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Abstract. Catadioptric sensors are devices which utilize mirrors and lenses to form a projection onto the image
plane of a camera. Central catadioptric sensors are the class of these devices having a single effective viewpoint.
In this paper, we propose a unifying model for the projective geometry induced by these devices and we study
its properties as well as its practical implications. We show that a central catadioptric projection is equivalent to a
two-step mapping via the sphere. The second step is equivalent to a stereographic projection in the case of parabolic
mirrors. Conventional lens-based perspective cameras are also central catadioptric devices with a virtual planar
mirror and are, thus, covered by the unifying model. We prove that for each catadioptric projection there exists a dual
catadioptric projection based on the duality between points and line images (conics). It turns out that planar and
parabolic mirrors build a dual catadioptric projection pair. As a practical example we describe a procedure to estimate
focal length and image center from a single view of lines in arbitrary position for a parabolic catadioptric system.

Keywords: omnidirectional vision, catadioptric systems, conic sections, duality, stereographic projection,
calibration

1. Introduction

A catadioptric instrument is an optical system combin-
ing reflective (catoptric) and refractive (dioptric) ele-
ments (Hecht and Zajac, 1997). Catadioptric combina-
tions have been extensively used in telescopes in order
to focus light from the stars onto the eye of the ob-
server. The focal properties of mirrors with a conic
profile were discovered by the ancient Greek geome-
ter Diocles (Toomer, 1976) and concave mirrors have
been extensively used for light concentration for energy
purposes. To enhance the illumination of a scene such
concave mirrors appear also in primitive organisms like
deep-sea ostracodes (Land, 1981).

Catadioptric systems have been combined with cam-
eras in order to increase the field of view (Rees, 1971,
as cited by Nayar) for television applications. Af-
ter 20 years catadioptric devices were introduced in
robotics (Yagi et al., 1994) also to increase the field

of view. Nayar (1997) gave the first formal treatment
of catadioptric systems with a single viewpoint in the
context of computer vision. Visual sensors with a very
big, close to hemi-spherical field of view, are called
omnidirectional or panoramic. They are used in many
application areas, including navigation, surveillance,
and visualization. For a broad coverage of the field
the reader is referred to an extensive review by Yagi
(1999) as well as to the proceedings of the Workshop
for Omnidirectional vision (Daniilidis, 2000) and to an
upcoming book (Benosman and Kang, 2000).

In nature, most species with lateral eye placement
possess an almost spherical field of view. In photogra-
phy and machine vision, wide-angle field of view can
be achieved with pure dioptric elements like fish-eye
lenses (Shah and Aggarwal, 1996). Fish-eye lenses suf-
fer from distortions for which explicit models have not
been well-studied. Omnidirectional sensing can be re-
alized also with a rotating camera (Shum and Szeliski,
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2000). Rotating cameras are not suitable for dynamic
scenes because they cannot cover actions in all di-
rections simultaneously. The highest spatial resolution
is given with a cluster of cameras pointing outwards
(Swaminathan and Nayar, 2000). However, it is tech-
nically difficult to achieve a single effective viewpoint
with a cluster of cameras.

Here we describe only omnidirectional work involv-
ing catadioptric sensors. We believe that the use of
reflective components enables more degrees of free-
dom in the design of the sensor’s geometric and op-
tical properties. We classify the catadioptric systems
in two groups, central and non-central, based on the
uniqueness of an effective viewpoint; those having a
single effective viewpoint are central catadioptric sen-
sors. Non-central systems based on spherical (Bogner,
1995; Hong et al., 1991) or conical mirrors (Zheng and
Tsuji, 1992) violate the single viewpoint constraint.
Other non-central catadioptric systems are the mirror
preserving ratios of elevations of points from a ground
plane (Chahl and Srinivasan, 1997) or the mirror (Hicks
and Bajcsy, 2000) which rectifies planes perpendicular
to the optical axis.

Uniqueness of an effective viewpoint is desirable
because it allows the mapping of any part of the scene
to a perspective plane without parallax. In this sense,
a central catadioptric system has the same effect as
a rotating camera. Furthermore, easily modified mul-
tiple view algorithms can be applied for reconstruc-
tion (Taylor, 2000; Sturm, 2000). Nayar (1999) gave
an extensive treatment of central catadioptric systems
whose geometry can also be found in Svoboda et al.
(1998), Bruckstein and Richardson (2000). Such sys-
tems are extensively used now for visualization (Boult,
1998; Onoe et al., 1998) and navigation (Winters et al.,
2000; Leonardis and Jogan, 2000; Benosman et al.,
2000). Nayar (Nayar and Peri, 1999) proved that fold-
ing mirrors with a conic profile can also yield a sin-
gle effective viewpoint and a more compact mount. A
folded catadioptric system consisting of two parabolic
mirrors attached on a glass block has been designed
by Greguss (1985) and used for surveillance in Zhu
et al. (2000). Pyramidal multi-faceted mirrors mounted
above clusters of cameras can simultaneously achieve
high-resolution and one effective viewpoint (Nalwa,
1996; Majumder et al., 1999).

Our work deals with the geometric properties of
central catadioptric sensors and is related to the work
(Svoboda et al., 1998; Nene and Nayar, 1998) where
it is shown that lines project onto conic sections.

Regarding calibration, a two-view algorithm not related
to our approach has been proposed by Kang (2000). Re-
garding geometry, we use well-known facts from the
mappings of the projective plane to the sphere. In com-
puter graphics and vision, such mappings have been
explicitly used in the context of oriented projective
geometry as described by Stolfi (1991) and applied
in Laveau and Faugeras (1996), Pajdla et al. (1998),
Hartley (2000).

Our motivation to study central catadioptric cam-
eras is to understand the geometric properties of the
mappings realized with these sensors. The fact that we
are able to choose the parameters of a quadric mirror
surface and appropriately mount the camera implicitly
encodes information which should be exploited during
image interpretation.

In this paper we show that there is an equivalence
between any central catadioptric projection and a com-
posite mapping through the sphere. This mapping con-
sists of the projection of a point from the center onto
the sphere and a subsequent projection from a point on
the axis of the sphere onto a plane perpendicular to that
axis. The position of the point on the axis depends on
the shape of the mirror. When the point lies between
the north-pole and the center the composite mapping
is equivalent to a projection induced by a hyperbolic
mirror and a perspective camera. The extrema of this
interval yield the following interesting cases:

1. An orthographic camera with a parabolic mirror
which is equivalent to the projection on the sphere
with a subsequent projection from the north pole to
the plane through the equator. This latter projection
is well known as the stereographic projection and is
a conformal mapping.

2. A perspective camera combined with a planar mirror
which can be modeled as a projection on the sphere
with a subsequent projection from the center to the
plane tangent at the south-pole.

In the course of proving this equivalence we have also
been able to establish a unifying formula covering all
of the cases above.

Once proven, the equivalence paves a ground for
building up a geometry based on the intermediate repre-
sentation on the sphere. It is well known that point-line
duality of the projective plane maps to the point-great
circle duality on the sphere. Through the equivalence
it is trivial to observe that lines in space project onto
great circles on the sphere and subsequently onto conic
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sections on the plane. Thus, line images (great circles
on the sphere and conic sections on the catadioptric
plane) are dual to points (poles of great circles). The
new fact we prove in this paper is that there is also
a duality between catadioptric projections and hence
also mirror shapes: If a mirror shape s projects a line
in space to a conic, there exists a dual shape s ′ which
projects the normal of the plane containing the line to
the foci of the conic. It turns out that the parabolic cata-
dioptric projection is dual to the perspective projection:
the parabolic projection of a line is a circle whose cen-
ter is the perspective projection of the normal of the
plane containing the line.

The first practical implication of the proved equiva-
lence is the intrinsic calibration of a catadioptric sys-
tem. We assume that the unknown parameters are the
combined focal length of the camera and the mirror,
the eccentricity of the conic section of the mirror,
and the image center. By enumerating the constraints
given by the line images (lines in perspective, circles
in parabolic, conics in hyperbolic and elliptic cases)
we explain how we are able to calibrate from a sin-
gle view of arbitrary lines in the parabolic, hyperbolic,
and elliptic cases but not in the case of a conventional
perspective camera. We outline an algorithm for the
parabolic case and apply it on a commercially avail-
able catadioptric camera.

Figure 1. On the left is a diagram showing the configuration of a typical parabolic catadioptric sensor. A parabolic mirror is placed in front of
a camera approximating an orthographically projecting lens (one whose focus is at infinity). The right diagram is a further abstraction of the left
and shows that a ray of light incident with the focus of the parabola is reflected to a ray of light parallel to the parabola’s axis.

In the next section we provide a purely geometric
proof of the equivalence of parabolic projection and
stereographic projection of the projective plane when
represented as a sphere. In Section 3 we prove the gen-
eralization of the equivalence to all central catadioptric
systems. We present the novel duality relationships in
Section 4. Finally we conclude with the implications
on calibration.

2. A Geometric Introduction

Let us begin with the parabolic case. In the time of
Apollonius, the Greek astronomer Diocles was asked
by Zenodorus, “how to find a mirror surface such that
when it is placed facing the sun the rays reflected from it
meet a point and thus cause burning,” (Toomer, 1976).
Diocles responded that such a surface is the parabola.
Computer vision practitioners are typically not inter-
ested in burning but in seeing. A convex, reflective
parabolic mirror placed above and parallel to the axis
of an orthographically projecting camera results in a
sensor with a single effective viewpoint at the focus
of the parabola. It is therefore equivalent to a purely
rotating perspective camera. A ray of light incident
with the focus of the parabola is reflected by the mir-
ror to a ray of light parallel to its axis (see Fig. 1).
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Figure 2. Left: diagram corresponding to Definition 1. Right: diagram corresponding to Definition 2.

Thus, every point in the image is in one-to-one corre-
spondence with a ray originating at the focus.

In the process of developing a calibration algorithm
for these devices (Geyer and Daniilidis, 1999), we dis-
covered that the projections of lines are a certain class
of circles. The class is defined by the property that
each and every one of these circles intersects a single
circle, the fronto-parallel horizon, antipodally—except
for this single circle which is itself a member of this
class. Upon further reflection we recalled stereographic
projection of the sphere and its property that it projects
circles, great or small, on the sphere to circles in the
plane. In particular, it sends great circles, all of which
intersect the equator antipodally, to circles which in-
tersect the projection of the equator antipodally. The
sphere is just one representation of the projective plane,
in which, lines in space project to great circles. It is
therefore natural to suspect that these two projections
are somehow equivalent.

We now go about proving the equivalence of
parabolic projection and stereographic projection of
the projective plane. The parabolic mirror is a regu-
lar paraboloid and because the one-to-one mapping is
preserved in a plane through the paraboloid’s axis, we
need only consider a cross-section of the paraboloid.

Let us assume the existence of a parabola p with
focus F and directrix d (see Fig. 2 left). The directrix
and the focus define the parabola: all points on the
parabola are equidistant to the directrix and the focus.
Let � be perpendicular to the axis of p and through F .
Consider the following definition of the projection Q
of a point P , reflected by the parabola, to the line �.

Definition 1. Q is the projection of the point R to the
line �, where R is the intersection of the parabola and
the ray FP .

We now give an alternative definition. Let a circle
have center F and radius equal to twice the focal length

of the parabola. The circle and parabola intersect twice
on the line � and the directrix is tangent to the circle (see
Fig. 2 right). Let N be the point diametrically opposite
to the intersection of the circle with the directrix, this is
the north pole of the circle. We claim the following def-
inition is also equivalent. This definition is the basis for
our generalization to arbitrary catadioptric projections.

Definition 2. Q′ is the projection of the point R′ to
the line � from the point N , where R′ is the intersection
of the ray FP and the circle.

The first step of Definition 2 is to project points
to the circle from its center. This is equivalent to the
projection from the projective plane to the projective
line, which is represented as a circle here. The second
step is the two dimensional equivalent of stereographic
projection—project from the “north pole” of the cir-
cle to a line perpendicular to the axis of the circle. We
prove the following lemma.

Lemma 1. The parabolic projections of a point P,

given in Definitions 1 and 2, respectively yield points
Q and Q′ which are coincident.

Proof: Choose a point P in the plane. Intersecting the
ray FP with the circle we obtain R′; intersecting with
the parabola we obtain R. Let Q′ be the projection of R′

from the point N to the line � perpendicular to the axis
NF at F . Let Q be the orthographic projection of R to
the line �. Let Y be the intersection of the directrix and
the circle. Finally let C be the intersection of the lines
RQ and NQ′, and let X be the intersection of the lines
RQ and d, the directrix. To prove that the projections
are equivalent we need to show that Q equals Q′. We
do so by first showing that |CX | equals |QX |. This
would imply that Q = C , since Q and C lie on the same
line; and therefore also that Q = Q′, since C is on the
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Figure 3. A proof by contradiction. Assume that the points Q and
Q′ are not equal. The diagram is intentionally drawn incorrectly; the
parabola is drawn as a hyperbola so that Q and Q′ do not coincide.

line � and Q′ is defined to be the intersection of NR′

with �.
Assume that Q is not equal to Q′ and that Q is not

equal to C (if Q is equal to C then Q, Q′ and C are
equal as discussed above); see Fig. 3. By the defini-
tion of the parabola the point R is equidistant to the
directrix and the focus. Therefore the triangle FRX is
isosceles. Because R′ and N lie on a circle whose cen-
ter is F , the triangle R′FN is isosceles. This triangle
is similar to R′RC because the parabola’s axis is par-
allel to RX. Since both R′RC and FRX are isosceles,
R′C must be parallel to FX, and thus |CX| equals |R′F|.
Then |CX|, |FY|, |R′F|, and |Q′X| are all equal. In par-
ticular |CX| = |Q′X|, but C and Q′ lie on the line above
the directrix, and therefore above the point X in the
figure. If they lie on the same side of a line with respect
to some point and have the same distance to this point
then they must be the same point. But this is a contra-
diction because we assumed that the points were not
equal. ✷

Discussion. The two definitions above can easily be
extended to three dimensions, and so may the lemma
be extended, and thus projection by a parabolic mirror
is equivalent to projection to the sphere followed by
stereographic projection. We now wish to know if there
is a generalization. Recall that perspective projection
may also be obtained via a projection of a sphere; first
project to the sphere from the center, second, project
from the center to the image plane. The separation into
two steps is unnecessary because the projections are
both from the same point. But notice that the first step
is the same as in the equivalent parabolic projection via

the sphere. The difference in the second steps are only
the point on the sphere’s axis from which to project
to the image plane. What is the effect of changing the
point of projection to a point that is neither the north
pole, nor the sphere center? Is it possible to model
hyperbolic mirrors by appropriately choosing this sec-
ond projection center? The answer is yes; if we choose
an appropriate point on the axis, between the north pole
and the sphere’s center, we obtain a projection equiv-
alent to a hyperbolic projection, as well as an elliptic
projection where the ellipse’s eccentricity is the recip-
rocal of the hyperbola’s.

Is there any advantage to this representation? We
claim that there is. First, it is a unifying representa-
tion in that it includes perspective, parabolic, hyper-
bolic, and elliptic projections. Additionally, the sphere
is a standard representation of the projective plane; this
proves that there is a simple mapping, in fact a central
projection, from a standard representation of the pro-
jective plane to a projective plane induced by any cen-
tral catadioptric projection. With this representation it
is easy to determine the projections of lines, and also
leads to the discovery of a novel duality relationship.
Without this model it is not clear (to us) that parabolic
projection is conformal, which is trivially implied by its
equivalence with stereographic projection. We would
hope that this representation leads to a greater under-
standing of and less hesitation in using catadioptric
devices (due to the perceived additional complexity of
curved intermediary reflective surfaces).

In the next section, we prove and explore the gener-
alization. We develop the general theory in the context
of projective geometry. We use homogeneous coordi-
nates and constructively utilize the relevant Euclidean
property, namely that a ray incident with one focus is
reflected to a ray incident with the second.

Finally, we add that we are not the first to discover a
relationship between stereographic projection and the
parabola. During a revision of our paper we discov-
ered the work of Penrose and Rindler (1984) in which
they imagine a point and the movement of a plane in
space. At time t = 0, the point emits a flash of light
isotropically, and at the same instant, the plane starts
moving toward the point at the speed of light. The lo-
cus of points traced out by the intersection of the plane
and the sphere of light emanating from the point is a
paraboloid whose focus is the light source. They prove
that a given point on the ever expanding sphere meets
the plane at the same point where it would have been
projected stereographically from the unit sphere.
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3. Central Catadioptric Projections

In this section we prove the extension of the equiv-
alence to arbitrary catadioptric projections and a map
similar to stereographic projection. Before proving this
extension we introduce quadratic projections (which
serves as a context in which we provide a proof). We
prove the equivalence for a two-dimensional catadiop-
tric projection in Lemma 1. The lemma immediately
yields an extension to three dimensions with which we
obtain the main result in Theorem 1 as well as several
corollaries. We then discuss the nature of the images
of points and lines and how they create catadioptric
projective planes. Throughout this paper we assume
that mirrors are ideal, the cameras satisfy the pinhole
camera model, and both are properly aligned with re-
spect to one another. We only consider non-degenerate
catadioptric configurations, namely planar, parabolic,
hyperbolic and elliptic cases. Neither of the degenerate
cases, the conic and spherical cases, are of practical
use as single effective viewpoint sensors. As shown in
Baker and Nayar (1998) these are the only catadioptric
devices with a single effective viewpoint.

Catadioptric projections are a subset of a general
type of projection. In a central catadioptric projection,
a point is first projected to a conic from one of the
foci and then this point is projected to an image plane
from the second focus (see Fig. 4). We could instead
choose different points from which to project and dif-
ferent surfaces to intersect but these configurations may
not induce optical projections which coincide with the
abstract projections. Note that in the previous section,

Figure 4. In general a conic reflects any ray of light incident with
one of its foci (here F1) to a ray of light incident with its other focus
(F2). Central catadioptric devices utilize this property and achieve a
single effective viewpoint at one of the foci of a conic (F1).

we found a surface, namely the sphere, and a pair of
points, the sphere center and its north pole, which gave
a projection equivalent to an optical projection, namely
parabolic projection.

We define a general mapping which consists of a
composition of two projections. The first projection is
to a quadric or conic from a point. The second pro-
jection is to a plane or line from a second point. We
call these quadratic projections. In the definition below
we restrict ourselves to two dimensions, but it may be
easily extended to three or an arbitrary number of fi-
nite dimensions. We use the notation A ∨ B to mean
the line joining points A and B, and l ∧ m to mean the
point lying on both lines l and m. For notational conve-
nience we have overloaded these operators to include
quadratics, so that l ∨ q, where l is a line and say q is
a conic, to mean the two points of intersection of the
line with the conic. Finally, when the intersection is a
pair, we distribute over other applications of ∨ and ∧,
i.e. A ∨ (l ∧q) is the pair (A ∨ P1, A ∨ P2), where P1,2

are points obtained from the intersection of l and q.

Definition of a quadratic projection. Let c be a conic,
let A and B be two arbitrary points, and let � be any
line not containing B. Choose a point P . The intersec-
tion of a line and a quadric is two, possibly imaginary,
points, so let R1 and R2 be the intersection of c with
AP, imaginary or not. Then R1 is one of the projections
of the point P to the conic c, R2 is the second. Now
project the Ri ’s to the line � from point B. Let Qi be the
intersection of BRi with �. The Qi ’s are the quadratic
projections of the point P to the line �. We call this map
q(c, A, B, �) : P

2 → π� where π� is the projective line
induced on the line � in which points such as Q1 and
Q2 are identified. We may write the map as

P
q(c,A,B,�)−→ (((P ∨ A) ∧ c) ∨ B) ∧ � .

In the three dimensional case, the conic becomes a
quadric surface and � is replaced by a plane, inducing
a projective plane. Note that any map q(c, A, B, �) has
a single effective viewpoint at A, at least in the sense
that only rays through A are intersected with c; this,
however, may not correspond to an optical projection,
where the angle of incidence with c is equal to the angle
of reflection.

A subset of the quadratic projections are catadiop-
tric projections which not only have a single effec-
tive viewpoint but also in which the angle of incidence
with c is equal to the angle of reflection. This occurs
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when the two points of projection are the foci of the
conic.

Definition of a catadioptric projection via quadratic
projections. Let c be a conic whose foci are F1 and
F2, where F1 is finite and F2 might lie on the line at
infinity. Let � be a line perpendicular1 to F1F2 but not
containing F2. A catadioptric projection is the quadratic
projection q(c, F1, F2, �).

Catadioptric projections may similarly be extended
to three dimensions. Note that in the case where c is
a degenerate line conic having two foci F1,2 whose
perpendicular bisector is the line conic, and � coincides
with the line conic, then q(c, F1, F2, �) is perspective
projection with viewpoint F1 and focal length 1

2 F1 F2.
When c is a parabola, F1 its finite focus, F2 its focus
on the line at infinity, and � the line perpendicular to
the axis of c and through F1, then q(c, F1, F2, �) is the
parabolic projection defined in Definitions 1 and 2.

Given a catadioptric projection with parame-
ters (c, F1, F2, �), what is the set of parameters
(c′, A, B, �′) yielding equivalent quadratic projec-
tions? We do not attempt to answer this question in
general, however we answer a constrained form of the
question. Are there parameters (c′, A, B, �′), where c′

is a unit-radius circle centered at A, B is some point, and
�′ ‖ �, which yield equivalent projections? It is clear that
in order for the projections to be the same they must
have the same single effective viewpoint, and there-
fore A = F1. Hence, we wish to find �′ and B such
that

q(c, F1, F2, �) = q(c′, F1, B, �′),

where c′ is a circle centered at F1 with unit radius. For
example, in Section 2 we showed that if c is a parabola,
F1 is the focus, F2 is the point at infinity lying on the
axis of the parabola, i.e. the parabola’s infinite focus
and the focal point of an orthographic projection, and
� is perpendicular to the axis at F1, then

q(c, F1, F2, �) = q(c′, F1, N , �),

where c′ is a circle centered at F1 and whose radius
is equal to twice the focal length of the parabola,
and where N is the point on the circle diametrically
opposite the point tangent to the directrix (the circle
and directrix are tangent). We give then the following
lemma.

Lemma 2. Let q(c, F1, F2, �) be a catadioptric
projection, Fi are the foci of c and � is the image line.
There exists a unit circle c′ centered at F1, a point B,

and a line �′, �′ ‖ �, such that

q(c, F1, F2, �) = q(c′, F1, B, �′),

up to translation from �′ to �.

Proof: We prove the lemma by first deriving the for-
mula for the catadioptric projection q(c, F1, F2, �),
then deriving the spherical projection formula
q(c′, F1, B, �′), equating them and solving for the po-
sition of B, and the position of the intersection of
�′ with the y-axis. We see that the parameters �′

and B are independent of the choice of the point to
project.

Step 1: Derivation of q(c, F1, F2, �). We assume
without loss of generality that F1 = (0, 0, 1) and that
the quadratic form of c, in terms of its eccentricity ε

and a scaling parameter λ > 0, is as follows:

Qε,λ =

 4 0 0

0 4 − 4ε2 −4ελ

0 −4ελ −4λ2

.

Then F1 and F2 = (0, −2ε, λ−1(ε2 − 1)) are the foci
of c whose latus rectum is 2λ. Recall that the latus
rectum is the length of the line segment created by the
two points of intersection of the conic c and line �.
Also assume that the y-intercept of the line � is µ, so
that the line has coordinates [0, 1, −µ]. Note that this
parameterization includes perspective projection with
planar mirror in the limit as ε → ∞ as long as we set
λ = 2 f ε−1(ε2 − 1) and µ = −3 f , and divide Qε,λ by
1 − ε2.

We now find the projection q(c, F1, F2, �) of P .
First, the points R1 and R2 in (P ∨ F1) ∧ c, being the
intersection of a line and a conic, may be expressed as

Ri = F1 + θiP,

for some θ1, θ2 ∈ C, where these θi are roots of a
quadratic equation. We obtain the quadratic equation
from the condition that Ri lies on the conic,

0 = Ri Qε,λ RT
i

= (F1 + θiP)Qε,λ(F1 + θiP)T

= F1Qε,λF T
1 + 2θi F1Qε,λ PT + θ2

i PQε,λ PT .
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Therefore,

θi =
−2F1Qε,λ PT + (−1)i

√
4(F1Qε,λ PT )2 − 4(PQε,λ PT )

(
F1Qε,λF T

1

)
2PQε,λ PT

= λ

(−1)i
√

x2 + y2 − εy − λw
,

when P = (x, y, w) (no z since we are considering the
projection restricted to the plane). So the points

Ri = F1 + θiP

= F1 + 1

(−1)i
√

x2 + y2 − εy − w
P

=


λx

(−1)i
√

x2+y2−εy−λw

λy

(−1)i
√

x2+y2−εy−λw

1 + λw

(−1)i
√

x2+y2−εy−λw


T

.

Next we project the Ri to the line � = [0, 1, −µ] from
the point F2. This transformation is expressed as the
matrix

Tε,λ,µ =

−2ελ + µ(1 − ε2) 0

0 (1 − ε2)

0 −2ελ

.

The projected points Qi are then given by projective
line coordinates

Qi = Ri Tε,λ,µ

= (x(2ελ − µ(1 − ε2)),

−(1 + ε2)y − 2(−1)iε
√

x2 + y2), (1)

and q(c, F1, F2, �) = {Q1, Q2}.
Step 2: Derivation of q(c′, A, B, �). Now find the
spherical projection, or in the cross-section, the pro-
jection to the circle. Let c′ be the unit circle centered at
F1. The points R′

i , which are the intersections of the line
F1P with this circle, may be found without difficulty
due to the simplicity of the circle, all that is necessary
is a normalization. In particular

R′
i = (x, y, (−1)i

√
x2 + y2).

Now we must determine the projection of the points
R′

i to the image line �′. The projection is just a per-
spective transformation from the unknown point B. By
symmetry the point B lies on the line F1F2, we there-
fore parameterize B with l, writing B = (0, l, 1). Then
the matrix projecting a point to the line �′ = [0, 1, −m]
from B may be expressed as

Ul,m =

 l − m 0

0 −1

0 l

.

Thus,

Q′
i = R′

i Ul,m

= ((l − m)x, −y + l(−1)i
√

x2 + y2) (2)

so that q(c′, F1, B, �) = {Q′
1, Q′

2}.
Step 3: For what B and �′ is q(c, F1, F2, �) =
q(c′, F1, B, �′)? If l and m can be chosen indepen-
dently of x , y, and w such that Eqs. (1) and (2) are
equal (up to a scale, remember that we work in homo-
geneous coordinates), then we have shown that the two
projections are equivalent. This is indeed the case, and
if we choose

l = 2ε

1 + ε2
,

m = µ − ε(εµ + 2λ − 2)

1 + ε2
,

then substituting in (2) gives

(
(2ελ − µ + ε2µ)x

1 + ε2
, 0, −y + 2(−1)iε

√
x2 + y2

1 + ε2

)
.

Multiply this by 1 + ε2 and we obtain

(x(2ελ − (1 − ε2)µ, 0, −(1 + ε2)y

+ 2(−1)iε
√

x2 + y2),
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which is the same as (1). Therefore

q(c, F1, F2, �) = q(c′, F1, B, �′)

= q

(
� (F1; 1), F1,

(
0,

2ε

1 + ε2
, 1

)
,[

0, 1, −µ − ε(εµ + 2λ − 2)

1 + ε2

])
,

up to scale. ✷

Extension to three dimensions. We can now extend
the definition to three dimensions. We assume that
c is rotationally symmetric about the z-axis having
only two foci F1 and F2 with coordinates (0, 0, 0, 1)

and (0, 0, −2ε, λ−1(ε2 − 1)), and that p is the plane
[0, 0, 1, −µ]. Then,

q(c, F1, F2, p) = q

(
� (F1; 1), F1,

(
0, 0,

2ε

1 + ε2
, 1

)
,[

0, 0, 1, −µ − ε(εµ + 2λ − 2)

1 + ε2

])
,

up to scale, where �(F1; 1) is the sphere centered at
F1 with a radius of 1.

Definition of a spherical projection. A spherical pro-
jection is the composition of central projection to the
unit sphere followed by projection from a point on some
axis of the sphere a distance l from the sphere’s cen-
ter to a plane perpendicular to the axis a distance m
below the center and is represented by the quadratic
projection

sl,m = q(�(A; 1), A, (0, 0, l, 1), [0, 0, 1, m]);

note that we have changed the sign of m.

Lemma 2, and its extension to three dimensions, is
the main contribution of this paper. It shows that there
exists a point B such that the projection through the
sphere is equivalent with the given catadioptric pro-
jection. Having now defined a spherical projection, we
summarize the specific results in the following the-
orem in terms of spherical projections. The theorem
uses the point B constructed in the lemma. Afterwards
we give corollaries which follow immediately from the
theorem.

Theorem 1 (Projective Equivalence). All non-
degenerate central catadioptric projections are equiv-

alent to a central projection of the spherical represen-
tation of the projective plane to a plane. All such pro-
jections can be represented with the single map sl,m,
where the parameter l is a function of the eccentricity
of the conic and m is a function of both its scale and ec-
centricity. Unless stated otherwise, µ = 0 and λ = 2p.
We enumerate the possible cases in parallel with
Fig. 5:

1. 0 < ε < 1. Elliptic projection is equivalent to the
composition of normalization to the unit sphere and
central projection:

q(c, F1, F2, p) = s 2ε

1+ε2 ,
2ε(2p−1)

1+ε2
,

where c is an ellipse of eccentricity ε whose latus
rectum is 4p, and foci are F1 = (0, 0, 0, 1) and F2 =
(0, 0, 4pε, ε2 − 1), and where p = [0, 0, 1, 0].

2. ε = 1. Parabolic projection is equivalent to the
composition of normalization to the unit sphere fol-
lowed by stereographic projection:

q(c, F1, F2, p) = s1,2p−1,

where c is a parabola whose latus rectum is 4p, and
foci are F1 = (0, 0, 0, 1) and F2 = (0, 0, 1, 0), and
where p = [0, 0, 1, 0].

3. ε > 1. Hyperbolic projection is equivalent to the
composition of normalization to the sphere followed
by central projection:

q(c, F1, F2, p) = s 2ε

1+ε2 ,
2ε(2p−1)

1+ε2
,

where c is a hyperbola whose latus rectum
is 4p, and foci are F1 = (0, 0, 0, 1) and F2 =
(0, 0, 4pε, ε2 − 1), and where p = [0, 0, 1, 0].

4. ε → ∞, λ = 2 f ε−1(ε2 −1), µ = −3 f . Perspective
projection with focal length f in front of a planar
mirror a distance of 2 f from the focus is equivalent
to normalization to the sphere followed by central
projection:

q(c, F1, F2, p) = s0, f

where c is the degenerate conic consisting of the sin-
gle line [0, 0, 1, 2 f ] (with a multiplicity of two) hav-
ing foci F1 = (0, 0, 0, 1) and F2 = (0, 0, −4 f, 1),

and where p = [0, 0, 1, 3 f ].
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Figure 5. The different catadioptric projections and the corresponding positions of the second projection center on the axis of the sphere in
the equivalent projection. In the elliptic and hyperbolic cases (top and second to bottom) the corresponding point lies between the north pole
and the center of the sphere. In the parabolic case, the second projection point is the north pole; in the perspective case the center is the second
projection center, which is obtained in the limit as the eccentricity goes to infinity. The graph in the second column shows the height of the
second projection center as a function of eccentricity. Note that for a given height between the north pole and the center there is an elliptic mirror
and a hyperbolic mirror equivalent to the projection induced with this point as the second projection point.
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Corollaries.

1. Parabolic projection is conformal. The angles be-
tween great circles on the spherical representa-
tion of the projective plane are preserved in the
parabolic projective plane. For example, the hori-
zons of two perpendicular planes are two orthogo-
nal circles. This is because stereographic projection
is conformal (Needham, 1997).

2. Conformal maps on the sphere project to confor-
mal maps in the parabolic projective plane. In
particular, pure rotations of space preserve the an-
gles between great circles, and thus rotations of
space preserve angles in the parabolic projective
plane.

3. Catadioptric projections with reciprocal eccentric-
ities are projectively equivalent; such projections
have the same representation, for if ε = ε′−1

,

then

l ′ = 2ε′

1 + ε′2 = 2 1
ε

1 + (
1
ε

)2 = 2ε

1 + ε2
= l.

This implies that any elliptic catadioptric device is
projectively equivalent to a hyperbolic projection.
We therefore need only consider one of these cases,
and we arbitrarily choose to refer to such projec-
tions as hyperbolic.

3.1. Point Images

The sphere, in which antipodal points are identified, is
just one representation of P

2; Stolfi (1991) calls this the
spherical model or representation. The “points” of P

2

in this representation are the antipodal point pairs, and
the “lines” in this representation are the great circles.
Any two non-identical lines—great circles—intersect
in a point pair. There is a single line joining any two
non-identical point pairs. The plane adjoined with the
line at infinity is another representation in which the
“points” are the single points of the plane and the line at
infinity; this is the so called “straight model.” Homoge-
neous coordinates, the analytic model, are yet another
representation in which the “points” are rays through
the origin in R

3. These are all interrelated and equiv-
alent, and for example the straight model is obtained
from the spherical one by central projection from the
center of the sphere.

The straight model is a natural model for studying
perspective cameras but not so natural for studying

general catadioptric cameras. Now that we have shown
that catadioptric projections are obtained from the
spherical model by a central projection, it is only natu-
ral to study a different representation, one obtained by
central projection from a point on the axis of the sphere.
The question is this: What geometric structures which
preserve the incidence relationships of P

2 are induced
by such a central projection?

For example, as we just noted, the straight model is
obtained from the spherical one by central projection
from the sphere’s center to a plane tangent to the sphere.
The lines of the straight model are just that, lines in
the plane. However, in order to preserve the axioms
of projective geometry, we needed to add the line at
infinity so that two parallel lines “intersect”, as required
by the axioms.

In a model obtained by central projection from some
other point we need to define the “points” and the
“lines” that make up the representation. Then we need
to add the necessary structure to satisfy the axioms. In
this section we consider the projections of points; in the
next we determine the projections of lines. Lastly, we
summarize the structure of these new representations,
the catadioptric projective planes.

We will let the projective planes induced by the cata-
dioptric projections consist of point pairs correspond-
ing to points in P

2 and subsets of these point pairs
corresponding to lines of P

2 which are actually conic
sections. The representation of a single point in a pair
is in homogeneous coordinates (with one exception
in the parabolic case), but the homogeneous coordi-
nates are only a setting, inadequate to fully describe
the representation given in the catadioptric projective
planes.

First the parabolic case. Prior to defining the points
of the parabolic projective plane, we examine some of
the properties of stereographic projection. In this case
there is a one-to-one mapping between the sphere, mi-
nus the north pole, and the Euclidean plane. Points
below the equator are mapped to points within the
projection of the equator, i.e. the fronto-parallel hori-
zon. Points above are sent to points outside this cir-
cle. The north pole does not have a projection in
homogeneous coordinates, since the projection for-
mula gives the point (0, 0, 0). These are not valid
homogeneous coordinates. Since we will want ev-
ery “point” to consist of a pair, in order that the
parabolic projective plane be complete, we add this
additional point. Because the projection of no other
point is degenerate, i.e. mapped to (0, 0, 0), this is the
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label we give it. Thus the range is not just P
2, but

P
2 ∪ (0, 0, 0).
The “points” of the parabolic projective plane thus

consist of the projections of the antipodal point pairs of
S2. Every point within the projection of the equator is
paired with a point outside. The projection of the south
pole is paired with the point (0, 0, 0), corresponding to
the north pole.

The hyperbolic case is more complicated. In this
case as we have seen, the second center of projection
is between the north pole and the center. Points on the
sphere at a height below this second projection center
are in one-to-one mapping with points of the plane.
Points on the sphere at exactly the same height as the
projection point are mapped to the line at infinity. Points
on the sphere above the projection point are also in one-
to-one correspondence with points of the plane. Thus
the projection is not injective as it is in the parabolic
case; it is actually a double covering. This is somewhat
problematic; a solution is to keep two copies of the
plane, one for the points above and one for the points
below the point of projection, see Fig. 6. In practice,
this is not necessary because the points lying above the
projection point are points that would be reflected by
the lower sheet of the two sheets of the hyperboloid.
However, the lower sheet is not used when designing
catadioptric sensors because this is where the camera
is placed.

3.2. Line Images

It is now trivial to see that the image of a line in the
general case is a conic: First the projection of a line

Figure 6. Points below the point B are projected to the lower copy
of the plane; points above the point B are projected to the upper copy
of the plane. Points at the same height as B are projected to the line
at infinity. Notice that the images Q1 and Q2 are near each other but
are respectively projected from points P1 and P2 which are not near
each other.

Figure 7. The projection of a line to the sphere is a great circle; the
projection of the great circle is obtained from the intersection of the
image plane with a cone containing the great circle and whose vertex
is the point of projection.

in space to the sphere is great circle. There is a cone
through the second center of projection and this great
circle as in Fig. 7. The intersection of this cone with
the image plane is the line image and is obviously a
conic.

One special line image is the fronto-parallel hori-
zon. This is the image of the equator. In the parabolic
and hyperbolic cases it is clearly a circle centered
at the image center with a radius dependent on
the eccentricity and focal length. In the perspective
case, the fronto-parallel horizon is the line at infin-
ity. Thus, one of the effects of a catadioptric projec-
tion is bringing in from infinity the line at infinity.
We will see later that this enables a calibration from
lines.

The intersection of any great circle with the equator
are two points antipodal on the equator. The projections
of these two points are, in the hyperbolic and parabolic
cases, two points antipodal on the fronto-parallel hori-
zon. Thus, the intersection of any line image and the
fronto-parallel horizon are two points antipodal on the
fronto-parallel horizon.

Now we find an explicit formula for the quadratic
form of a line image. We must first derive the quadratic
form of the cone through the second projection center
and the great circle. We then intersect that cone with
the image plane to obtain the line image.
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A cone is a special case of a quadric. In general a
quadric is a set of points satisfying

PQPT

= (x y z w)


a b c d

b e f g

c f h i

d g i j




x

y

z

w

 = 0.

We need to find the entries of Q given the unit normal
n̂ = (nx , ny, nz) of the plane containing the great circle.
We assume that n̂ �= (0, 0, 1). To find the entries we first
work in a coordinate system (x ′, y′, z′, w′) where the
plane z′ = 0 contains the great circle; this is achieved
by a rotation R. Specifically, if

R =
(

(p × n) × nT p̂ × nT n̂T 0

0 0 0 1

)

=



nx nz√
1−n2

z

− ny√
1−n2

z

nx 0

ny nz√
1−n2

z

nx√
1−n2

z

ny 0

−√
1 − n2

z 0 nz 0

0 0 0 1


,

where p = (0, 0, 1) and x̂ denotes the normalized vec-
tor x/‖x‖. We need to find Q′ such that the points where
P ′Q′ P ′T = 0 is a cone whose vertex is the point

(
l
√

1 − n2
z , 0, lnz

)
and contains the circle(

x ′

w′

)2

+
(

y′

w′

)2

= 1, z′ = 0 .

First, the coefficients of x ′ and y′ in x ′2 + y′2 − 1 = 0
must equal the coefficients in

(x ′, y′, 0, 1)Q′(x ′, y′, 0, 1)T = 0.

So,

a = 1, 2b = 0, 2d = 0,

e = 1, 2g = 0, j = −1.

Moreover, the kernel of matrix Q′ is the cone vertex:

Q′(l√1 − n2
z , 0, lnz

)T = 0.

This fact yields four more constraints:

l
√

1 − n2
z + clnz = 0

f lnz = 0

cl
√

1 − n2
z + hlnz + i = 0

ilnz − 1 = 0.

Solving for the remaining parameters c, f, h and i we
obtain:

Q′ =



1 0
√

1−n2
z

nz
0

0 1 0 0
√

1−n2
z

nz
0

1− 1
l2

−n2
z

n2
z

1
lnz

0 0 1
lnz

−1


.

Then

Q = RQ′RT .

We wish to intersect the cone with the plane z = −m,
so,

0 = (x y −m 1) RQ′RT


x

y

−m

1



= (x y 1)

 1 0 0 0

0 1 0 0

0 0 −m 1



× RQ′RT


1 0 0

0 1 0

0 0 −m

0 0 1


 x

y

1



= (x y 1) Cn̂

 x

y

1

 = 0.
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We can expand Cn̂ ,

Cn̂ =

 1 0 0 0

0 1 0 0

0 0 −m 1

 RQ′RT


1 0 0

0 1 0

0 0 −m

0 0 1



=

−l2n2
yn2

z − n2
x

(
l2 + n2

z − 1) nx ny(l2 − 1)
(
n2

z − 1
)

nx nz(l + m)
(
n2

z − 1
)

nx ny(l2 − 1)
(
n2

z − 1
) −l2n2

x n2
z − n2

y

(
l2 + n2

z − 1
)

nynz(l + m)
(
n2

z − 1
)

nx nz(l + m)
(
n2

z − 1
)

nynz(l + m)
(
n2

z − 1
) −n2

z (l + m)2
(
n2

z − 1
)


The conic Cn̂ has the properties

fi = ((l + m)nx , (l + m)ny, (−1)i
√

1 − l2 − nz)

a =
∣∣∣∣ l(l + m)nz

l2 − n2
x − n2

y

∣∣∣∣ (3)

b =
∣∣∣∣ l + m√

l2 − n2
x − n2

y

∣∣∣∣,
where fi=0,1 are the foci, a is the minor axis, and b is
the major axis; we derive these in the appendix. Notice
that the foci are collinear with the image center, and
thus the major axis contains the image center.

3.3. Catadioptric Projective Planes

A catadioptric projective plane is the image of the stan-
dard projective plane, represented on the sphere, by a
central projection from a point on the axis between the
north pole and the sphere’s center. In the S2 represen-
tation, the points of the standard projective plane are
the pairs of antipodal points:

� = {(±x, ±y, ±z) | x2 + y2 + z2 = 1},

and the lines are the set of great circles

� = {
[±nx , ±ny, ±nz]

∣∣ n2
x + n2

y + n2
z = 1

}
,

where

[nx , ny, nz] = {(x, y, z) ∈ � | xnx + yny + znz = 0},

is a single great circle. Therefore P
2 is defined by the

pair (�, �). We project from the point on the axis using

the function sl,m , obtaining a projective plane
πl,m = (sl,m(�), sl,m(�)), which we call a catadioptric
projective plane.

On the sphere all of the axioms necessary for a pro-
jective plane are satisfied, as long as antipodal points
are identified. The catadioptric projective planes also
satisfy these axioms with the understanding that in hy-
perbolic cases there are two copies of the plane, and
that the “points” are always pairs of points, sometimes
one pair having points in each of the two copies of the
plane, sometimes only in the same copy.

4. Duality

In standard projective geometry there is a one to one
correspondence with points and lines of a projective
plane. On the sphere, a representation of the projective
plane, the correspondence is between a great circle and
its poles. We write the dual great circle of a point P as
P̃ and the dual point of a great circle � as �̃.

An example of their usage is in the following. Sup-
pose we have two points P1 and P2 on the sphere and
we wish to determine the great circle � between them.
We take the dual great circles of the two points, P̃1

and P̃2. They must intersect in a pair of points which
are antipodal and represented by Q. Taking the dual
Q gives the very great circle through the two original
points, that is � = Q̃. This is because the dual great cir-
cle P̃ of any point P on the great circle is a great circle
containing the point Q. So intersecting any two yields
the point Q.

We call P1 ∨ P2 the great circle between points P1

and P2 and �1 ∧ �2 the intersection of the great circles
�1 and �2. We express the fact above in the equations

P1 ∨ P2 = P̃1 ∧ P̃2 ,

�1 ∧ �2 = �̃1 ∨ �̃2.
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The operators ∧ and ∨ can be used on the catadioptric
projective plane as well, in particular we define for
points P1, P2 and lines (conics) �1, �2 on a catadioptric
plane,

P1 ∨ P2 = sl,m
(
s−1

l,m(P1) ∨ s−1
l,m(P2)

)
�1 ∧ �2 = sl,m

(
s−1

l,m(�1) ∧ s−1
l,m(�2)

)
Is there such a relationship embedded within the cata-
dioptric projective plane? What properties do the sets of
projections of great circles all containing a given point
P have? We have seen that the image of a line under
catadioptric projection is a conic. We will see that foci
of coincident line images lie on a conic which is the
projection of the great circle perpendicular to them all;
though it is not projected by the same point.

Consider the projection of a point by the map sl,m ,

((l + m)x, (l + m)y, −z + l(−1)i
√

x2 + y2 + z2)

and the foci of a line image,

((l + m)nx , (l + m)ny, −nz + (−1)i
√

1 − l2).

They look remarkably similar, especially considering
that n2

x + n2
y + n2

z = 1. Remembering the point-line
duality, the foci look like the projection of the dual
point of the great circle, i.e. its normal.

Lemma 3. Let � be a line of a catadioptric projec-
tive plane πl,m which is the projection of a great circle
whose normal is n̂. The foci pair of � is the projection
of the point n̂ by sl ′,m ′ where l ′ and m ′ satisfy

l + m = l ′ + m ′,

l2 + l ′2 = 1 .

Proof: The foci of the line are

((l + m)nx , (l + m)ny, −nz + (−1)i
√

1 − l2).

If

l ′ =
√

1 − l2,

m ′ = l + m −
√

1 − l2

then the foci can be rewritten(
(l ′ + m ′)nx , (l

′ + m ′)ny,

−nz + (−1)i l ′
√

n2
x + n2

y + n2
z

)
.

Figure 8. The two ellipses �1 and �2 are projections of two lines
in space containing the point P . Their foci F1, F2, and G1, G2

respectively lie on a hyperbola containing the foci of all ellipses
through P . The foci of this hyperbola are the points in P . The point
C is the image center.

This is projection of the point (nx , ny, nz, 1) by sl ′,m ′ .
Conversely, if a point P is projected to a point pair
in a catadioptric projective plane πl,m , this point pair
is the foci pair of a line image of a projective plane
π√

1−l2,l+m−√
1−l2 . ✷

Lemma 4. Let {�k} be a set of line images all of which
intersect a point P, i.e. for all k, P ∈ �k . Then the locus
of foci of the line images lie on a conic c whose foci
are the same as the points in P (see Fig. 8).

Proof: Assume that P is the projection of the point
n̂ = (nx , ny, nz) on the sphere. Also assume that the
lines �k are images of great circles whose plane’s nor-
mals are m̂k . Because of rotational symmetry, we may
assume without loss of generality that ny = 0. This im-
plies that for some θk that

{[m̂k]} = {[−nz sin θk, cos θk, nx sin θk]}.
Then the foci of the �k are,

f k
i = ((l + m)nz sin θk, (l + m) cos θk,

(−1)i
√

1 − l2 − nx sin θk).

But these are the pair of points in the projection of m̂k

by

s√
1−l2,l+m−√

1−l2 .

Therefore this point is in the image of the line n̂ by this
same projection. Its foci are

fi = ((l + m)nx , 0, (−1)i l − nz),

which is the projection of n̂ by sl,m . ✷
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We use Lemmas 3 and 4 to prove the following du-
ality theorem.

Theorem 2 (Duality). If πl,m = (�1, �1) and
πl ′,m ′ = (�2, �2) are two catadioptric planes such that

l2 + l ′2 = 1 and l + m = l ′ + m ′,

then fl,m, which gives the foci of a line image in the con-
text of some catadioptric plane πl,m, maps as follows,

fl,m : �1 → �2,

fl ′,m ′ : �2 → �1,

and their inverse mappings exist. In addition, incidence
relationships are preserved by fl,m:

P1 ∨ P2 = f −1
l,m

(
f −1
l ′,m ′(P1) ∧ f −1

l ′,m ′(P2)
)
,

�1 ∧ �2 = fl,m( fl ′,m ′(�1) ∨ fl ′,m ′(�2)),

where P1, P2 ∈ �1 and �1, �2 ∈ �2.
We call the projective planes, πl,m and πl ′,m ′ , dual

catadioptric projective planes.

Proof: We have already shown the first part of the
theorem in Lemma 3. It only remains to show that in-
cidence relationships are preserved. This follows from
Lemma 4 and the fact that incidence relationships are
already known to be preserved on the sphere by the
mapping taking antipodal points to great circles and
vice versa. ✷

Corollaries.

1. Perspective projection (l = 0) is dual to parabolic
projection (l ′ = 1). This means that the parabolic
projection of a line is a circle whose center (the
foci collapse to a single point) is the perspective
projection of the normal of the plane containing the
line. It also implies that the parabolic projection
of a pair of antipodal points are two points whose
perpendicular bisector is the projection of the great
circle dual to the antipodal point pair.

2. A catadioptric projection with a mirror of eccen-
tricity ε is dual to a catadioptric projection with
mirror eccentricities | 1−ε

1+ε
| and | 1+ε

1−ε
| (one is a hyper-

bolic projection; the other is an equivalent elliptic
projection).

3. A catadioptric projection with eccentricity ±1 +√
2 is self-dual (l = 1√

2
). In this case the foci of a

projected great circle are exactly the projections of
the dual points.

5. Practical Implications: Calibration

The presented unifying theory of catadioptric projec-
tions enables a direct and natural insight into the invari-
ances of these projections. The perspective projection
is a degenerate case of a catadioptric projection, in the
sense that antipodal points on the sphere are projected
to single points, whereas in the parabolic and hyper-
bolic cases antipodal points are projected to two differ-
ent points. In this section, we show that it is possible to
calibrate a catadioptric sensor with as few as two lines.

If we assume that CCD-mount and lens do not induce
radial distortion and satisfy the pin-hole model (for a
hyperbolic configuration) or the orthographic model
(for a parabolic system), then the intrinsic parameters
of a general catadioptric projection are the eccentricity
of the mirror, the combined focal length of the mirror
and camera, the image center, and any skew and aspect
ratio induced by the sensor. It is the task of calibration to
estimate these parameters. We examine the possibility
or impossibility of calibrating from lines in a single
frame. We have previously demonstrated a calibration
algorithm for the parabolic case (Geyer and Daniilidis,
1999) whose input is at least two sets of parallel lines.
At the end of this section we show a more general
(arbitrary sets of lines) and simplified algorithm.

First, let us gain some intuition into why it is pos-
sible to calibrate non-perspective catadioptric sensors
from lines. We examine the perspective case first. As-
suming that aspect ratio is one and skew is zero, there
are three intrinsic parameters, namely the image center
and focal length. The image of a line in space is a line
in the image plane, and any given line may be uniquely
determined by two points. From any image line it is
possible only to determine the orientation of the plane
containing the line in space and the focal point; the ori-
entation of this plane can be parameterized by two pa-
rameters. Given n lines, how many constraints are there
and how many unknowns? If for some n the number
of constraints exceeds the number of unknowns, then
we have a hope of obtaining the unknowns, and thus
calibrate the sensor. However, for every line added we
gain two more constraints and two more unknowns;
we are always short by three equations. Therefore self-
calibration from lines, without any metric information,
and in one frame is not possible in the perspective
case.
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What about the parabolic case? There are a total of
three unknowns, focal length and image center (alone
giving two unknowns). The projection of any line is
a circle, and which is completely specified by as few
as three points, therefore three constraints. The ori-
entation of the plane containing the line gives two un-
knowns. So, for every line that we obtain we reduce the
number of unknowns by one. If there are three lines,
we have 9 constraints and 9 unknowns, and thus we can
perform self-calibration with only three lines.

Finally the hyperbolic case. There are four unknowns
(eccentricity, focal length and image center) and each
line adds two for orientation. The projection of a line is a
conic which may be specified by five points. Thus when
we have two lines we have 8 unknowns and 10 con-
straints. So, with only two lines the system is over-
determined, but nevertheless we can still perform a
calibration.

We give here a simple and compact algorithm for
calibrating the parabolic projection. It is based on the
fact that a sphere, whose equator is a circle in the image
plane, contains the point (cx , cy, 2 f ), where (cx , cy, 0)

is assumed to be the image center, though initially un-
known. This is by symmetry, since the image circle
intersects the fronto-parallel plane at points a distance
2 f from the image center. Thus the intersection of at
least three spheres so-constructed produces the points
(cx , cy, ±2 f ), giving us both image center and focal
length simultaneously (see Fig. 9).

Figure 9. Left: Sphere whose equator is a line image which contains the point (cx , cy , 2 f ). The circle in the image plane is the fronto-parallel
horizon. Right: Intersection of three such spheres to determine this point.

In the presence of noise, the intersection is not de-
fined for more than three spheres, yet we may minimize
the distance from a point to all of the spheres, i.e. find
the point (cx , cy, f ) such that

n∑
i=1

((
di

x − cx
)2 + (

di
y − cy

)2 + 4 f 2 − r2
i

)2
(4)

is a minimum over all points. Here (di
x , di

y) is the cen-
ter of the i-th image circle, and ri is its radius. The
intersection is not defined for fewer than three spheres,
since the intersection of two spheres gives only the cir-
cle within which the point lies, but not the point itself.

In the parabolic case it is also possible to calibrate the
skew and aspect ratio. Non-unit aspect ratio and skew
transform a parabolic image so that the images of lines
are ellipses with the same aspect ratio. There is a single
linear transformation, modulo scale, which transforms
this distorted image to one in which line images are
again circles. To find this unique transformation, we
minimize over the quotient space of possible repre-
sentative transformations the residuals of circles fitted
to transformed points which are known to lie on line
images.

We next describe an experiment (see Fig. 10) in
which we have taken an image of a small 8 1

2
′′ × 11′′

calibration target with a folded catadioptric camera. We
fit circles to the grid points and perform a calibration.
Then we estimate the normal of the plane containing the
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Figure 10. Left: Original image taken by a folded catadioptric camera. Middle: Circles fitted to points captured from the grid. Notice that the
lines of the grid are parallel and thus their projections, circles, intersect in the image at vanishing points. Using these line images we perform a
calibration and rectification, i.e. finding the normal of the plane containing the grid. Right: A reprojection to a plane parallel to the grid.

grid and then project to a plane parallel to the plane of
the grid, i.e. a rectification. Rectification is described
in Geyer and Daniilidis (1999) and can be achieved
with only affine knowledge. Given two sets of parallel
lines their two double vanishing points define a circle
on the catadioptric image. The center of this circle is
the projection of the normal of the plane spanned by
the two directions up to the known focal length. In the
rectification, we see that to a good approximation lines
have been mapped to lines, and also that angles are
preserved.

6. Conclusion

In this paper, we presented a novel theory on the ge-
ometry of central catadioptric systems. We proved that
every such projection can be modeled with the projec-
tion of the sphere to a horizontal plane from a point
on the vertical axis of the sphere. Hence, any cata-
dioptric projection is equivalent to a central projection
of the spherical representation of the projective plane.
Using this equivalence we observe that images of lines
in space are mapped to great circles on the sphere and
to conic sections on the catadioptric image plane. We
show that each mirror shape has its dual and that dual
projections map poles of great circles on the sphere to

Cn̂ =

−l2n2
yn2

z − n2
x

(
l2 + n2

z − 1
)

nx ny(l2 − 1)
(
n2

z − 1
)

nx nz(l + m)
(
n2

z − 1
)

nx ny(l2 − 1)
(
n2

z − 1
) −l2n2

x n2
z − n2

y

(
l2 + n2

z − 1
)

nynz(l + m)
(
n2

z − 1
)

nx nz(l + m)
(
n2

z − 1
)

nynz(l + m)
(
n2

z − 1
) −n2

z (l + m)2
(
n2

z − 1
)
.

the foci of the conic sections corresponding to the great
circles of the poles.

The first practical implication concerns the determi-
nation of the image center, the effective focal length,
and the mirror eccentricity from a single view of line
images. The perspective case proves to be the only
one not providing the sufficient constraints for such a
calibration.

Our ongoing work addresses multiple uncalibrated
catadioptric views with possibly varying camera pa-
rameters. We mention here the parabolic case as an ex-
ample. We proved in this paper the equivalence of the
parabolic case to the projection on the sphere followed
by a stereographic projection. Stereographic projec-
tion is a conformal mapping: the angle between two
great circles on the sphere is equal to the angle be-
tween their images. We are going to analyze such
constraints in multiple views and give the sufficient
conditions on translation directions and rotation axes
for the recovery of camera parameters, motion, and
structure.

Appendix 1

We would like to derive the properties of the conic
whose quadratic form is,
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We wish to put the conic into a normal form in which
we can obtain the major and minor axes as well as
the location of the foci. First we apply the rotation
matrix

R =


nx√

n2
x +n2

y

ny√
n2

x +n2
y

0

− ny√
n2

x +n2
y

nx√
n2

x +n2
y

0

0 0 1

,

obtaining

RCn̂RT =


−(

n2
x + n2

y

)(
l2 + n2

z − 1
)

0 (l + m)
√

n2
x + n2

ynz
(
n2

z − 1
)

0 −l2
(
n2

x + n2
y

)
n2

z 0

(l + m)
√

n2
x + n2

ynz
(
n2

z − 1
)

0 −(l + m)2n2
z

(
n2

z − 1
)

.

Application of the matrix

T =


1 0 0

0 1 0
(l+m)nz(n2

z −1)√
n2

x +n2
y(l

2+n2
z −1)

0 1

,

centers the conic at the origin, and we have

TRCn̂RT TT =


−(

n2
x + n2

y

)(
l2 + n2

z − 1
)

0 0

0 −l2
(
n2

x + n2
y

)
n2

z 0

0 0 − l2(l+m)2n2
x (n

2
z −1)

l2+n2
z −1

.

Normalizing and substituting n2
z = 1 − n2

x − n2
y , we

have

C′ =


(−l2+n2

x +n2
y)

2

l2(l+m)2n2
z

0 0

0 −−l2+n2
x +ny

(l+m)2 0

0 0 −1

.

Thus the major axis

a =
∣∣∣∣∣ l(l + m)nz

−l2 + nx + n2
y

∣∣∣∣∣,

and minor axis

b =
∣∣∣∣∣∣ l + m√

−l2 + n2
x + n2

y

∣∣∣∣∣∣.
Now to find the foci. An ellipse with quadratic form a−2 0 0

0 b−2 0

0 0 −1

,

has eccentricity
√

1 − b2

a2 and foci at (±aε, 0, 1). A
hyperbola with quadratic form

 a−2 0 0

0 −b−2 0

0 0 −1

,

has eccentricity
√

1 + b2

a2 and foci at (±aε, 0, 1).
Therefore a conic with quadratic formα 0 0

0 β 0

0 0 −1


has foci at (

√
α−1 − β−1, 0, 1). Hence, the foci of C′

are ±
√

1 − l2(l + m)
√

n2
x + n2

y

−l2 + n2
x + n2

y

, 0, 1

 .
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Now translate and rotate back to the original coordinate
system and we find that the foci of Cn̂ are

fi =
(

(l + m)nx ((−1)i
√

1 − l2 − nz)

−l2 + n2
x + n2

y

,

(l + m)ny((−1)i
√

1 − l2 − nz)

−l2 + n2
x + n2

y

, 1

)
= (

(l + m)nx , (l + m)ny, (−1)i
√

1 − l2 − nz
)
.

Note

1. We do not consider the case where � is not perpendicular to F1 F2;
in such a case, the projection differs from the one defined above
only by a line homography (or by a plane homography in the three
dimensional extension).
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