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Abstract

We propose a novel technique for the registration of 3D
point clouds which makes very few assumptions: we avoid
any manual rough alignment or the use of landmarks, dis-
placement can be arbitrarily large, and the two point sets
can have very little overlap. Crude alignment is achieved
by estimation of the 3D-rotation from two Extended Gaus-
sian Images even when the data sets inducing them have
partial overlap. The technique is based on the correlation
of the two EGIs in the Fourier domain and makes use of the
spherical and rotational harmonic transforms. For pairs
with low overlap which fail a critical verification step, the
rotational alignment can be obtained by the alignment of
constellation images generated from the EGIs. Rotationally
aligned sets are matched by correlation using the Fourier
transform of volumetric functions. A fine alignment is ac-
quired in the final step by running Iterative Closest Points
with just few iterations.

1 Introduction

During the last few years we have experienced the mar-
ket introduction of range sensors with reasonable cost as
well as the availability of many successful stereo vision al-
gorithms. In the near future, sensors based on structured or
modulated light will be able to capture several aspects of an
object or even an entire scene in time comparable to image
acquisition time from a digital camera. In the same way that
automatic image stitching is now a widely used tool, we ex-
pect that there will be a need for a fast and fully automatic
solution of the range registration problem.

As any registration problem, range registration consists
of the steps of matching and estimation of the rigid transfor-
mation. Depending on the displacement and orientation be-
tween point clouds, we differentiate between crude and fine
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alignment. The challenge in crude registration lies in per-
forming it automatically and consistently even when there is
very small overlap. The golden standard for fine registration
is the Iterative Closest Point algorithm [4] and its variants
[24]. ICP techniques either assume a rough alignment of the
two point sets or run the algorithm multiple times by sam-
pling the space of initial conditions. In commercial prod-
ucts, initial alignment is achieved manually or by the use of
characteristic markers in the scene. They further rely on a
significant percentage of overlap between the two point sets.
Another group of techniques depend on the extraction of lo-
cal features with such distinguishable attributes that corre-
spondence becomes a non-iterative task. Robust variations
like RANSAC reject outliers and improve the estimation of
the rigid transformation.

In this paper, the emphasis is put on the crude alignment
step, which presents the real challenge for practical appli-
cations. We pose the following requirements for a regis-
tration algorithm: Fully automatic without artificial land-
marks, partial overlap of point sets, independence of sen-
sors and their sampling density as well as the size of the en-
vironment, and real-time, meaning no dependence on con-
vergence speed.

Our algorithm is global and does not necessitate any fea-
ture detection. Its novel contribution is the reliable estima-
tion of orientation between two extended Gaussian images
(EGI, [11]). Our rotation estimate is obtained by exhaus-
tively traversing the space of rotations to find the one which
maximizes the correlation between EGIs. Such a computa-
tion would seem grueling, but we show how such a corre-
lation can be computed efficiently using the spherical har-
monics of the Extended Gaussian Image and the rotational
Fourier transform. To rotationally align point clouds with
low overlap, we introduce a new representation of the EGI
which we call the constellation image. This image cap-
tures the critical orientation distributions of a point cloud
and can be correlated to obtain alignment without being
adversely affected by outlying normal densities. We use a
correlation-based formulation to subsequently estimate the
translation. Our experiments show that our algorithm aligns



point clouds arising from small objects or indoor scenes
with as low as 45% overlap.

1.1. Related work

Many approaches dealing with scans with low overlap
forgo global characteristics in favor of the extraction of lo-
cal invariant features [27, 14, 12]. These features, if given in
sufficient number, can be matched to constrain the motion
estimates. These feature matching approaches are suscep-
tible to outliers and common ambiguities in the matching
(repeated textures).

The representation we explore in this paper is the ex-
tended Gaussian image, which can effectively be approx-
imated by a spherical histogram of surface orientations.
Since its introduction, a number of other translation in-
variant spherical representations have been introduced, in-
cluding extensions to the EGI to handle a wider range of
input scans. There are the weighted principal directions
and canonical length used in [1], the directional histogram
model [20] (and closely related thickness histogram [21]),
and the spherical attribute images in [10, 7]. In [15] a com-
plex EGI was proposed which extends the traditional EGI
to distinguish between convex and nonconvex objects. Al-
though invariant spherical representations have been used to
estimate relative orientation ([5, 19, 13, 10]), these methods
depend on unreliable local features or brute force matching.
To the knowledge of the authors, a fast global alignment
between range scans has yet to be introduced.

While our use of spherical harmonics to estimate rota-
tion from EGIs is new, harmonic invariants have been used
extensively for object retrieval and recognition [20, 21, 16],
and also at a smaller scale to generate invariant keypoints
[9]. A true Fourier-based method for range alignment is
given in [22]. Since this method estimates the parame-
ters of motion directly from the frequency domain, it re-
quires knowledge of the overlapping regions between scans.
Close methods to ours may be found in the SLAM litera-
ture, where correlation alignment is achieved by recovering
the phase shift from two dimensional signals. For example,
angle histograms, which are roughly invariant to rotation
and translation are aligned via cross-correlation in [29].

In addition to aligning limited overlap point clouds, an-
other objective of ours is to seamlessly integrate a large
number of scans. Related to this effort are a number of
methods which try to create object models from the com-
bination of numerous laser scans [6, 25, 3]. In [6], the au-
thors combine range scans through an updated signed dis-
tance function, and in [25] the surfaces are integrated by
minimizing the least-squares distance between overlapping
regions.

In the two following sections, we demonstrate how to
achieve a reliable rotation estimate directly from the EGI

images.

2 Orientation histograms

Global representations of range scans are desirable be-
cause they capture characteristics which encode invariance
and allow for direct comparisons for alignment and recogni-
tion tasks. Surface orientation histograms are effective ap-
proximations to the EGI representation, and throughout this
text we will refer to the EGI and the orientation histogram
interchangeably. Although it may seem like a simple accu-
mulation of surface normals, the EGI provides a very pow-
erful representation since it allows for the direct recovery of
orientation independent of any translational shift present.

Estimating attitude via EGI alignment has been dis-
cussed as early as 1984 [5]. These methods usually involve
identifying and matching local features. Since there is a
unique EGI representation for any convex object [26], this
may be sufficient when registering orientation histograms of
convex objects with much overlap. However, when dealing
with range scans with low overlap, noisy measurements, or
multiple disconnected, nonconvex objects, it is unlikely that
local feature generation and matching will be sufficient.

It has been shown in [23] that signal correlation provides
a reliable measure for the rotational alignment of hemi-
spherical images with little overlap. While such an evalua-
tion would appear to require an expensive search, a fast cor-
relation can be estimated using spherical Fourier analysis,
with the requirement that our histogram bins be uniformly
(in angular coordinates) spaced on the sphere.

Ideally, an orientation histogram would be comprised of
bins which all have the same surface area and shape. One
way to achieve this goal is by projecting regular polyhedra
onto the sphere, but the regular polyhedron with the most
sides is the icosahedron (twenty). At this scale, the his-
togram will not retain any distinguishing information. For
finer sampling, approximations can be achieved easily by
further subdividing the faces of the polyhedra. One purpose
of retaining a constant bin shape and size is to provide a
consistency for matching local features generated directly
from the bin values. The cell shape and distribution we will
use depends on the alternate criteria of a fast correlation.
This will require uniform sampling in the spherical longitu-
dinal and azimuthal coordinates. Figure 1 shows the effects
of this choice on cell shapes and sizes on the sphere. As
is clear from the images, the bin sizes closest to the equa-
tor have the largest surface areas, and the bins closest to
the north and south poles are the smallest. In fact, for a
histogram with 256 bins (as pictured), the spherical surface
area of the largest bin is roughly 10 times the surface area
captured by the smallest bin.
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Figure 1. On the left (A) is a representation of
an orientation histogram with 256 bins. The
sphere S2 is sampled uniformly in spherical
coordinates, creating a square grid. (B) de-
picts the corresponding bin sizes and shapes
on the sphere. The highlighted bins corre-
spond to the highlighted row in (A). (C) dis-
plays the bin centers when the longitudinal
samples do not include the poles.

3 Rotational alignment

One of the underlying themes of this paper is automatic,
unsupervised alignment. This means we are approaching
the EGI alignment phase with no prior estimate of the cor-
rect rotation. Furthermore, due to the difficult nature of
identifying reliable features for matching in our orienta-
tion histograms, we cannot assume a reduction of the pos-
sible solution space. Since we must consider all rotations
R ∈ SO(3), we will generate a global likelihood grid which
scores each rotation based on the strength of the correlation
result. This likelihood grid can be computed as

G(R) =
∫

ω∈S2
H1(ω)H2(RT ω)dω (1)

Here H{1,2}(ω) are the orientation histograms generated
from two separate scans. At first glance a direct estimation
of G(R) involves recomputing the integral as many times
as there are elements in a discretized rotation space. In the
discrete setting, each integral evaluation commands a com-
plexity of O(N2), where N is related to the size of the spher-
ical histogram. To obtain G(R), the total complexity is on
the order of O(M3N2), where M represents the number of
samples in each dimension of SO(3).

We obtain a better perspective of our situation by notic-
ing that this correlation approach is very similar to the cor-
relation of planar functions. In such cases the correlation
integral can be expressed as a simple pointwise multiplica-
tion in the Fourier spectrum. Armed with the Fast Fourier
Transform, the complexity of generating a complete corre-
lation grid is dramatically reduced. We will show how these
principles of correlation-as-multiplication extend to spheri-
cal correlation.

3.1. Spherical correlation

A thorough treatment of spherical harmonics can be
found in [2]. The well known spherical harmonics (Y l

m :
S2 �→ C) form an eigenspace of harmonic homogeneous
polynomials of dimension 2l + 1. Thus, the 2l + 1 spheri-
cal harmonics for each l ≥ 0 form an orthonormal basis for
any f(ω) ∈ L2(S2), where L2 denotes square-integrability.
Any function f(ω) ∈ L2(S2) can be expanded in this basis:

f(ω) =
∑
l∈N

l∑
m=−l

f̂ l
mY l

m(ω) (2)

where f̂ l
m =

∫
ω∈S2

f(ω)Y l
m(ω)dω (3)

The f̂ l
m are the coefficients of the Spherical Fourier Trans-

form (SFT). We will write f̂ l to annotate vectors in C2l+1

containing all coefficients of degree l. Fortunately, due in
part to our selection of a uniform angular sampling of the
sphere, there exists a separation-of-variables technique to
compute the discrete SFT in O(L2log2L) [8]. Here L is
the bandwidth of the spherical signal, specifying the largest
degree for which we retain SFT coefficients.

As a compact Lie group, SO(3) permits a Fourier trans-
form because it has a basis of irreducible unitary represen-
tations. In matrix form, the individual elements are given
as

U l
mn(R(α, β, γ)) = e−imγP l

mn(cos(β))e−inα (4)

The P l
mn are generalized associated Legendre polynomials.

Note that we have chosen the traditional ZY Z Euler an-
gles α, β, and γ, as a parameterization of SO(3). These
irreducible representations lead us directly to the required
expansion of functions f ∈ L2(SO(3)):

f(R) =
∑
l∈N

l∑
m=−l

l∑
p=−l

f̂ l
mpU

l
mp(R) (5)

where f̂ l
mp =

∫
R∈SO(3)

f(R)U l
mp(R)dR (6)

The f̂ l
mp are the coefficients of the SO(3) Fourier trans-

form (SOFT). A fast discrete SOFT can be computed in
O(L3log2L) [18].

3.2. Correlation as multiplication

As we are interested in relating two images separated by
a rotation in Fourier space, we must firmly understand the
effect of 3D rotations in this space. Intuitively, we would
expect a rotation to manifest itself as a modulation of the
Fourier coefficients, and this, is in fact, the observed effect.



As spherical functions are rotated by elements of the rota-
tion group SO(3), the Fourier coefficients are “modulated”
by the irreducible representations of SO(3):

f(ω) = h(RT ω) ⇐⇒ f̂ l = U l(R)T ĥl (7)

In effect, the U l matrix representations of SO(3) are the
spectral analogue to 3D rotations.

We are now armed with the necessary tools to write the
correlation function (1) in terms of the Fourier transforms of
the individual orientation histograms (readers are referred to
the work in [18] for details of a complete derivation). Due to
the unitarity of the representations U l and the orthogonality
of the harmonics Y l, the Fourier transform of G(R) can be
computed as

Ĝl
mp = Ĥ1

l

mĤ2
l

p (8)

As we had initially desired, the correlation of two spheri-
cal functions reflects the similar properties of a generalized
convolution: the SO(3) Fourier coefficients of the corre-
lation of two spherical functions can be obtained directly
from the pointwise multiplication of the individual SFT co-
efficients. Given Ĝl, the inverse SOFT retrieves the desired
function G(R) with (2L + 1) samples in each of the three

Euler angles, leaving us with accuracy up to ±
(

180
2L+1

)◦

in α and γ and ±
(

90
2L+1

)◦
in β. Since the estimation of

rotational alignment consists of consecutive steps, the total
time complexity is additive, and the dominant term is the
retrieval of G(R) via an inverse SOFT, leaving us with a
total complexity of O(L3log2L).

3.3. Multiple hypotheses

We illustrate the concept of our rotational alignment pro-
cedure in Figure 2. In most cases, even with partial overlap,
this correlation alignment of two EGIs results in the correct
rotational estimate. However, in keeping with the theme
of fully automatic registration, we must be able to identify
instances of misalignment, and in those cases generate ad-
ditional hypotheses for the rotational alignment. Although
we will detail the verification step in the section 5, we now
describe a method to generate multiple rotation hypothe-
ses from the original orientation histograms. Figure 3 pro-
vides an example of two hardly overlapping scans where the
direct correlation alignment fails. There are two extreme
conditions which, if both present, can cause the correlation
alignment to result in an erroneous match:

1. The two scans being aligned have minimal overlap.

2. Surface regions not belonging to the area of overlap
contain a disproportionately large density of points

Figure 2. On the top row are two different
scans of a running shoe separated by a a
rotation. The corresponding EGI represen-
tation is shown on the sphere encompass-
ing the shoe. On the bottom left is a slice
of the likelihood space G(R) at the location
of the global peak. The other local maxima
correspond to rotations which align incorrect
faces of each shoe. On the right is an image
of the shoes after rotational alignment. The
correct alignment of the shoe corresponds to
the correct alignment of EGIs.

with normal directions not present in the overlap re-
gions (i.e. the heaviest bins in the histogram corre-
spond to normals from surface regions which do not
appear in both scans).

The primary effect of having a dominant peak in the ori-
entation histogram is that for any highly correlated align-
ment, this peak region is likely to be aligned with some peak
from the second histogram. If such a dominant peak comes
mostly from regions and orientations which are not present
in both scans, it may have an unduly effect on the estima-
tion. As the likelihood of having such detrimental EGI bins
or regions increases as the overlap between scans decreases,
we would like to limit the effect that any one surface orien-
tation can have on our rotational alignment estimation.

To achieve this goal, we will convert our orientation his-
togram into a constellation image. This can be achieved
by retaining the local maxima of the original EGI, and
suppressing the remaining bins. Figure 4 shows an EGI,
the subsequent constellation image, and the surface patches
which contribute to the occupied regions in the constella-
tion sphere. Alignment obtained by correlating constella-
tion images as opposed to the EGIs ensures that priority
will not be given to bins collecting its majority of normals
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Figure 3. (A) Two scans of a rabbit from [28]
with very little overlap, and separated only
by a rotation. Each scan captures a differ-
ent side, with the only overlap coming in a
thin strip along the back of the rabbit. (B) The
erroneous alignment obtained by correlating
the two orientation histograms. (C) The align-
ment obtained after generating additional ro-
tational hypotheses. (D,E) The EGIs esti-
mated from the two scans. (F) EGI of the
first scan mapped into proper alignment with
the second scan. Clearly there is very little
matching information in the two EGIs, stem-
ming from the fact that the scans have very
little overlap. This situation necessitates the
development of the constellation images.

from non-overlap regions. The downside is that we may still
encounter an erroneous alignment if the non-overlapping
scan regions contribute to an overwhelming number of EGI
peaks. We can only be confident that if a rotational align-
ment exists, it will be captured as one of the better constel-
lation alignments, not necessarily the best. In estimating the
rotational alignment, we capture the entire grid G(R). This
gives us direct access to the most likely constellation align-
ments, which can be pruned using the verification method
presented in section 5.

4 Estimating the translation

Our use of the shift-invariant orientation histograms al-
lowed us to decouple our alignment problem into consec-
utive searches for the rotational and translational compo-
nents. Continuing in the same vein as the rotational fast
correlation approach, we can formulate an estimate of the
3D translation which relies on the assumption that correct

Figure 4. Top Left: Scan of a bunny. Top
Right: The corresponding orientation his-
togram. Bottom Left: The centers of the
EGI regions which contribute to the constel-
lation image. Bottom Right: Patches from
the scan which correspond to constellation
peaks. Points with the same color con-
tribute normals to the same histogram neigh-
borhood (corresponding to one constellation
peak).

alignment is achieved at the locations of greatest overlap or
correlation between range scans. For the moment, we will
define our range scans as occupancy functions on R3:

F (x) =
{

1 if a point was scanned at x ∈ R3

0 otherwise

Applying our principles of correlation, we claim that the
correct translational shift τ ∈ R3 maximizes the following
correlation function:

G(τ) =
∫

x∈R3
F1(x)F2(x − τ)dx (9)

Since (9) is a convolution integral, we know that the Fourier
transform of G(τ) is given simply as Ĝ(k) = F̂1(k)F̂2(k).
The Fourier coefficients F̂{1,2}(k) of the occupancy func-
tions F{1,2}(x) can be recovered from the traditional R3

Fourier transform. In order for the correlation (9) to suc-
ceed, we must ensure overlap by generating a binary voxel
space representation of R3 where each voxel covers a much
larger area than the fine resolution of a range scanner.

Now that we have described the registration estimation,
we will present the details of the verification step and recap
the full algorithm.

5 Verification

In order to validate a hypothesized range alignment, we
employ two different criteria. The first is based on the con-



INPUT

1. Point Clouds F1, F2, . . . , Fn.

ONLINE

1. Compute surface normal fields N{1,2,...,n} for point
clouds F{1,2,...,n}.

2. Generate orientation histograms H{1,2,...,n} from nor-
mal fields N{1,2,...,n}.

3. To estimate alignment between any two pairs Fi, Fj :

(a) Estimate rotation by correlating histograms
Hi, Hj (section 3.2).

(b) Estimate the translation by correlating the rota-
tionally aligned scans (section 4).

(c) Accept transformation only if it passes the veri-
fication step (section 5)

4. Repeat until a cycle is found through all scans
F{1,2,...,n}.

5. If no cycle can be generated, patch segments of
aligned scans together using additional hypotheses ob-
tained by aligning constellation images (section 3.3).

6. Obtain fine registration with pairwise ICP.

Figure 5. An outline of the automated point-
cloud registration algorithm.

sistency of surface orientations in the overlapping regions
of the aligned scans (the assumption is that normals should
be the same for the points which overlap). If we voxelize
the space after alignment, we can generate a global con-
sistency measure by accumulating the difference in mean
normal orientations for all overlapping voxels weighted by
the mass of points present in each voxel.

The second verification criterion we consider is visibility
information. Intuitively, we would like to discard any align-
ment that would interfere with the line-of-sight of a range
scanner. This method is similar to the visibility constraints
explored in [17]. Consider a point cloud F2 being mapped
into the reference frame of a point cloud F1. If, after a hy-
pothesized alignment, the surface in F2 occupies the open
space between the scanner viewpoint and surface of F1, we
claim that visibility of F1 has been occluded and such an
alignment is improbable. For point clouds obtained with
an unknown scanner, or for any other situation where the
visibility profile is unknown, only surface orientation con-
sistency is used for validating alignments.

Having discussed the verification process for any hy-
pothesized alignment, we present the algorithm outline in
Figure 5.

6 Experimental results

We now present the experimental results of our fully
automated alignment algorithm. The first step is to esti-
mate surface normals, which can be obtained by comput-
ing the spherical gradient directly on a spherical depth-
map. If such a representation is not available, then a sim-
ple local plane fitting approach can be used. To estimate
the translational component of alignment, our correlation-
based approach requires a voxelization of the point space.
We chose our voxel size to roughly generate a voxel
space of no more than 100 bins in any dimension. A
fine registration from the estimated crude alignment is ob-
tained with the Scanalyze ICP software freely available at
http://graphics.stanford.edu/software/scanalyze/.

To generate EGIs, we chose a signal bandwidth of L =
128, corresponding to a spherical histogram with 256×256
bins. We begin our evaluation with scans of the Happy Bud-
dha provided by [28]. Figure 6 shows the results of our es-
timation algorithm for a total of ten scans. Since this data
was originally captured to test with ICP, the initial displace-
ments are not very large. To test our approach, we applied
random transformations to the starting point sets to create
a scenario where a direct ICP would fail. The crude align-
ment is quite sufficient to initialize the fine estimation.

The second set of scans tested were of a statue of a lion.
The scale is a bit larger than the Buddha model, nearing
nine feet in height. The scans were captured using the
DeltaSphereTM-3000 laser scanner. Fifteen scans circling
the lion were taken. In Figure 7, some overall drift is appar-
ent in the crude alignment. However, the quality of the pair-
wise matchings is sufficient for ICP to converge correctly.

Our final evaluation deals with scans at yet another
scale. Figure 8 depicts four scans of a room taken with the
DeltaSphereTM-3000. The room was over 170 ft2 in area
(the volume was 1600 ft3). A fifth scan capturing the en-
tire room was also taken, allowing us to compare our rough
alignment to a ground truth measurement. The crude align-
ment works well for each scan and a subsequent fine regis-
tration yields a very tight solution. One pair of successfully
matched scans had only a 45% content overlap. Due to the
dominant planes present in each scan, constellation images
were needed before the correct alignment could be found
and verified. Fewer than ten hypotheses were tested before
a valid alignment was recovered in each case. We estimated
a median error of 1.2 inches (computed as the min distance
from every point in the rough aligned scan to the full scan).
We also recorded the motion estimates for each pairwise
ICP in the final alignment. The mean rotation angle was
2.0◦ (with a max of 2.1◦) and the mean translation was 3.8
inches (with a max of 5.0 inches).
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Figure 6. Registration of the Happy Buddha. (A) shows a the initial positions of some representative
scans. (B) shows the rough alignment of ten point sets. (C) shows the final alignment for all scans
after ICP is run after the crude registration. (D) shows a pair of EGIs from two of the scans, and (E)
shows a slice of the correlation grid G(R) at the location of the estimated rotation.

A B C D E

Figure 7. Registration of scans of a lion statue. (A) is a representative scan depicting the structure of
the statue. (B) shows 6 scans in their initial positions. (C) shows the failure of running ICP directly
on the input scans. (D) depicts the rough alignment. (E) shows one view of the successful final
registration of all 15 scans.

A B C

D E F

Figure 8. (A) shows a representative room scan. (B) shows the poor alignment obtained by running
ICP on the input. (C, D) show a side and overhead view of the rough alignment. (E, F) show a full and
partial view of the final alignment.



7 Conclusion

We have presented a comprehensive algorithm for the
automatic alignment of 3D point clouds designed specif-
ically for multiple scans with little overlap. The correla-
tion alignment of orientation histograms and constellation
images is performed efficiently by extending the convolu-
tion theorem to spherical correlation. These methods, along
with a reliable verification scheme, provide a crude align-
ment that yields a quality initialization for fine alignment.
The crude alignment performs equally well without modifi-
cation on small scale scans of models as well as large scale
point clouds obtained with room scanners. Future work will
involve a probabilistic framework to best align range scans
by selecting the best path through multiple scans, along with
zippering meshes to generate accurate object models from
unordered inputs.
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