization to generate
a global pose graph solution.

Through both simulated quantitative results and real-
world qualitative results, we show that the resulting
framework successfully calibrates a number of different
types of sensors with minimal operator intervention, and
the global optimization is shown to be more accurate
than the initial pairwise calibration.

A. Related work

The fundamental challenge in sensor calibration is
determining associations between each sensor’s data.
Recent calibration approaches use either known scene
geometry (including specialized calibration targets), or
attempt to calibrate in arbitrary environments. Systems
that calibrate with no special scene geometry or cali-
bration object, such as [1] and [2], require high quality
inertial navigation systems (INS) to compute trajectory.



Scaramuzza et al. are able to calibrate a 3-D laser and a
camera without a calibration object or inertial sensors,
by having a human explicitly associate data points from
each sensor [3]. In contrast, our calibration framework
uses only the data coming from the sensors we wish
to calibrate, and does not require human assisted data
association.

Similar to the work of [4], [5], [6], [7], [8] and others,
we also use a calibration object to facilitate automatic
data association. To our knowledge, there has been little
work in the calibration of an arbitrary number of various
types of sensors. Most work on calibration has been
limited to either a single pair of different sensor types
([4], [8], [5], [1], [3], [9], [7], [6]), or multiple instances
of a single type ([10], [2]). An exception is the work
of Le and Ng [11], who also present a framework for
calibrating a system of sensors using graph optimization,
though their graph structure differs fundamentally from
ours; they require that each sensor in the graph be a 3-
D sensor. Therefore, neither individual cameras nor 2-D
laser scanners are candidates in their calibration. Instead
they must be coupled with another sensor (e.g., coupling
two cameras into a stereo pair) that will allow the new
virtual sensor to directly measure 3-D information. Their
results agree with ours, that using a graph formulation
reduces global error when compared with incrementally
calibrating pairs of sensors. Our approach is related to
the graph optimization proposed in [12] where the focus
is on solving non-linear least squares on a manifold.
Our approach provides initial estimates from pairwise
solutions, and it has been tested on a graph of five sensors
with three different modalities.

B. Paper contributions

We describe a flexible framework for accurately cali-
brating and fusing data from an arbitrary configuration
of camera, laser, and point cloud sensors, where initial-
ization estimates are generated automatically from the
collected data. In addition, our system for collecting data
requires only one operator, who needs no domain-specific
expertise and need not tediously associate data points.
We describe a unique formulation of the calibration
problem as a hypergraph containing both sensors and
observations as separate vertices, incorporating geomet-
ric constraints between the different detection modalities.
Finally, we developed a simulation system that produces
all three types of data used for the calibration and
can be used to produce benchmark data sets for future
calibration research.

II. PROBLEM DESCRIPTION

We address the extrinsic calibration of multiple sensors
with various modalities and acquisition timescales that
are rigidly mounted to a robotic vehicle.

In this context, calibration means the estimation of
relative sensor poses such that features detected by mul-
tiple sensors can be fused into a single coordinate frame.

Fig. 2: The robot sensors we calibrate in this paper.
The image highlights the three 2-D Hokuyo LRFs, the
spinning Hokuyo 3-D LRF, and the Ladybug5 spherical
camera.

Due to sensor noise and systematic feature estimation
uncertainty, it’s unlikely that features will align without
error, so the process must be constructed to mimimize
the error across all sensors.

In our case, we consider visible light cameras, 2-
D planar laser range finders (LRFs) such as the
HokuyoTMUTM-30, and 3-D laser range scanners (such
as the VelodyneTMHDL-32), or moving 2-D LRFs such as
the one shown in Figure 2. We work with two geometric
objects over the three sensor types: 3-D lines derived
from 2-D LRFs and 3-D planes derived from both the
cameras and 3-D LRFs. The calibration target itself is a
large planar poster (as seen in Figure 3a) with fiducial
tags for the cameras. Section III describes the object
detection methodology for each sensor type.

The rest of the paper is organized as follows: the sub-
sequent three sections (III-V) describe each phase of the
procedure in detail. We briefly describe the simulation
we used to produce quantitative results in section VI.
We then discuss the experimental results in section VII
and finally conclude in section VIII.

III. DATA COLLECTION

Data collection proceeds by launching a capture pro-
cess with access to the robot’s sensor streams. The
user physically places the calibration object in various
positions around the robot to capture sufficient views
across all the sensors. Unfortunately, the sensors we
are calibrating do not all support time synchronization.
Therefore, to effectively bypass the problem of temporal
data association, we require the user to hold or place
the board in a fixed position until all sensors have taken
at least two measurements. The requirement for two
measurements is for sensors with long integration times
(several seconds), where one cannot be assured the board
was not in motion during the capture of the first reading.
This implies that the time the calibration object must
remain still is at most twice the period of the slowest
integrating sensor, which for most sensors will be less



than one second. Thus, there is no need to specify the
data rates, or provide synchronization between the sensor
acquisition processes.

We use the term message to refer to a single logical
datum from a sensor, i.e. an image from a camera, a
scan from a 2-D LRF, or a point cloud from a 3-D LRF.
The term frame is used to refer to a collection of messages
from every sensor. When the calibration object is in place
for a new frame, the user sends a trigger to the system
and data collection begins.

Each frame collected contains all the sensor data.
While it may be possible that every sensor observes the
calibration object, more likely only two or more sensors
see it at one time. We must detect and extract the
calibration object geometry for each sensor in order to
correctly produce the edges in the sensor graph. At this
stage, the system has no knowledge of the relative sensor
positions, nor of the location of the calibration object in
the environment, so given an image, point cloud or laser
scan, the system must automatically detect the object
for each sensor if it is in view.

A. Background subtraction

Since we rely on explicit correspondences between
calibration object detections across sensors, we would
like to have some assurance that the object we detect for
each sensor in a frame is in fact the calibration object.
We solve this problem using a background subtraction
approach, which practically eliminates the data associ-
ation problem and avoids constraints related to sensor
modality.

At the very beginning of data collection, we allow
the point cloud and line sensors to build up a model
of the background environment in order to subtract it
from the live dynamic data generated by the calibration
target. This technique is typically used in imaging sys-
tems for surveillance, object tracking, and background
replacement [13]. In our algorithm, we use an analogous
technique for 3-D point clouds provided by PCL [14]
that takes advantage of a modified octree. This octree
is a spatial data structure that hierarchically subdivides
volumes into octants and also provides efficient change
detection. We accumulate points from the 3-D sensors
over a short period of time, and store the observations
in the octree. When data collection begins we create
a new octree for each message from the sensors, and
then subtract the accumulated background, leaving only
the calibration operator and target (and possibly a few
other noisy points) in the scene. Due to our usage of
AprilTag fiducials on the calibration object, we do not
need any explicit technique for background subtraction
for cameras, since the tag detection automatically takes
care of that.

B. Line and plane extraction from point clouds

Given a sparse point cloud from the background sub-
traction process, we use the following process to find the

calibration object plane. First, sparse points are removed
using a statistical filter, normals are computed for each
point using the local neighborhood and then clusters are
discovered by growing regions seeded by a point with
the minimum curvature. For each cluster, the largest
plane is extracted using random sampling consensus. The
plane that best matches the known dimensions of the
calibration object is selected as the valid detection for
this sensor. In practice, there are few clusters due to the
background extraction (usually related to the user’s body
or other stray points in the environment that may not
have been captured by the background accumulation),
and all but one of these clusters is too small to be the
object.

Line extraction from the 2-D laser range finders pro-
ceeds in much the same way as the plane extraction,
however, instead of using a plane model, we use a line
model with RANSAC. For each detected line, found
using loose thresholds to enable high recall, we ensure
it is contiguous and within the required size bounds.
Finally, we filter the egregious outliers, then refit a line
to the remaining points. The endpoints we use to define
the detected line segment are determined by projecting
the actual scan endpoints to the closest point on the
model line. The resulting line segment is reported as the
detection for this sensor.

C. Plane extraction from AprilTag

As described in section II, the calibration target is
primarily a planar object used to induce lines and planes
from 2-D and 3-D LRFs, but we need to also be able
to detect the plane from a camera. In the general case,
cameras are projective devices, and can only determine
an object pose up to scale. The AprilTag algorithm
utilizes the known size of the tag, planar homography,
and the camera parameters to determine the 3-D pose
of each tag. We utilize three tags for redundancy, and
use as many tags as are visible to determine the plane
parameters. If more than one tag is visible, we currently
compute the average normal and distance to origin.

IV. PAIRWISE CALIBRATION

The pairwise calibration phase estimates the SE(3)
transforms between each pair of sensors with co-occuring
detections, using RANSAC to filter outliers. Since we
convert all detections into the geometric primitives of
either planes or lines, then in order to estimate the
transform between each pair, we must solve one of the
following objective functions.

A. Plane to plane

We use the Hessian normal form of a plane Pi =
{n̂i, di} where n̂T

i x = −di. Therefore, if x is a point
on plane Pi, then n̂T

i x + di = 0. As in [15], we note
that the rotation and translation are separable problems.
The normals are related by the rotation iRj alone:
n̂i =

iRjn̂j . Using the plane equation, we can define the
relations:



n̂T
i (

iRjxj +
itj) = −di

n̂T
i

iRj(−djn̂j) + n̂T
i

itj = −di
−djn̂T

i (
iRjn̂j) + n̂T

i
itj = −di (1)

n̂T
i

itj + di − dj = 0, (2)

where, in Equation 1 we utilize the fact the n̂T
i

iRjn̂j ≈ 1,
since the corresponding normals are unit vectors and iRj

brings n̂j into the frame of n̂i.
We use these constraints in the following objective

function:

min
(iRj ,itj)∈SE(3)

∑
(Pi,Pj)∈C

∥∥n̂i − iRjn̂j

∥∥+
∑

(Pi,Pj)∈C

[
n̂T
i

itj + di − dj
]2
, (3)

where C is the set of plane correspondences for a sensor
pair. In our implementation, we use the Kabsch algo-
rithm [16] for estimating the rotation between the normal
sets. To determine the translation, we compute the least
squares result of Equation 2. In this paper, we treat all
the normals with equal weight. However in the future we
plan to compute the uncertainty of the detected planes
and use a variant of Wahba’s algorithm to compute the
optimal rotation as per the method discussed in [17].

B. Plane to line

In contrast to our previous work [15], we utilize an
objective function that minimizes the distance of the
segment endpoints to the corresponding plane:

min
(R,t)∈SE(3)

∑
(Pi,`i)∈C

∑
xj
i∈`i

[
n̂T
i x

j
i + di

]2
(4)

While we provide no initial estimate, we have discov-
ered that the line to plane RANSAC algorithm performs
best with a sample size of five in order to sufficiently
constrain the degrees of freedom.

V. GLOBAL CALIBRATION

We now describe the graph optimization that achieves
the global calibration. In the previous phase, we compute
a pairwise relative pose for every pair of sensors that meet
or exceed the minimum number of observations. In this
phase, we construct a hypergraph composed of several
node and edge types that exploit the pairwise relative
transforms as an initialization for the global sensor pose
graph. The distinction is subtle but important: in the
robot frame, we must pick one sensor as the root of the
transform hierarchy (most transform libraries, e.g. tf in
ROS, require a transform tree), and then connect the
other sensors to this root, as per the pairwise connections
in the previous phase, effectively forming a spanning
tree over the graph of sensors. In addition, the pairwise
calibration phase uses no additional information (i.e.
other co-occuring detections) in order to minimize the

observation error over more than one path in the graph.
The goal of the global graph approach is to incorporate
all the information into a single optimization structure,
courtesy of g2o [18]. In our formulation, the sensor poses
are the unknowns we wish to estimate simultaneously
in a global frame. We let the user pick one sensor that
will act as the root of the graph (e.g. a sensor with
the largest FOV) and therefore become the origin of the
global frame. In order to estimate the initial poses, we
construct a minimum spanning tree TS based on the edge
weight between the sensors, defined as the sum of the
squared errors computed during the pairwise calibration.

In this work, our hypergraph G is defined as a set
of nodes V and hyperedges E. We include three node
types in V = S ∪ L ∪ P: sensor (S), line-observation
(L), and plane-observation (P). The sensor node set
S ⊂ SE(3) contains elements xS ∈ S, the unknown
sensor poses, initialized as per the sensor-sensor trans-
form computed from the spanning tree TS. The line-
observations and plane-observations correspond to every
inlier detection found during the pairwise calibration
phase. Line-observations L ⊂ R3 ×R3 are elements xL ∈
L, the endpoints of the detected lines. Plane-observations
P ⊂ R4 are elements xP ∈ P, i.e. the normal and distance
to the origin. Note that L and P nodes exist relative to
their observing sensors, while the sensors are the only
entities in the global frame (where the root of TS is taken
as the origin).

The objective of our graph optimization is to find
the sensor pose set S that minimizes the error over
all edges in the graph. One can think of the nodes
xα
i ∈ V, α ∈ {S,P,L} as providing the data values

where i is the node identity and α is the node type.
The hyperedges eγ ∈ E provide relations on the data,
where γ ⊂ {i : xα

i ∈ V }. The edges are the observations
from the sensors and we construct functions Feγ that
represent the noisy constraints in the system. Since the
graph contains three node types there are necessarily six
corresponding binary edge types, however, we currently
only make use of five since we have not yet implemented
a line-to-line pairwise calibration procedure.

The functions Feγ compute the errors we wish to min-
imize, representing the degree to which the parameters
xα
i , . . . ,x

β
j satisfy the initial constraint µγ (computed as

the edge type-specific sensor observation). Ωα,β repre-
sents the information matrix of the constraint.

min
S

∑
eγ∈G

Feγ (x
α
i , . . . ,x

β
j , µγ)

>Ωα,βFeγ (x
α
i , . . . ,x

β
j , µγ)

(5)

The graph optimization is implemented as a sparse
non-linear least-squares minimization over the error val-
ues produced by the graph edges as shown in Eq. 5. Dur-
ing optimization, the algorithm computes the Jacobians
of the error functions, and takes small linear steps in
the tangent space of the sensor node manifold, in order



to distribute the error over the nodes as defined by their
uncertainty. Each node type provides an appropriate step
operator in the tangent space, and uses the exponential
map as necessary to compute the corresponding point on
the manifold.

In the following sub-sections, we define each error
function Feγ given the edge type defined by the set of
observation types in each node.

Sensor-sensor edge . The sensor-sensor edge repre-
sents the relative transform between the sensor nodes
it relates. Our error is defined as the difference of the
relative transform from the mean. We define the mean
to be the initial relative transform we compute from
the pairwise calibration phase for this pair of sensors.
If µij ∈ SE(3) is the initial relative transform between
sensor pair xS

i , x
S
j , then the edge error in the tangent

space is defined as:

logSE(3)(µ
−1
ij ((xS

i )
−1xS

j)). (6)

Sensor-line edge . The sensor-line edge represents
the measured line endpoints relative to the sensor’s
coordinate frame. This edge constrains the adjustment of
the line in the sensor frame with respect to the original
observation. The edge uncertainty is related to the noise
inherent in the laser scan, i.e. we assume the points
(r, θ) detected by the 2-D LRF are perturbed by two
independent normally distributed variables a, b as in:

pi = (r + a, θ + b) (7)

a ∼ N (0, σr) (8)

b ∼ N (0, σθ). (9)

The error is defined in a six dimensional space (R3×R3),
with extremely low uncertainty in the z coordinate for
each point. If µij is the initially observed endpoints of
the line j from sensor i, then the error is xL

j − µij .
Sensor-plane edge . The sensor-plane edge is defined

similarly to the sensor-line edge, but is parameterized
by the four dimensional space (R3 ×R) representing the
plane parameters. Given µij as the initially observed
plane parameters, the error is xP

j − µij .
Observation-observation edges . The following two

hyperedges correspond to the unique constraints formed
by the interaction between the geometric primitives.
Each hyperedge is structured in the following manner:

where the squares are the observation nodes (line,plane)
and the circles are the sensor nodes. The black pentagon
represents the hyperedge. In every case, the observations
are in the local frame of the corresponding sensor, which
requires that we transform one of the objects into the
frame of the other sensor. This is achievable since the
sensor nodes represent their pose estimate in the global
frame. We can compute the relative transform between
the sensors and use this to bring the second observation
into the frame of the first.

Line-plane edge . The line-plane edge connects a line
and plane as detected by the respective sensor. In this
case, we use the plane definition to represent the error
in R2 as the offset of each of the line endpoints to the
plane.

Plane-plane edge . Finally, the plane-plane edge con-
nects the observations of the same plane from two differ-
ent sensors. Given the transform of P2 into the frame
of P1, we define the error in R4 as (a1, b1, c1, d1) −
(a2, b2, c2, d2), where a, b, c, d are the plane parameters.

VI. SIMULATION

In order to provide a benchmark quantitative evalua-
tion of the proposed calibration procedure, we developed
a simulation that generates the same raw sensor mes-
sages as the robot yet allows us to specify the ground
truth poses for the sensors. The simulation includes a
geometric representation of the calibration object derived
from the generating PostScript program and realistic
implementations of the target sensors: a pinhole camera
that produces images of the object, a 2-D laser range
finder to generate point clouds from the (r, θ) scan, and
a spinning 2-D laser range finder that produces 3-D
point clouds. We briefly describe the data set generation
process, then follow with the implementation details of
the sensors.

A. Data set generation

Similar to the collection procedure described in Section
III, we generate randomly distributed poses for the cal-
ibration object, assuming the sensor system is situated
at the origin. The procedure allows one to specify the
bearing θ, radius r, maximum rotation around an axis
φ and the number of random calibration object rotation
samples to generate at each pose (θ, r),

R(θ,r) ={(ψr, ψp, ψy)
i | ψr ∼ U(−φ, φ),

ψp ∼ U(−φ, φ), ψy ∼ U(−φ, φ)}.

For each sample, we “expose” the transformed cali-
bration object to each simulated sensor and record the
observations in a bag file.

B. Pinhole camera

The camera is modeled by the width and height of the
generated image and the camera matrix:

K =

 fx 0 cx
0 fy cy
0 0 1

 . (10)

We make the assumption that the camera is intrinsically
calibrated, and do not generate any distortion. The image
generation process is as follows: (1) a high resolution
image of the calibration object is generated (i.e. 3 pixels
per mm) directly from the metric specification of the
poster size and embedded AprilTags. (2) Boundary co-
ordinates are extracted from the transformed points of



(a) (b)

Fig. 3: (a) An image generated from a rotated calibration
object at 2 m. (b) An example laser scan and point cloud
rendered in 3-D before calibration, along with the ground
truth object

the calibration object, and are projected onto the image
plane using the projection π : R3 → R2:

π(x) =

(
fxx1
x3

− cx,
fyx2
x3

− cy

)
. (11)

Given the real image coordinates, we compute the ho-
mography matrix H that transforms the high-resolution
model image to the planar deformation in the projected
image. An example image is shown in Figure 3a.

C. 2-D laser range finder

We implement the 2-D LRF by intersecting rays cast
from the origin of the sensor with the plane of the
calibration object. Assuming the origin of the sensor is
po, we construct a set of rays {ρi}N1 (normalized vectors)
emanating from po with a configured angular resolution,
start, and end angle. For each scan, we perturb the angles
used to generate the rays, and once a valid intersection is
found, we perturb the true radius according to Equation
9. We use the following ray intersection equation:

n̂ · (ρit+ po) + d = 0 (12)

n̂ · ρit = −n̂ · p0 − d (13)

t =
−n̂ · po − d

n̂ · ρi
, (14)

and discard intersections where t < 0, since that means
intersection is behind the laser. With a value for t we
can compute the point on the plane, and then determine
whether it is within the calibration object bounds. This
is accomplished by testing for negative intersections with
all four half-planes defined by the boundary segment
normals. These normals lie orthogonal to the plane nor-
mal and boundary segment, and emanate away from the
centroid. Figure 3b shows an example laser scan in 3-D.

D. 3-D laser range finder

The 3-D LRF is implemented by “spinning” the 2-
D LRF around a vertical axis and therefore generating
multiple 2-D laser scans from different poses. We mimic
the construction of the sensor shown in Figure 2, with the
following parameters: tilt, offset, scans per degree, and
scan angle. The first two parameters control the structure

Fig. 4: The structure of the 3-D laser range finder. θ
indicates the tilt (away from positive z), while d controls
the offset from the axis of rotation, positive z. The shaded
region indicates the vertical scan pattern from the 2-D
LRF.

of the sensor, while last two parameters determine the
density of the scans and the field of view (see Figure 4
for an illustration of the geometry). If one sets the offset
and tilt both to zero, then the effect would be to simply
rotate a 2-D LRF with the forward axis parallel to the
z axis. Since the pose of the scan plane changes as the
LRF rotates around the axis, we must transform each
scan into the frame of the origin. Doing so generates the
blue cross-hatched plane shown in Figure 3b.

VII. EXPERIMENTAL RESULTS

We evaluate the proposed system on two sets of sen-
sors: one in which we know the ground truth, and can
provide quantitative error metrics with respect to com-
puted vs. actual position, and a set of sensors mounted
on a mobile robot, in which we do not have ground truth.
The calibration system is implemented as a set of C++
and Python packages based on the ROS ecosystem. The
simulated and real datasets contain 120 and 133 different
calibration object poses corresponding to one frame per
pose, respectively.

The robot is a ClearPath HuskyTMwith five primary
sensors as shown in Figure 2. All three modalities are
represented, including several 2-D LRFs, one slowly ro-
tating 3-D LRF, and five cameras we use as one camera
from the Ladybug5 spherical camera.

A. Error computation

We report our results using the following two metrics:
error over the graph and deviation from ground truth
(for the simulation study). The graph error is currently
defined as the sum of the squared error over all edges
other than the sensor-sensor edges (i.e. every sensor-
observation and observation-observation edge). Thus,
this error is related to all the data embedded in the
graph. Every error is represented in terms of meters,
so the error unit is m2. For the simulation, we directly
compare the sensor pose model with the resulting poses
from the optimization procedures. We report these errors
as the mean translational and angular offset (measured
as the smallest angle between the principal axes of two



sensors, i.e. the angle subtending the geodesic on the unit
sphere S2) from ground truth over all sensors.
We also investigated several variations on the algo-

rithm to determine performance under different condi-
tions. In particular, we were interested in the value of
the pairwise calibration phase. First, we compared the
global result when the sensors were initialized from the
pairwise spanning tree transform vs. using the identity
transform, and discovered this yielded no significant
difference. However, in both cases the inlier set from the
pairwise calibration was used. We wondered whether the
results would be the same if we used all the data in the
graph (no filter) vs. using the pairwise RANSAC inlier set
(SAC filtered). The following two sections summarize our
results for the simulation and real-world robot sensors.

B. Simulation

We use the simulation to show the algorithm works
with respect to ground truth, given realistic simulated
sensor data. Figures 5a and 5d show the benchmark
error of the simulation configuration against the known
ground truth sensor poses. One thing to note is that the
variance of the graph solution is always lower than just
the pairwise pose results over multiple runs. In addition,
it is interesting to note that the mean of the angular
error is lower than the graph (by 0.03 degrees), but this
is not entirely unexpected given the error over the whole
system: the pairwise solution represents the best relative
pose given the data, but the global optimization has to
correct for these errors across the entire graph. In Figure
5b, we see that the global graph error mean and variance
are reduced as compared to the best pairwise solution
with no global optimization. Finally, Figure 5c illustrates
the performance over multiple runs while comparing
the global optimization performance with and without
filtering the outliers using the pairwise calibration phase.
Note that while the filtered error shows small variance,
the error is significantly lower when the outliers are
filtered.

C. Robot Sensors

To test the algorithm using real-world sensors, we
collected data from the robot and sensors shown in
Figure 2. Since we do not have ground truth, we report
the results of the graph error given the pose estimates
from the pairwise calibration as compared to the error
after the global graph optimization (Figure 5e). We also
show the difference between filtering the outliers and
using all the data with no filtering (Figure 5f). Note the
agreement between the relative values as compared to
the simulation results; graph optimization improves the
error over the pairwise initialization, given the structure
of the edge constraints. In addition, filtering the outliers
significantly improves the error result.

However, we feel the qualitative results speak more
clearly to the capability of the algorithm, and we show
two screen captures from the 3-D visualization of the

fused data. Figure 6a shows a large indoor area captured
with the system with an inset of the corresponding image
from the Ladybug’s cameras. Figure 6b shows another
scene from a highly cluttered machine shop in the same
building, with small details that reinforce the practical
performance of the system.

VIII. CONCLUSION

We have presented an end-to-end system for calibrat-
ing a set of minimally constrained multi-modal sensors
rigidly mounted to a robot. Although many of the con-
cepts have been presented in previous works, as far as
we are aware this is the first algorithm to bring them
together into a cohesive graph optimization framework
paired with a simplified data association process. In the
future, we plan to evaluate the algorithm on a wider array
of data sets and explore improvements to the camera
plane estimation algorithm. In addition, we will work to
make the code available as an Open Source distribution
for ROS so others can benefit and improve upon this
work.

References

[1] J. Levinson and S. Thrun, “Automatic online calibration of
cameras and lasers,” in Robotics: Science and Systems, 2013.

[2] W. Maddern, A. Harrison, and P. Newman, “Lost in transla-
tion (and rotation): Rapid extrinsic calibration for 2d and 3d
LIDARs,” in Robotics and Automation (ICRA), 2012 IEEE
International Conference on, pp. 3096–3102, IEEE, 2012.

[3] D. Scaramuzza, A. Harati, and R. Siegwart, “Extrinsic self
calibration of a camera and a 3d laser range finder from natural
scenes,” 2007.

[4] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and
laser range finder (improves camera calibration),” in Intelli-
gent Robots and Systems, 2004. (IROS 2004). Proceedings.
2004 IEEE/RSJ International Conference on, vol. 3, (Sendai,
Japan), pp. 2301–2306, Oct. 2004.

[5] P. Núñez, P. Drews Jr, R. Rocha, and J. Dias, “Data fusion
calibration for a 3d laser range finder and a camera using
inertial data.,” in ECMR, pp. 31–36, 2009.

[6] R. Unnikrishnan and M. Hebert, “Fast extrinsic calibration of
a laser rangefinder to a camera,” Tech. Rep. CMU-RI-TR-05-
09, Robotics Institute, July 2005.

[7] H. Li and N. Fawzi, “Comprehensive extrinsic calibration of
a camera and a 2d laser scanner for a ground vehicle,” p. 24,
July 2013.

[8] F. M. Mirzaei, D. G. Kottas, and S. I. Roumeliotis, “3d
LIDAR-camera intrinsic and extrinsic calibration: Identifia-
bility and analytical least-squares-based initialization.,” I. J.
Robotic Res., vol. 31, no. 4, pp. 452–467, 2012.

[9] F. Vasconcelos, J. P. Barreto, and U. Nunes, “A minimal
solution for the extrinsic calibration of a camera and a
laser-rangefinder,”Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 34, no. 11, pp. 2097–2107, 2012.

[10] S. Miller, A. Teichman, and S. Thrun, “Unsupervised extrinsic
calibration of depth sensors in dynamic scenes,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2013.

[11] Q. V. Le and A. Y. Ng, “Joint calibration of multiple
sensors,” in Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on, pp. 3651–3658,
IEEE, 2009.

[12] R. Wagner, O. Birbach, and U. Frese, “Rapid development
of manifold-based graph optimization systems for multi-
sensor calibration and SLAM,” in Intelligent Robots and Sys-
tems (IROS), 2011 IEEE/RSJ International Conference on,
pp. 3305–3312, IEEE, 2011.



global error pairwise error
0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

A
v
e
ra

g
e
 e

rr
o
r 

(m
)

Simulation: Pose translation benchmark error

(a)

global error pairwise error
0.00345

0.00350

0.00355

0.00360

0.00365

0.00370

0.00375

0.00380

0.00385

RM
S 

er
ro

r (
m

)

Simulation global error vs pairwise error

(b)

trials
0.0034

0.0035

0.0036

0.0037

0.0038

0.0039

0.0040

0.0041

0.0042

RM
S 

er
ro

r (
m

)

Simulation outlier filter vs no filter

SAC filter
No filter

(c)

global error pairwise error
0.000

0.002

0.004

0.006

0.008

0.010

0.012

A
v
e
ra

g
e
 e

rr
o
r 

(r
a
d
ia

n
s)

Simulation: Pose rotation benchmark error

(d)

global error pairwise error
0.0064

0.0066

0.0068

0.0070

0.0072

0.0074

0.0076

RM
S 

er
ro

r (
m

)

Husky global error vs pairwise error

(e)

trials
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

RM
S 

er
ro

r (
m

)

Husky outlier filter vs no filter

SAC filter
No filter

(f)

Fig. 5: (a) Simulation mean translation benchmark error (poses computed against ground truth). (b) Simulation
graph error comparing the best pairwise error result vs. global error. (c) Simulation global graph error comparing
results with and without filtering the data using the sampling consensus. (d) Simulation mean rotational benchmark
error (poses computed against ground truth). (e) Husky graph error comparing the best pairwise error result vs.
global error. (f) Husky global graph error comparing results with and without filtering the data using the sampling
consensus.

(a) Indoor, open area scan. (b) Indoor, cluttered area scan.

Fig. 6: Fused sensor output using the global calibration results for the Husky sensor data collection. The Ladybug
images are back-projected to the point cloud, given the relative transform between the two sensors. Also note the
blue, purple, and cyan points that show the transformed 2-D laser scan output. In particular, (b) shows how well
the laser scans align to the camera and 3-D LRF, e.g. by their intersection on the handcart on the left side of the
image.

[13] P. KaewTraKulPong and R. Bowden, “An improved adaptive
background mixture model for real-time tracking with shadow
detection,” in Proc. 2nd European Workshop on Advanced
Video Based Surveillance Systems, vol. 25, pp. 1–5, 2001.

[14] R. B. Rusu and S. Cousins, “3d is here: Point cloud library
(PCL),” in IEEE International Conference on Robotics and
Automation (ICRA), May 2011.

[15] R. Tron, P. Osteen, J. Owens, and K. Daniilidis, “Pose opti-
mization for the registration of multiple heterogeneous views,”
in Workshop on Multi-View Geometry in Robotics, 2014.

[16] W. Kabsch, “A discussion of the solution for the best rotation

to relate two sets of vectors,” Acta Crystallographica Sec-
tion A: Crystal Physics, Diffraction, Theoretical and General

Crystallography, vol. 34, no. 5, pp. 827–828, 1978.
[17] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak, “Fast

plane detection and polygonalization in noisy 3d range im-
ages,” in Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, pp. 3378–3383, 2008.

[18] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and
W. Burgard, “G2o: A general framework for graph optimiza-
tion,” in 2011 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3607–3613, IEEE, May 2011.


