Two Efficient Solutions for Visual Odometry Using Directional Correspondence

Oleg Naroditsky, Student Member, IEEE, Xun S. Zhou, Student Member, IEEE, Jean Gallier, Stergos I. Roumeliotis, Member, IEEE, and Kostas Daniilidis, Fellow, IEEE

Abstract—This paper presents two new, efficient solutions to the two-view, relative pose problem from three image point correspondences and one common reference direction. This three-plus-one problem can be used either as a substitute for the classic five-point algorithm, using a vanishing point for the reference direction, or to make use of an inertial measurement unit commonly available on robots and mobile devices where the gravity vector becomes the reference direction. We provide a simple, closed-form solution and a solution based on algebraic geometry which offers numerical advantages. In addition, we introduce a new method for computing visual odometry with RANSAC and four point correspondences per hypothesis. In a set of real experiments, we demonstrate the power of our approach by comparing it to the five-point method in a hypothesis-and-test visual odometry setting.

Index Terms—Computer vision, structure from motion, visual odometry, minimal problems, Groebner basis.

1 INTRODUCTION

DATA association has been identified as one of the two main challenges in visual odometry, next to observation noise. Cluttered environments with independently moving objects yield many erroneous feature correspondences which have to be detected as outliers. Random Sample Consensus (RANSAC) provides a stable framework for the treatment of outliers in visual odometry [1]. For RANSAC, it is desirable to have a hypothesis generator that uses the minimal number of data points to generate a finite set of solutions since this minimizes the probability of choosing an outlier as part of the data. In this paper, we propose a new minimal method, the “three-plus-one” method, for computing relative pose for monocular visual odometry that uses three image correspondences and a common direction in the two camera coordinate frames, which we call a “directional correspondence.” We thus enable visual odometry using RANSAC with only a four-point minimal solver as long as the fourth point is sufficiently far away.

The main contribution of this paper is the introduction of two new, efficient algorithms for the three-plus-one problem. After formulating the relative pose problem as a system of four polynomial equations in Section 3, we present a direct, closed-form solution, leading to a quartic polynomial of one variable in Section 4. Our second method, based on the action matrix method from Byrod et al. [2], is presented in Section 5. The second contribution of this paper is threefold: We provide a detailed computational analysis of both solutions in Section 7, highlight the differences in numerical properties in Section 8, and show that the three-plus-one method can be used in place of the widely used five-point method in real-world visual odometry applications in Section 9.2. When used with RANSAC, our visual odometry does not require any knowledge about which points are at infinity because we simply let RANSAC choose the inlier hypothesis from all available image correspondences. In Section 9.3, in order to demonstrate the potential of our method for vision-inertial fusion, we present the results of a real experiment where we use the IMU to provide a directional constraint.

2 RELATED WORK

Minimal solvers were first introduced by Nister [3] with his famous five-point algorithm for structure from motion. Since then, minimal solutions have been found for a number of problems in geometric vision, including the solutions to the autocalibration of radial distortion [4], [5], pose with unknown focal length [6], infinitesimal camera motion problem [7], and others. The trend in this field has been to use algebraic geometry techniques to analyze problem structure and construct solvers. This body of work was initially based on Gröbner bases techniques [8], but recently started to include other related methods for finding solutions to algebraic systems in order to improve speed and accuracy [9], [2]. These techniques have been applied to nonminimal problems as well, such as three-view triangulation [10], [11]. It has been known [12] and it is straightforward to deduce that knowledge of the directional correspondence reduces the number of rotation unknowns to one. There have been three previous papers dedicated to solving the three-plus-one problem. However, all of them fall short of providing either efficient or closed-form solutions. The formulation from Kalantari et al. [13] requires three variables for the translation and uses the tangent half-angle formula to create a polynomial system. They solve the system using the action matrix method, leading to 12 solutions and a singularity at the rotation of 180 degrees. In their later paper [14], the solution was improved to give four solutions; however, the model remained less efficient than ours (it still uses the half-angle formula) and no closed-form solution is given explicitly. Our formulation improves on this method by taking advantage of the fact that one of the translation components is nonzero, leading to a smaller system that has four solutions and no rotation instability. Our solution is presented explicitly in closed form.

Our work is concurrent with work by Fraundorfer et al. [15], where a different formulation is used to obtain a system with only four solutions. Their method follows the method used by Nister for the five-point algorithm [3], except the solution subspace is now three-dimensional instead of four-dimensional. This formulation leads to a fourth-order polynomial and the minimum number of solutions. However, this solution requires null-space extraction and a Gauss-Jordan elimination of a dense 10×6 matrix to obtain the coefficients. While our formulation also leads to fourth-order polynomial, the coefficients of our polynomial are computed faster and in closed form.

In addition, compared to the previous work above, we provide a more elaborate experimental analysis, including real-world situations and a detailed discussion of the degenerate configurations.

Another related work was by Lobo and Dias [16] who use a general formulation of a given reference direction (vertical in their case) to solve several geometric vision problems by using vanishing points or inertial measurements.
3 Problem Formulation and Notation

Given image point correspondences \(q \) and \(q' \) in two calibrated views, it is known that the “essential matrix” constraint relating them is \(q' \mathbf{E}q = 0 \), where \(\mathbf{E} \) is a 3x3 skew-symmetric matrix where the rotation matrix \(\mathbf{R} \in \text{SO}(3) \) is \(\mathbf{R} \) and \(\mathbf{t} \) is a 3x1 translation vector corresponding to the translation vector \(t \), which is known only up to scale. The essential matrix thus has five parameters.

We will now define and formulate the three-plus-one problem. We are given three image correspondences \(q_i \leftarrow q'_i \), \(i = 1, 2, 3 \), from calibrated cameras, and a single directional correspondence in the form of two unit vectors \(d \leftarrow d' \). Our goal is to find the essential matrix \(\mathbf{E} \) which relates the two cameras, and thus find the rigid transformation between them up to a scale factor. We will first show that this problem is equivalent to finding the translation vector \(\mathbf{t} \) and a rotation angle \(\theta \) around an arbitrary rotation axis.

Let us choose the arbitrary rotation axis to be \(\mathbf{e}_2 = \begin{bmatrix} 0, 1, 0 \end{bmatrix}^T \). We can now compute the rotation matrices \(\mathbf{R} \) and \(\mathbf{R}' \) that coincide \(\mathbf{d} \) and \(\mathbf{d}' \) with \(\mathbf{e}_2 \), and apply them to the respective image points, yielding \(p_i = \mathbf{R}q_i \) and \(p'_i = \mathbf{R}'q'_i \) for each \(i = 1, 2, 3 \). This operation aligns the directional correspondence in the two views with \(\mathbf{e}_2 \).

Once the axis is chosen, we need only to estimate the rotation angle around it and the translation vector in order to reconstruct the essential matrix.

After we account for the directional constraint, from the initial five parameters in the essential matrix, only three remain. This three-parameter essential matrix \(\tilde{\mathbf{E}} \) relates the points \(p \) and \(p' \) as follows:

\[
\mathbf{p}'_i^T \tilde{\mathbf{E}} \mathbf{p}_i = 0.
\]

Since the rotation is known to be around \(\mathbf{e}_2 \), we can use the axis-angle parameterization of a rotation matrix to express \(\tilde{\mathbf{E}} \) as follows:

\[
\tilde{\mathbf{E}} = \mathbf{t} \begin{bmatrix} 1 + \sin \theta & \cos \theta & (1 - \cos \theta) \mathbf{e}_2^T \\ -\cos \theta & 1 + \sin \theta & \mathbf{e}_2^T \\ (1 - \cos \theta) \mathbf{e}_2^T & \mathbf{e}_2^T & 1 \end{bmatrix},
\]

where \(\mathbf{t} = \mathbf{R}' \mathbf{t} \).

Each image point correspondence gives us one equation of the form (1), yielding three equations in four unknowns (elements of \(\mathbf{t} \) and \(\theta \)). To create a polynomial system, we set \(s = \sin \theta \) and \(c = \cos \theta \), and add the trigonometric constraint \(s^2 + c^2 = 1 \), for a total of four equations in five unknowns. In order to reduce the number of unknowns and take care of the scale ambiguity in \(\tilde{\mathbf{E}} \), we choose the direction of the epipole by assuming that the translation vector \(\mathbf{t} \) has the form \([x, y, 1]^T \). This means that for each \(\mathbf{t} \) that we recover, \(-\mathbf{t} \) will also need to be considered as a possible solution.

Once we substitute for \(\tilde{\mathbf{E}} \) in (1), the resulting system of four polynomial equations has the following form. For \(i = 1, 2, 3, 4 \),

\[
a_{i1}x + a_{i2}xc + a_{i3}y + a_{i4}yc = 0
\]

\[
+ a_{i5}x - a_{i2}y - a_{i1}c + a_{i6} = 0
\]

\[
s^2 + c^2 = 1 = 0.
\]

We will refer to these equations as \(F = \{ f_i(x, y, c, s), \ i = 1, \ldots, 4 \} \), in the rest of the paper. The coefficients \(a_{ij} \) are expressed in terms of image correspondences as follows:

\[
a_{i1} = p'_i \mathbf{p}_i c, \quad a_{i2} = -p'_i y, \quad a_{i3} = -p'_i \mathbf{p}_i x, \quad a_{i4} = p'_i \mathbf{p}_i, \quad a_{i5} = -p'_i y, \quad a_{i6} = -p'_i \mathbf{p}_i y,
\]

such that \(\mathbf{p}_i = [p_i, p'_i, 1]^T \) and \(\mathbf{p}'_i = [p'_i, p'_i, 1]^T \). In the next section, we will analyze and solve this system in closed form and show that it has up to four solutions. The total number of possible pose matrices arising from our formulation is therefore at most 8 when we take into account the fact that we have to consider the sign ambiguity in \(\mathbf{t} \). When the motion of the camera in the z direction (after the rotation by \(\mathbf{R} \) and \(\mathbf{R}' \)) is extremely small, the parameterization \(\mathbf{t} = [x, y, 1]^T \) is numerically unstable. We can deal with this rare instability by formulating and solving a system for the parameterizations \(\mathbf{t} = [x, 1, z]^T \) and \(\mathbf{t} = [1, y, z]^T \), which can be easily done using the methods we describe below, but omitted for the purposes of this presentation. However, when used with our four-point RANSAC, the randomly chosen directional correspondences from image points give rise to different \(\mathbf{t} \) (though still the same \(\mathbf{t} \)), making the probability of \(z \) being close to zero even smaller. The experiments show that the reformulations are unnecessary in practice.

In order to find the pose matrices from solutions to the system \(F \), we first recover the translation as \(\mathbf{R}_0 = \exp(\mathbf{ata}(s, c)\mathbf{e}_2) \) and translation as \(\mathbf{t} = \pm[x, y, 1]^T \). Finally, we reconstruct each pose as follows:

\[
P = [S \mid \mathbf{t}] = [R^T \mathbf{R}_0 R \mid R^T \mathbf{t}].
\]

Point triangulation and chirality checks are used to eliminate some of the false solutions. Since this solution method is designed to be used in robust estimation frameworks (such as RANSAC), any remaining false hypotheses can be eliminated by triangulating an additional point and choosing the \(P \) with the minimum reprojection error.

4 Closed-Form Solution

We hereafter show that the system \(F \) has four solutions and that it can be solved analytically by elimination and back-substitution. Specifically, we first present an elimination procedure to obtain a fourth-order univariate polynomial in \(c \), which can be solved in closed form. Subsequently, we determine the remaining three variables by back substitution, where each solution of \(c \) returns exactly one solution for the other three variables. Therefore, we have a total of four solutions for the relative rotation matrix and translation vector.

The main steps of the elimination procedure are:

1. Solve for \(x \) and \(y \) as a function of \(c \) and \(s \) using the first two equations in (3). The variables \(x \) and \(y \) are now expressed as quadratic functions of \(c \) and \(s \).
2. Substitute \(x \) and \(y \) in the third equation in (3). This again yields a cubic polynomial in \(c \) and \(s \), which is reduced into a quadratic by exploiting the relationship between its coefficients and the trigonometric constraint.
3. Finally, using the Sylvester resultant (see [17, Chapter 3, Section 5]), we can eliminate one of the remaining two unknowns, say \(s \), and obtain a fourth-order polynomial in \(c \).

Now, we describe the details of our approach. Rewrite the first two equations in (3) as linear functions of \(c \) and \(s \) as follows:

\[
\begin{bmatrix}
a_{11}s + a_{12}c + a_{15} \\
a_{21}s + a_{22}c + a_{25}
\end{bmatrix}

\begin{bmatrix}
x \\
y
\end{bmatrix}

= \begin{bmatrix}
a_{12}s + a_{11}c - a_{16} \\
a_{22}s + a_{21}c - a_{26}
\end{bmatrix},
\]

and solve the above linear system for \(x \) and \(y \)

\[
\begin{bmatrix}
x \\
y
\end{bmatrix}

= \frac{1}{d} \begin{bmatrix}
a_{23}s + a_{24}c & -a_{13}s + a_{14}c \\
-(a_{21}s + a_{22}c + a_{25}) & a_{11}s + a_{12}c + a_{15}
\end{bmatrix}

\begin{bmatrix}
a_{12}s - a_{11}c - a_{16} \\
a_{22}s - a_{21}c - a_{26}
\end{bmatrix},
\]

where the determinant

\[
d = (a_{11}s + a_{12}c + a_{15})(a_{23}s + a_{24}c)

- (a_{21}s + a_{22}c + a_{25})(a_{13}s + a_{14}c).
\]

Substituting the expression for \(x \) and \(y \) into the third equation in (3) and multiplying both sides of the equation by \(d \) yields a cubic equation in \(s \) and \(c \).
The coefficients g_i for $i = 1, \ldots, 6$ are derived symbolically and are found in (13). By using the fact that $s^3 + c^2 = 1$ and exploiting the relationship between the coefficients of the first four terms, we can reduce this equation to the following quadratic:

$$g_1 s + g_5 c + g_4 s^2 + g_3 s c + g_2 c^2 + g_6 s + g_7 c = 0.$$

(10)

In the final step, we employ the Sylvester resultant to eliminate one of the two remaining variables from (4) and (11). The resultant of the two polynomials is the determinant of the Sylvester matrix:

$$\begin{bmatrix}
g_1 & g_5 & g_4 & g_6 & g_7 \\
g_1 & g_5 c + g_4 s & g_2 c + g_3 c^2 & g_3 s c & 0 \\
0 & g_5 c + g_6 & g_2 c + g_7 c & 0 & 0 \\
0 & 1 & c^2 - 1 & 0 & c^2 - 1
\end{bmatrix},$$

(12)

which leads to a fourth-order polynomial equation $\sum_{i=0}^{4} h_i c^i = 0$, with coefficients h_i, given in (14). This shows that, in general, the system has four solutions for c. Back-substituting the solutions of c into (11), we compute the corresponding solutions for s. Note that each solution for c corresponds to one solution for s because we can reduce the order of (11) to linear in s, once c is known, by replacing the quadratic terms s^2 with $1 - c^2$. After s and c are determined, we compute the corresponding solutions for x and y using (8), for a total of four solutions. Section 3 describes the recovery of the pose matrix from x, y, s, and c.

The coefficients g_i in the polynomial (11) are

$$g_1 = -a_{11}a_{22}a_{33} + a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33} + a_{11}a_{22}a_{31} + a_{12}a_{21}a_{32} - a_{11}a_{21}a_{33} + a_{12}a_{22}a_{31} + a_{11}a_{22}a_{31},$$

$$g_2 = -a_{23}a_{12}a_{31} + a_{24}a_{13}a_{32} + a_{21}a_{32}a_{33} + a_{21}a_{33}a_{31} + a_{23}a_{11}a_{32} - a_{24}a_{13}a_{33} - a_{21}a_{32}a_{33} - a_{21}a_{33}a_{31},$$

$$g_3 = -a_{31}a_{13}a_{24} + a_{32}a_{12}a_{23} + a_{31}a_{21}a_{23} + a_{31}a_{21}a_{24} - a_{33}a_{12}a_{21} - a_{33}a_{12}a_{23} - a_{31}a_{21}a_{23} - a_{31}a_{21}a_{24},$$

$$g_4 = -a_{21}a_{33}a_{11} + a_{21}a_{33}a_{12} + a_{23}a_{12}a_{31} + a_{21}a_{32}a_{31} - a_{23}a_{13}a_{33} - a_{21}a_{32}a_{33} - a_{21}a_{33}a_{31},$$

$$g_5 = -a_{32}a_{13}a_{23} + a_{33}a_{12}a_{24} + a_{32}a_{13}a_{24} + a_{31}a_{23}a_{31} - a_{33}a_{12}a_{21} - a_{33}a_{12}a_{23} - a_{32}a_{13}a_{21} - a_{31}a_{23}a_{31},$$

$$g_6 = -a_{32}a_{13}a_{21} + a_{32}a_{13}a_{22} - a_{31}a_{21}a_{22} - a_{32}a_{13}a_{23} - a_{31}a_{21}a_{23} - a_{32}a_{13}a_{24} - a_{31}a_{21}a_{24},$$

$$g_7 = -a_{32}a_{13}a_{21} + a_{32}a_{13}a_{22} - a_{31}a_{21}a_{22} - a_{32}a_{13}a_{23} - a_{31}a_{21}a_{23} - a_{32}a_{13}a_{24} - a_{31}a_{21}a_{24},$$

(13)

where a_{ij} come from (5). The coefficients of the quartic polynomial in c are

$$h_0 = -g_2^2 - 2g_1 g_6 + g_5^2 + g_3^2,$$

$$h_1 = 2g_1 g_2 - 2g_1 g_6 + 2g_2 g_7 - 2g_1 g_3,$$

$$h_2 = -g_4^2 + g_3^2 + g_6^2 + g_4 g_5^2 - 2g_2 g_7 - 2g_1 g_6 + 2g_2 g_7 + 2g_1 g_3,$$

$$h_3 = 2g_1 g_2 + 2g_2 g_7 + 2g_2 g_7 - 2g_1 g_6 - 2g_2 g_7 - 2g_1 g_3,$$

$$h_4 = g_2^4 + g_3^4 - 2g_1 g_3 g_4,$$

The quartic equation built from the coefficients h_i yields the solution for c.

5 Action Matrix Solution

In this section, we will present a method for solving the system F via eigendecomposition of an action matrix. The elimination template was constructed using symbolic mathematics software Maple. We present only the steps required for implementation of the method and refer the reader to [2], [18], [19] for details. The coefficient matrix C was optimized using the method in [20]. From each of the five vectors listed in (15) we create three rows of C by substituting a_{ij} for $i = 1, 2, 3$. The last six rows, C_{36}, \ldots, C_{44}, are shown in (16). Equations (15) and (16) are shown in Fig. 1.

Below we list the steps required to construct this action matrix and read off the solutions from its eigenvectors.

1. Construct the 21×25 sparse elimination template matrix C using the coefficients a_{ij} and (15) and (16).
2. Perform Gaussian elimination with partial pivoting or LU decomposition of C. Let U be the resulting upper trapezoidal matrix.
3. Extract two submatrices $A = U_{19,\ldots,21,21}$ and $B = U_{19,\ldots,21,22,25}$. Compute $-D = A^{-1}B$.
4. Construct the 4×4 action matrix M, as follows: $M_{1,3,1,4} = D$ and $M_{4,1,4} = [0, 1, 0, 0]$. The columns of M correspond to monomials $[y, c, s, 1]$.
5. Compute the real eigenvectors of M, and divide each by its last element.
6. The values of y, c, and s in that order are the first three entries of each normalized eigenvector.
7. For each set of values for y, c, and s, compute x by solving (3), which is linear in x.

These values can be once again used to extract the pose matrices, as described in Section 3.

6 Degenerate Configurations

It was pointed out in [15] that the three-plus-one algorithm is not degenerate for colinear world points, except for the line parallel to the translation direction. It turns out that this degeneracy is only a special case of two additional degenerate configurations.

The first one occurs when all world points lie on the horopter [21], i.e., their projections are the same in the first and second images up to a projective transformation, which is an ambiguous configuration for two views [22, Result 22.21]. Algebraically, this configuration causes the coefficients a_{ij} from (5) to vanish, removing the terms of the form $a_{ij}k$ from the equations. The resulting polynomial system no longer generates a zero-dimensional ideal, and thus has an infinite number of solutions.

The second degenerate configuration occurs when the determinant d in (8) is zero. When this occurs, the translation t cannot be estimated from the point correspondences using the (8). We can derive the geometric condition that causes the determinant to vanish as follows: After projecting two generic 3D points $x_i = [X_i, Y_i, Z_i]^T$ for $i = 1, 2$ into the camera frames, we get $p_i = X_i x_i + t$. We compute the corresponding coefficients (5), and substitute them into (9). After using the fact that $s^3 + c^2 = 1$, the determinant condition becomes

$$\begin{align*}
(Z_2 Y_1 - Z_1 Y_2)(cx - s) + (Z_1 X_2 - X_1 Z_2)y \\
+ (X_1 Y_2 - Y_1 X_2)(sx + e) & = 0,
\end{align*}$$

(17)

which we can rewrite as $(-R_{32}^t) x y_3 x_2 = 0$. This condition means that the second camera’s center of projection, expressed in the first camera’s coordinate system, is orthogonal to the vector formed by
the cross product of the world points. In other words, the degeneracy occurs when the world points are coplanar with the translation vector. This is a more general case than the three points parallel to the translation direction discussed in [15]. A geometric argument can be made via Chasles’ Theorem [22, Theorem 22.3] since five points on a plane (three world points and two camera centers) generally define a conic. The theorem proves that in this case there exist alternative reconstructions. We note that while the closed-form solution is degenerate when the two correspondences $i=1,2$ in (5) are coplanar with the baseline, the action matrix method only fails when all three points are coplanar with t.

In practice these degeneracies do not cause a large number of errors, as seen in the experiments.

7 Computational Considerations

When using RANSAC, we can estimate the probability of success in getting an outlier-free hypothesis based on the number of elements in the minimal data set. When we estimate the epipolar geometry using image correspondences only, there are two sets of inliers: the set that can be used as directional correspondences and a set that can be used as a point correspondences. Both inlier ratios have to be taken into account when computing the RANSAC stopping criterion. If the number of distant points is sufficiently large (such as in outdoor scenes), we can realize a significant performance gain with our method since fewer hypotheses will need to be considered [23] due to smaller model size.

Since the hypothesis generator will run hundreds of times per frame in RANSAC-based visual odometry schemes, it is important to compare the computational requirements for the five point algorithm with the proposed methods. Computing the coefficients a_{ij} requires nine multiplications. The closed-form solution requires 125 multiplications before arriving at the quartic polynomial. The real roots of the fourth degree polynomial can be extracted in closed form by computing and solving the depressed quartic and two quadratics for a total of about 40 operations and six square roots. The computation of the remaining variables takes an additional 144 operations. The main computational step of the action matrix solution is Gaussian elimination (LU decomposition) of a 21×25 matrix. While theoretically taking $O(2n^3/3)$, or about 9,000 operations, the elimination of our sparse matrix only requires about 500 multiplications. The eigenvalue decomposition of a 4 \times 4 matrix is done by solving a quartic equation and eigenvectors are extracted with an inverse power iteration, which costs 88 multiplications.

On the other hand, the main computational steps in the classic five-point algorithm [3] are: extraction of the null space of a dense 5×9 matrix, requiring 280 operations, Gauss-Jordan elimination of a dense 10×20 matrix, requiring about 1,300 operations, and real root isolation of a 10th degree polynomial, which can be accomplished as eigenvalue decomposition of a 10×10 sparse companion matrix or as an iterative root isolation process. From these observations we can conclude that both the closed form and the action-matrix forms of the three-plus-one algorithm are significantly more efficient than the five-point algorithm. In real experiments, the performance of the C implementation of the closed-form algorithm outperformed an optimized implementation of the five-point method, on average, by a factor of 5 (2.6 μs compared to 13.0 μs on a 3 GHz laptop).

8 Simulation Results

In this section, we establish the expected performance level of our algorithms in noise-free and noisy conditions, comparing them first to each other and then to the five-point relative pose estimation algorithm. We study both single and double precision arithmetic implementations for the action matrix and closed-form algorithms, and look for numerical differences between them, as well as the differences between the five-point method and the more constrained three-plus-one method.

The input data were generated as follows: The pose of the first camera was defined to be the identity pose [I|0] and the reference direction was generated as a random unit vector. The pose of the second camera was generated uniformly at random as a unit translation vector t and three Euler angles corresponding to the roll, pitch, and yaw of the second camera within the limits specified by the experiment. Sets of five three-dimensional world points were generated within a spatial volume defined by the parameters of the experiment, so as to be visible by both cameras. The world points were then projected into the image planes of the two cameras (with identical intrinsic calibration defined by the experiment) to form image correspondences, and contaminated with Gaussian noise with standard deviation in pixels defined by the experiment. The second camera’s reference direction was then computed, and the directional correspondence vectors were contaminated by Gaussian rotational noise with standard deviation in degrees defined by the experiment. The sets of image and directional correspondences were then used to compute pose with the three-plus-one and the five-point algorithms. Each method produces a set of pose hypotheses for each input set. The error reported for each input set is the minimum error for all hypotheses. All comparisons between algorithms were run on identical input data.

8.1 Numerical Stability with Noise-Free Data

First, we establish the correctness and numerical stability of our algorithms. In these experiments, the pose was allowed to vary over the entire range of rotations, and the translation and directional correspondence vectors were generated uniformly at random and normalized to length 1. Fig. 2 shows errors in pose recovery on perfect, simulated data. The noise metric is the minimum Frobenius norm of the differences between the true pose matrix and each computed pose matrix (up to eight per instance). The error distribution shows that both algorithms perform as expected, with the action matrix method exhibiting better...
The numerical stability of the closed-form method can be improved by solving the problem three times, using different pairs of points in (7), but the computational cost of computing and then scoring the additional hypothesis makes this impractical, as we saw in Section 7.

8.2 Image and Directional Correspondence Noise

In the rest of this section, we will simulate a 640 × 480 camera with a 60 degree FOV, where structure points are found between 10 and 40 baselines away, where one baseline is the distance between camera centers. We will first consider only pixel noise, and deal with directional correspondence noise later. Fig. 3 compares performance for forward and sideways motion of the camera under different pixel noise and directional correspondence noise conditions. It comes as no surprise that forward motion is generally better numerically, and that the rotation estimate (1DOF) is significantly better than the estimate of the epipole. The plots also conclusively demonstrate numerical stability of both single and double precision implementations. Further experiments described in the technical report [24] demonstrate that in these noisy conditions, the performance of the single and double precision action-matrix method and the single precision closed-form method are almost identical.

Fig. 3. Median translation and rotation errors for the five-point algorithm for the cases of forward and sideways motion for different directional noise levels. In the legend, the three-plus-one algorithm is labeled “3p1” and the five-point algorithm is labeled “5p.” The number after the algorithm name indicates the standard deviation of pixel and directional (for the three-plus-one method only) error standard deviations levels in pixels and degrees. The colors also correspond to noise levels: Red is 0.1 pixel and 0.1 degree, red is 0.5 pixel and 0.5 degree, and green is 1.0 pixel and 1.0 degree.

The directional noise was simulated as a rotation of the direction vector around a random axis with an angle magnitude drawn from a normal distribution. The standard deviation of the noise is plotted on the x-axis.

8.3 Comparison with the Five-Point Method

We also compare the three-plus-one method to the classic five-point method. While they are not equivalent (since the five-point method does not require a specific point to be at infinity), they can be used interchangeably in some real situations, as described in the next section.

Since both closed-form and action-matrix-based algorithms exhibit similar performance, we only compare the double precision implementations of our closed-form algorithm and the five-point algorithm. Fig. 4 demonstrates the effect of the field of view on the algorithms. The rotation estimation is generally better with the three-plus-one algorithm, while translation error does not decrease as quickly with the field of view in the three-plus-one case as in the five-point case. In Fig. 5, we plot errors for several levels of directional noise while varying the pixels noise. It is clear from the graphs that the three-plus-one algorithm is better at estimating rotations than the five-point algorithm, even under significant error in the directional correspondence, but the five-point method is better at estimating sideways translation, even in the cases of small error in the directional correspondence.

In real experiments, we will use our method to compute vision-only relative pose, when points at infinity are present. But first, we compare the performance of the five-point and the three-plus-one methods in this scenario in simulation. The directional correspondence in this case is generated as a projection of a point at infinity, contaminated with noise and made unit length. The directional correspondence noise can now be measured in pixels, putting the two methods on equal footing. From the results shown in Fig. 6 we conclude that our method outperforms the five-point method, while using only four image points, in estimating rotation in forward and sideways motion, and translation in forward motion. Our method does a slightly worse job estimating translation in the sideways motion.

9 MONOCULAR VISUAL ODOMETRY

Recall that one of the main goals of this work is the demonstration of monocular, RANSAC-based visual odometry
with a four-correspondence hypothesis generator without explicit vanishing point computation. In the traditional five-point RANSAC, sets of five correspondences are chosen at random. In our case, sets of four are chosen with the first point becoming a prospective directional correspondence. In effect, there are now two pools of inliers: one pool for points at infinity, from which the first point must be chosen, and the other for points not at infinity, from which we need three points. Since most outdoor scenes have no shortage of faraway feature matches, RANSAC had no trouble choosing the right hypothesis.

9.1 Experimental Setup

We used our C++ implementations of the closed-form and action-matrix-based methods to test the algorithm in the visual odometry context. We used a hand-held, 640 × 480 pixel, black and white camera with a 50 degree field of view lens to record an 825-frame, outdoor video sequence for comparison with the five-point algorithm (see sample images in Fig. 7a). This experiment used the action matrix implementation. The second data set was recorded with a similar camera from a mobile robot platform and included high accuracy ground truth (see Fig. 9), and hypotheses were computed using the closed-form implementation.

For both data sets, we used the monocular scheme given in [1]. Harris corners and correlation matching were used to obtain image correspondences. The experiments consisted of using the correspondences to estimate camera motion with the standard five-point algorithm and our three-plus-one algorithm. We computed 200 hypotheses for each image pair. The correspondences, the number of hypotheses, and the other system parameters remained the same, and only the pose hypothesis generator was changed between experiments. The directional correspondence was simply image point correspondence, where the "x" marker corresponds to the three-plus-one algorithm. The directional RANSAC, sets of five correspondences are chosen at random. In our case, sets of four are chosen with the first point becoming a prospective directional correspondence. In effect, there are now two pools of inliers: one pool for points at infinity, from which the first point must be chosen, and the other for points not at infinity, from which we need three points. Since most outdoor scenes have no shortage of faraway feature matches, RANSAC had no trouble choosing the right hypothesis.

9.2 Structure from Motion Results

In Fig. 7b, we stitched together the poses and highlighted the places where breaks in the path occurred. Since we know that we have enough points to track, the failures are due to RANSAC-based pose estimation or RANSAC-based scale estimation and is a result of a failure to choose an inlier subset. It is interesting to note that the failures happened in different places with different algorithms due to randomness of sampling. We expect more robust results (fewer breaks) from the three-plus-one method, and we found it to be the case due to the limited number of hypothesis.

In order to quantify the real-world performance, we computed relative pose for each consecutive pair of frames in the data set with each algorithm. Fig. 8 shows the histogram of differences in relative pose components between the three-plus-one and five-point algorithm. This once again demonstrates that
We presented two efficient algorithms to determine relative pose to close the loop. Our algorithm can be a reliable substitute for the five-point in outdoor environments.

To further demonstrate the real-world performance, we collected a 2,582-frame video from a mobile robot, where the position of the robot was tracked with a Topcon tracking total station. In this experiment the hypotheses were generated with the closed form method. The resulting trajectory is plotted in Fig. 9b.

9.3 Structure from Motion Results with a Camera and an IMU

We investigated using our algorithm to combine visual and inertial data by introducing the gravity vector in the camera coordinate system as the directional correspondence. For this data collection, the camera was rigidly mounted on a rig with a Microstrain 3DM-GX1 IMU, and data were synchronously acquired from both devices. We collected an indoor data set and used the visual odometry setup described above to compare the five-point method with our three-points-plus-gravity method. The results are presented in Fig. 10. In this data set, RANSAC with the five-point hypothesis generator generally performed similarly to our method, but failed to accurately recover relative pose for one of the frames, resulting in a jump near the bottom left of the trajectory and failure to close the loop.

10 Conclusions

We presented two efficient algorithms to determine relative pose from three image point correspondences and a directional correspondence. From our analysis and experiments we learned that:

- The more constrained three-plus-one method does a better job of estimating rotations than the five-point method.
- Both the closed-form and action-matrix implementations are faster than the five-point method, making them attractive for real-time applications.
- The action-matrix method yields a solution with better numerical performance than the simpler, closed-form algorithm, but the differences are not significant in realistic settings.
- Since the action-matrix method can perform better in single precision implementation, it should be considered for processors with 32-bit floating-point arithmetic where extra precision is required.
- When used with RANSAC, smaller minimal data set can lead to improved robustness.
- The three-plus-one algorithm can provide accurate and robust results in real-world settings when used with RANSAC and bundle adjustment, and can be used to perform visual odometry for outdoor scenes with or without aid from an IMU.

We believe that the real power of this algorithm is that it can be used as a complement to the five-point algorithm to increase the reliability and speed of visual navigation systems.

ACKNOWLEDGMENTS

The authors are grateful for support through the following grants: US National Science Foundation (NSF-IIS-0713260, NSF-IIP-0742304, NSF-IIP-0835714, and ARL MAST-CTA W911NF-08-2-0004).

REFERENCES