
Automatic Alignment of a Camera with a Line Scan LIDAR System

Oleg Naroditsky, Alexander Patterson IV and Kostas Daniilidis

Abstract— We propose a new method for extrinsic calibration
of a line-scan LIDAR with a perspective projection camera.
Our method is a closed-form, minimal solution to the prob-
lem. The solution is a symbolic template found via variable
elimination and the multi-polynomial Macaulay resultant. It
does not require initialization, and can be used in an automatic
calibration setting when paired with RANSAC and least-squares
refinement. We show the efficacy of our approach through a
set of simulations and a real calibration.

I. INTRODUCTION

The problem of calibrating a LIDAR-camera sensor rig is
very important in robotics applications. A camera provides a
dense, color image of the environment, and LIDAR gives a
sparse, but accurate, depth map. Fusion of visual and distance
information is challenging when there is parallax between the
two sensors and when distance consists of a single line scan.
Unlike in structured light techniques, the laser is not visible
in the image, hence we have to invent a way to associate
features on the line scan with features in the image if we
want to eliminate a manual selection of the features.

This paper gives a complete solution to this problem,
allowing automatic, initialization-free calibration of the sen-
sors, assuming only overlapping fields of view. We demon-
strate via a series of synthetic and real experiments that our
method, which is based on minimal solutions and RANSAC
[1], is numerically stable and accurate for realistic calibration
scenarios.

Our method relies on automatically computed correspon-
dences between lines in the image and 3D points returned by
the LIDAR. We formulate and solve the ”minimal problem”
using these correspondences. We show that the minimum
number of constraints is six, and that there are at most four
distinct solutions. We derive a closed-form solution to the
problem using variable elimination and resultants.

II. RELATED WORK

The closest and most cited work to ours is by Zhang and
Pless [2] who match a scanline to a checkerboard. When
moving a checkerboard, traditional camera calibration [3]
can extract the normal to the checkerboard with respect to
a global camera reference, while detection of a line in the
laser profile enables association of 3D-points with the cali-
bration plane. The algorithm starts with a linear initialization,
suffering under the well known effects of linearization like
finding 3x3 matrices satisfying the data equation and then
finding the closest special orthogonal matrix. Mei and Rives

The authors are with the GRASP Laboratory, Department of Computer
and Information Science, University of Pennsylvania, Philadelphia, PA,
USA. {narodits,aiv,kostas}@cis.upenn.edu

Fig. 1. A capture rig incorporating four cameras and a Hokuyo LIDAR.
Our method is intended to automatically calibrate such systems.

[4] have applied the same principle to catadioptric images
but they exploit the association of a 3D-line (in terms of
direction and an offset) to a calibration plane. It is worth
noticing that the equation associating the plane normal to the
3D-line direction is of the form n>Rd = 0, is algebraically
the same as ours after eliminating the translation. However,
the authors use, similarly to [2], the association of points.

When a laser system produces a full depth map at once,
the only challenge is associating features. In [5], a similar
to [2] association of 3D points to camera planes is used. In
[6] an IMU enables the registration of line scans into a 3D
LIDAR and the relative transformation is found via hand-
eye calibration [7]. Scaramuzza [8] uses the association of
hand-clicked points in a full 3D map to point in catadioptric
images.

When we say we solve the ”minimal problem”, we mean a
geometric problem that uses the lowest number of constraints
required to obtain a finite number of solutions. When paired
with RANSAC, minimal problems are optimally suited auto-
matic model estimation from noisy data with outliers, since
they minimize the probability of choosing an outlier as part
of the model. Consequently, minimal problems in computer
vision have received a great deal of attention, and our work
follows the algorithms beginning with the five-point solution
to the structure-from-motion problem [9], problems in 3D
reconstruction [10] and camera calibration [11].

III. PROBLEM DESCRIPTION
Let us formally define the problem of camera-to-LIDAR

calibration. We are given a rig consisting of a calibrated
camera (intrinsic parameters are known) and scan line LI-
DAR that are rigidly mounted with respect to each other.

Our goal is to find the rigid transformation [R|t] such that
given a 3D point x = [x1,x2,x3]> obtained by the LIDAR,
we can compute the corresponding point y=[y1,y2,y3]> in
the camera’s coordinate system (and then in the image via
the intrinsic calibration) as y = Rx + t.

A single LIDAR datum consists of a depth and angle at
which the depth was sensed. We define the coordinate system
for the LIDAR as follows. The origin is the center of laser
sensor rotation, and the plane of laser rotation is the Y-Z
plane. Consequently we can always express a 3D LIDAR
point will as x = [0,x2,x3]>.

As with any calibration problem from sensor data, we
must collect correspondences between the readings of dif-
ferent sensors. In this case, we construct a calibration target
containing a single black to white transition (see Figure 2),
which we detect as a line segment in the image and a point
in the LIDAR’s luminance output for a single line scan
(see Figure 3). We discuss feature detection in detail in
Section VI-B. A line in the image corresponds to a plane in
the world through the line and the center of projection of the
camera. We now have a correspondence between a 3D point
in the LIDAR coordinate system and a plane in the camera’s
coordinate system. Thus our constraint is that the LIDAR
point, taken into the camera’s coordinate system, must lie
on the corresponding plane. We express this constraint as

n>(Rx+ t) = 0, (1)

where n is the normal to the plane in the camera coordinate
system and x is the LIDAR point.

Fig. 2. A single camera frame from the calibration data set showing the
calibration object. The object consists of a black line on a white sheet of
paper. We detect the white-to-black transition looking from the top of the
image.

IV. THE POLYNOMIAL SYSTEM

In this section we show how to formulate the problem as
a set of polynomial equations. Our original point correspon-
dence constraints have the form

n>i (Rxi + t) = 0 (2)

−3500 −3000 −2500 −2000 −1500 −1000 −500 0 500

−1000

−500

0

500

1000

1500

2000

Z (mm)

Y
(m

m
)

Ceiling

Person
Target

Wall

LIDAR

Fig. 3. A portion of a LIDAR scan showing a person holding the calibration
target. The points are colored by their intensity returns. The LIDAR’s scan
plane is close to vertical, and its origin is marked by a circle.

for i = 1, . . . ,6, where R ∈ SO(3) and t, ni, xi and t are 3-
vectors. Let r1, r2 and r3 be the columns of R. Since we set
up the LIDAR coordinate system in such a way that the first
component of each xi is zero, we do not have an explicit
dependence on r1. By taking the cross product

r1 = r2× r3, (3)

we can recover the first column of R from the other two.
Since R is orthonormal, we can add the following constraints

r>3 r3 = 1

r>2 r2 = 1

r>3 r2 = 0.

(4)

We expand the constraints in equation (2), to obtain linear
equations of the form[

a>i a′>i
][

r2
r3

]
+n>i t = 0 (5)

for i = 1, . . . ,6, where the constant vectors ai and a′i are
expressed in terms of input data in the following way:[

ai
a′i

]
=

[
nixi2
nixi3

]
. (6)

Our system now has 6 linear, homogenous equations in 9 un-
knowns corresponding to the point-to-plane correspondences,
and three second order equations constraining the rotation
matrix. In the next two sections we will present a closed-
form solution to this polynomial system.

V. THE CLOSED-FORM SOLUTION

Since we have linear constraints (2), and require a six-
degree-of-freedom solution, it is not surprising that we need
a minimum of six correspondences. It may seem surprising
at first, however, that this polynomial system can be solved in
closed-form, despite having eight solutions. First, we briefly
outline the following steps to eliminate eight of the variables

from the system, solve a univariate polynomial and then back
substitute:

1) Symbolically solve for the translation component t
using the first three linear equations, and substitute into
the three remaining linear equations.

2) Symbolically solve three of the six remaining equa-
tions for the components of r2 and substitute into
remaining equations.

3) Use the Macaulay resultant (see Chapter 7, §6 in [12])
to symbolically eliminate two of the three remaining
variables from the three remaining equations, and solve
the resulting quartic equation in closed form for r33.

4) Substitute the solutions into the three equations, and
use the Sylvester resultant (see Chapter 3, §5 in [12])
of two of them to eliminate one of the two remaining
variables, and solve the resulting quartic equation in
closed form.

5) Test the solutions to obtain the one satisfying all
equations.

6) Back-substitute for the variables in r2 and t.
The symbolic templates generated by this process will remain
the same across all instances of the problem, so they only
need to be computed once, so that solving an instance of a
problem can be accomplished by substitution of the data into
the expressions for the solution.

We will now describe the solution in detail. Let us first
eliminate t from the first three constraints of the form (2).
These are linear equations, so we can express t as

t =−

n>1
n>2
n>3

−1 n>1 Rx1
n>2 Rx2
n>3 Rx3

 . (7)

In the above system, the components of t are expressed
in terms of the remaining variables r2 and r3. Let us call
the coefficients of the remaining variables bi j. The three
equations in (7) then become

ti =
[
b>i b′>i

][
r2
r3

]
, (8)

for i = 1, . . . ,3 which is linear in the the components of r2
and r3.

We now substitute for t in the three remaining constraints
of the form (2) for i = 4, . . . ,6 to get three linear constraints
in r2 and r3. c>4

c>5
c>6

r2 +

c′>4
c′>5
c′>6

r3 = 0, (9)

where ci j and c′i j are the coefficients (expressed once again
entirely in terms of problem data)

ci = ai +
[
b1 b2 b3

]
ni

c′i = a′i +
[
b′1 b′2 b′3

]
ni.

(10)

Let C and C′ be the 3×3 matrices of coefficients ci j and c′i j.
Using the linear system (9), we can express r2 as

r2 =−C−1C′r3 (11)

We can now eliminate r2 from the system by substituting
for r3 in the three remaining second order constraints (4),
arriving (after full expansion) at the system

e11r2
13 + e12r13r23 + e13r2

23 + e14r13r33 + e15r23r33 + e16r2
33 = 1

(12)

e21r2
13 + e22r13r23 + e23r2

23 + e24r13r33 + e25r23r33 + e26r2
33 = 0
(13)

r2
13 + r2

23 + r2
33−1 = 0,

(14)

where, the constants ei j are computed in closed form in
terms of ci j after the substitution. These coefficients are given
explicitly in the supplemental material1. We can observe that
given a set of values that satisfy this system, the negative
values will also satisfy it. Thus, we expect to solve this
system via a quartic polynomial in squares of the variables
instead of an eighth degree.

While we cannot directly solve for any of the variables in
the system formed by the last three equations, nor can we
reduce the number of variables further by rearranging the
system, we can still obtain a univariate polynomial in r33
by using the Macaulay resultant of the three equations. This
multivariate resultant is the quotient of the determinants of
the numerator matrix (17) and the denominator matrixe13 0 e16

0 e13 e11r2
13−1

1 0 1

 (15)

When we set this resultant to 0, we obtain the following
polynomial equation:

g1r8
33 +g2r6

33 +g3r4
33 +g4r2

33 +g5 = 0. (16)

The coefficients gi can be computed in closed form using a
symbolic mathematics program, such as Maple [13]. They
only have seven thousand terms due to the sparsity of the
matrix (17), and are explicitly given in the supplemental
material.

The equation (16) can be solved in closed form as a quartic
equation in r2

33, thus giving us up to four real solutions and
eight possibilities for r33. We note that since both [R | t]
and [−R | − t] are the solutions to the original system, we
only need to back-substitute the positive, real solutions of
(16), and there are up to four of them. Once we obtain the
corresponding [R | t], simply choose the sign of the overall
solution that makes the determinant of R positive.

While we know that each solution for r33 corresponds
to a single solution for the rest of the variables in the
original system, when we substitute the numeric values r̃33
in the equations (12), (13), and (14), we are faced with a
system which may have false solutions due to numerical
error. While it is possible to substitute the closed-form
solutions to the quartic, it is not practical due to the radicals
in the quartic formula. Instead, we compute the Sylvester

1The MATLAB function, which includes all coefficients, can be obtained
from www.cis.upenn.edu/˜narodits/SolveLidarCalibrationOpt.m.

e11 0 0 0 0 0 e13 0 0 0 0 e16r2
33 −1 e15r33 e14r33 e12

0 e11 0 0 0 0 e15r33 e13 0 e12 0 0 e16r2
33 −1 0 e14r33

0 0 e11 0 0 0 e16r2
33 −1 e15r33 e13 e14r33 e12 0 0 0 0

e14r33 e12 0 e11 0 0 0 0 0 e13 0 0 0 e16r2
33 −1 e15r33

0 e14r33 e12 0 e11 0 0 0 0 e15r33 e13 0 0 0 e16r2
33 −1

e16r2
33 −1 e15r33 e13 e14r33 e12 e11 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 r2

33 −1 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 r2

33 −1 0 0
0 0 1 0 0 0 r2

33 −1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 r2

33 −1 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 r2

33 −1
e31 0 0 0 0 0 e33 0 0 0 0 e36r2

33 e35r33 e34r33 e32
0 e31 0 0 0 0 e35r33 e33 0 e32 0 0 e36r2

33 0 e34r33
e34r33 e32 0 e31 0 0 0 0 0 e33 0 0 0 e36r2

33 e35r33
0 e34r33 e32 0 e31 0 0 0 0 e35r33 e33 0 0 0 e36r2

33

(17)

e13 e12r13 + e15r̃33 e11r2

13 + e16r̃2
33−1+ e14r13r̃33 0

0 e13 e12r13 + e15r̃33 e11r2
13 + e16r2

33−1+ e14r13r̃33
1 0 −1+ r2

13 + r̃2
33 0

0 1 0 −1+ r2
13 + r̃2

33

 (18)

resultant of (12) and (14) with respect to r23, which is the
determinant of the Sylvester matrix (18). The resultant is thus
a quartic polynomial in r13, and its coefficients are computed
symbolically and are given in the supplemental material.

We set the resultant to 0 and obtain the real solutions r̃13 to
the equation. We substitute the values into (13) and solve for
the remaining variable r23. It now becomes a simple matter
of testing the solutions using equation (14) to see which
solution indeed lies on the sphere. We repeat this process
with the remaining real solutions to (16).

Having obtained up to four sets of solutions for r3, it is
simple to recover solutions for r2 from (9), r1 from (3), and
t from (7). As we mentioned before, we must choose the
sign of each solution to make the determinant of R positive.
We can find the unique solution to the problem by using a
7th correspondence to disambiguate among the four solution.
To do this, we substitute the n7 and x7 into the constraint
equation (2) for each candidate R and t and choose the
solution with the lowest absolute residual.

The steps described above produce a symbolic template
for this problem. By this we mean that given any particular
set of six correspondences, we can arrive at the solutions
for R and t only by substituting the data into pre-computed
expressions and solving univariate polynomials (in this case
of degree 4).

VI. RESULTS

In this section we will first establish the correctness of our
algorithm and explore its sensitivity to noise using simulated
data, and then perform a real calibration of a LIDAR-camera
rig mounted on a mobile robot for the purpose of coloring
the 3D LIDAR points with pixels from the camera and show
the results.

A. Simulations

Our first experiment establishes the correctness and nu-
merical stability of our symbolic template. We generate,

−14 −12 −10 −8 −6 −4 −2 0 2 4
0

100

200

300

400

500

600

700

log10 of overall pose error

C
ou

nt

Fig. 4. The histogram of numerical errors for 105 random, noise-free
instances of the problem. The error is defined as the log10 e, where e of the
Frobenius norm of the difference between the ground truth and the computed
matrices (see (19)). Since the points were not checked for degeneracy (such
as collinearity), some failures are observed. If we consider a failure to be
log10 e >−1, then the method fails 1.97% of the time.

uniformly at random, roll, pitch and yaw of the LIDAR with
respect to the camera in the range of ±30◦, and translation
vectors with uniformly random components from 0 to 30cm.
For each of these ground truth calibrations, we generate six
noise-free correspondences.

We generate these correspondences by simulating a cam-
era looking at a target. Specifically, we choose two random
points in sampling volumes in front of the camera, one on
the left and one on the right. This closely models what
happens in the real system where the 3D line must intersect
the LIDAR scan plane which is close to the vertical plane
separating the left and right halves of the image. These two
points define a line which is then intersected with the LIDAR
plane to obtain the point x, and they are used, along with

the camera center, to define the plane and its normal n.
The histogram of errors for 105 such configurations is

shown in Figure 4. The error metric is the the following:

e = min
i

(‖[Rgt | tgt]− [Ri | ti]‖F), (19)

for i from 1 to the number of solutions, Rgt and tgt comprise
the ground truth calibration and ‖�‖F is the Frobenius norm.
The figure demonstrates that our solution correctly solves the
calibration problem. The accuracy varies due to the random
nature of correspondences and lack degeneracy checking.

We now profile the algorithm with respect to noise in
sensor data. We consider three sources of error: depth un-
certainty in the LIDAR points and misestimation of position
and rotation of the corresponding lines in the image, both
of which lead to the 3D point being some distance off the
plane through the line and center of the camera. For the
LIDAR depth error the Hokuyo device specifies the standard
deviation of 30mm for ranges less than 1m. We will study the
accuracy for noise standard deviations of 0mm to 30mm. The
image processing accuracy will be in pixels with respect to a
baseline calibrated camera, which we define as a 640×480
pixel sensor with a 60◦ field of view. While in the real data
the errors in line extraction will depend on the length of the
edge segments extracted, we will use the range of 0 to 4 pixel
standard deviations in the simulated results. The results for
different error levels are shown in Figure 5, and demonstrate
a greater sensitivity to image noise than depth noise.

B. A Real Calibration

The sensor rig for the real-world calibration experiment
consists of a calibrated 640×480 Flea2 camera with a 77◦

field of view and a Hokuyo UTM-30LX line scanner, which
has an angular resolution of 0.25deg (see Figure 1).

Images of the calibration target (see Figures 2 and 3)
are captured synchronously by the two sensors at various
positions. We detect the target as follows. For the LIDAR
calibration target detection we use the line scan, including
intensity, returned from the device in the region of interest
for calibration. First, the derivatives of the intensity vector
of the line scan are computed using a difference of gaussians
filter. The peaks of this derivative signal are detected by non-
maximal suppression. This detects both rising and falling
edges in the intensity signal. We then improve the estimate
of the edges by fitting a line to all the neighboring 3D points
and projecting the intensity edge sample point onto that line
to give us the final LIDAR feature point xi. The discrete
sampling of the angle could cause an angular error, but since
we can control the target’s location during calibration, this
problem can be avoided. Even if the LIDAR and camera are
further apart as on a larger robot, a long target can be used
which could keep the target close to both sensors.

The first two steps in image line extraction is radial
distortion removal and edge detection [14]. The dgels are
then combined using the Hough transform to output line
segments. We define ”linescore” as is a measure of how well
the gradient information in the image fits with the proposed
line. We compute this on the line segments to orient them and

prune out line segments with poor support. In order to define
linescore, first define Q j as the set of pixels which lie within
1 pixel of the line segment j to score, and define gi to be
the gradient at pixel i, and m j to be the normal to the line
segment j which we are scoring. linescore j = ∑i∈Q j g>i m j
measures the support in the gradient image for each line.

Next, the candidate edges are pruned more using the fol-
lowing heuristics, which use the fact that our target contains
a single black stripe on a white background. The heuristics
look for pairs of line segments which contain a white to
black transition followed by a black to white transition. To
do this, we look at the normal direction combined with the
linescore to propose candidate pairings respecting this. For
each candidate pairing we perform a number of tests:

1) Check that the candidate pair’s normals are close
to parallel while accounting for possible perspective
distortions.

2) The lines are required to be close together because the
target never fills up too much of the field of view.

3) Check that the ratio of width the height of the rectangle
created by the pair of line segments is appropriate. This
is a check that the target has the correct aspect ratio.

4) Overlap is computed and thresholded to rule out line
segments which don’t occur next to each other.

Once these criteria are passed we take the two endpoints
of each line, and record the normal to the plane ni passing
through these points and the camera center. Thus the vector
ni corresponding to the LIDAR point xi become the input
for RANSAC process. We then compute a robust calibration
solution using around 400 correspondences in the RANSAC
framework. The process chooses the best calibration hypoth-
esis based on six correspondences which we then iteratively
refine using all of the inliers.

We tested the quality of our calibration. Our rig is
equipped with stereo cameras that we calibrated using the
Camera Calibration Toolbox [3]. We computed the error
in the LIDAR-camera calibration by observing that we can
compute the left-to-right camera calibration by combining
the left camera and right camera to LIDAR calibrations. We
define an error metric as follows. Let us denote a calibration
transformation Pq =

[Rq tq
000 1

]
. We can define the error matrix

Perr = PlrPrhP−1
lh ,

where Plr is the left-to-right calibration computed using the
calibration toolbox, and Prh and Plh are the left camera and
right camera to Hokuyo calibrations, respectively, computed
with our method. If both of our calibrations were accurate,
Rerr would be close to identity and ‖terr‖2 would be close
to 0. The real rotation error was 0.26◦, and the translation
error was 1.9mm (the distance between the LIDAR and each
camera was approximately 140mm).

This calibration was used to color the LIDAR points
with the corresponding pixels from the camera. Our system
automatically acquired the images and registered LIDAR
scans using visual odometry. The registered LIDAR point
cloud is shown in Figure 6. The same point cloud colored
by the camera image pixels is shown in Figure 7.

0 5 10 15 20 25 30
0

2

4

6

8

10

M
ed

. r
ot

at
io

n
er

ro
r (

de
g)

LIDAR depth noise std. dev. (mm)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

LIDAR depth noise std. dev. (mm)

M
ed

. t
ra

ns
la

tio
n

er
ro

r (
m

m
)

0 pix
1 pix
2 pix
3 pix
4 pix

0 pix
1 pix
2 pix
3 pix
4 pix

Fig. 5. Errors in rotation and translation estimation for a simulated rig with a 100mm distance between the camera and LIDAR. Each point shows median
error for 200 random configurations of LIDAR-image correspondences. Each sequence corresponds to different levels of image noise plotted against LIDAR
noise. The noise values are the standard deviations. The image errors are line translation error (pix) for the baseline camera described in Section VI-A.

Fig. 6. A sample LIDAR scan acquired by the mobile robot colored by
height.

VII. CONCLUSION

In this paper we overcome the difficulty of calibrating
LIDAR-camera rigs by introducing a new algorithm based
on the minimal solution to the calibration from image line
to 3D point correspondences, used in a robust framework.
Our algorithm does not require initialization, and, along with
automatic feature detection we described, can be used to
automatically calibrate a wide variety of sensor platforms.
Our experiments with both simulated and real data clearly
indicate that this method is both correct and practical.

VIII. ACKNOWLEDGMENTS

The authors are grateful for support through the grants
NSF-IIP-0742304, NSF-IIP- 0835714, ARL MAST-CTA
W911NF-08-2-0004 and ARL RCTA W911NF-10-2-0016,
and thank Raia Hadsell of SRI for creating Figures 6 and 7.

REFERENCES

[1] M. Fischler and R. Bolles, “Random sample consensus,” Communica-
tions of the ACM, Jan 1981.

[2] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser
range finder (improves camera calibration),” vol. 3, sep. 2004, pp.
2301 – 2306 vol.3.

Fig. 7. A LIDAR scan colored using camera pixels.

[3] J.-Y. Bouguet, “Camera calibration toolbox for matlab,”
www.vision.caltech.edu, 2006.

[4] C. Mei and P. Rives, “Calibration between a central catadioptric
camera and a laser range finder for robotic applications,” may. 2006,
pp. 532 –537.

[5] R. Unnikrishnan and M. Hebert, “Fast extrinsic calibration of a laser
rangefinder to a camera,” Robotics Institute, p. 339, 2005.

[6] P. Nunez, P. Drews, R. Rocha, and J. Dias, “Data fusion calibration
for a 3d laser range finder and a camera using inertial data,” European
Conference on Mobile Robots ’09, p. 9, 2009.

[7] R. Horaud and F. Dornaika, “Hand-eye calibration,” Intl. J. Robot.
Res., 1995.

[8] D. Scaramuzza, A. Harati, and R. Siegwart, “Extrinsic self calibration
of a camera and a 3D laser range finder from natural scenes,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007. IROS 2007, 2007, pp. 4164–4169.

[9] D. Nister, “An efficient solution to the five-point relative pose prob-
lem,” IEEE PAMI, Jan 2004.

[10] M. Bujnak, Z. Kukelova, and T. Pajdla, “A general solution to the
p4p problem for camera with unknown focal length,” CVPR 2008,
Jan 2008.

[11] Z. Kukelova and T. Pajdla, “Two minimal problems for cameras with
radial distortion,” OMNIVIS 2007, Jan 2007.

[12] D. Cox, J. Little, and D. O’Shea, “Ideals, varieties, and algorithms,”
Springer, Jan 1997.

[13] M. Minimair, “Mr: Macaulay resultant package for maple,” SIGPLAN
Not., vol. 39, no. 4, pp. 26–29, 2004.

[14] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6,
pp. 679–698, 1986.

