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Abstract— This paper presents a new method to estimate the
relative motion of a vehicle from images of a single camera. The
biggest problem in visual motion estimation is data association;
matched points contain many outliers that must be detected
and removed so that the motion can be estimated accurately.
A very established method for robust motion estimation in the
presence of outliers is the five-point RANSAC algorithm. Five-
point RANSAC operates by generating motion hypotheses from
randomly-sampled minimal sets of five-point correspondences.
These hypotheses are then tested against all data points and
the motion hypothesis that after a given number of iterations
returns the largest number of inliers is taken as the solution
to the problem. A typical drawback of RANSAC is that the
number of iterations required to find a suitable solution grows
exponentially with the number of outliers, often requiring thou-
sands of iterations for typical data from urban environments.
Another problem is that – due to its random nature – sometimes
the found solution is not the “best” solution to the motion
estimation problem. In this paper, we describe an algorithm
for relative motion estimation in the presence of outliers, which
does not rely on RANSAC. Contrary to RANSAC, motion
hypotheses are not generated from randomly-sampled point
correspondences, but from a “proposal distribution” that is
built by exploiting the vehicle non-holonomic constraints. We
show that not only is the proposed algorithm significantly faster
than RANSAC, but that the returned solution may also be
better in that it favors the underlying motion model of the
vehicle, thus overcoming the typical limitations of RANSAC.
Additionally, the proposed algorithm provides the likelihood
of the motion estimate, which can be very useful in all those
applications where a probability distribution of the position of
the vehicle is required (e.g., SLAM). Finally, the performance of
the proposed method is compared to that of the standard five-
point RANSAC on real images collected from a vehicle moving
in a cluttered, urban environment.

I. INTRODUCTION

Visual odometry is the problem of estimating the ego-

motion of a vehicle from onboard-camera images. Sev-

eral works have been recently produced using both stereo

or monocular cameras [1]–[6]. Basically, visual odometry

operates by incrementally computing the motion between

consecutive frames. This is done by extracting salient points

(such Harris, FAST, SIFT, etc.) from both images and match-

ing them according to some similarity measure. However,

matched points are usually contaminated by outliers, that is,

wrong data associations. Outliers must be carefully removed

so that the motion can be estimated accurately.
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The random sample consensus (RANSAC) [7] has been

established as the standard method for motion estimation

in the presence of outliers. In RANSAC, the motion (R,T)

is estimated from feature correspondences. The idea behind

RANSAC is to compute model hypotheses from randomly-

sampled minimal sets of data points and then verify these

hypotheses on the other data points. The hypothesis that

shows the highest consensus with the other data is selected

as solution. The number of iterations N that is necessary to

guarantee that a correct solution is found can be computed

as

N =
log(1− p)

log(1− (1− ε)s)
, (1)

where ε is the percentage of outliers in the data points, p is

the requested probability of success and s is the number of

data points necessary for estimating the model. For uncon-

strained motion (6DoF) of a calibrated camera this would be

5 correspondences [8]. This made the 5-point RANSAC (1)

the standard algorithm for unconstrained motion estimation

in the presence of outliers.

The drawback in RANSAC is that the number of iterations

grows exponentially in the number of outliers (see (1)).

In some cases, the 5-point RANSAC can require up to

one thousand iterations for typical data from a vehicle in

urban environments. Because of this, several works have

been produced in the endeavor of reducing the number of

iterations. In [9], the authors manage to do it by ranking

the correspondences based on their similarly. In [10], the

authors use a preemptive scoring of the motion hypotheses.

Finally, in [11] the authors incorporate feature uncertainty

and show that this determines a decrease in the number of

potential outliers, enforcing thus a reduction in the number

of iterations. What all these methods have in common is

that the motion hypotheses are still generated from point

correspondences, which is an expensive test as it may in-

volve SVD and Groebner-basis decompositions. In addition,

for each candidate set of data points 5-point RANSAC

returns up to ten motion solution, each to be tested. An

alternative algorithm was proposed in [12] for EKF-based

visual odometry. They proposed to use the available prior

probabilistic information from the EKF in the RANSAC

model-hypothesize stage.

In this paper, we propose a novel algorithm to compute

both the relative motion of a single camera and wrong data

associations, which does not rely on a RANSAC-scheme.

We pose the problem as a maximum-likelihood estimation.

The algorithm operates by estimating a proposal distribution

that captures the main components of the motion, and



which is based on the vehicle non-holonomic constraints.

We show that sampling from this proposal is equivalent to

computing the joint posterior probability of the complete

motion. Alternatively, if one is looking for the maximum-

likelihood solution, then one can choose the solution that

has given more inliers. We show that the proposed algorithm

is significantly faster than the 5-point RANSAC and is also

more accurate in that it favors the underlying motion model

of the vehicle, thus overcoming the typical limitations of

RANSAC (i.e., motion error due to the different “quality” of

the inliers).

Note that this paper is an extension of our previous work

on the 1-point RANSAC algorithm [13], [14]. However, the

difference with that work is that here we are relaxing the

constraint of planar and circular motion.

The paper is structured as follows. In section II we provide

a Bayesian perspective of the motion estimation problem.

In section III, we describe how to compute the proposal

distribution using the vehicle non-holonomic constraints. In

section IV, we explain how to compute the motion prior. In

section V, we detail our algorithm. Finally, in sections VI

and VII, we present the experimental results and draw the

conclusions.

II. PROBABILISTIC DEFINITION OF RELATIVE-MOTION

ESTIMATION

In this section we describe the relative-motion estimation

problem from a Bayesian perspective.

We assume that a feature detection and matching pro-

cedure has already been done. Therefore, we have a set

X = {x0,x1,x2, ...,xn} of n image points (xi ∈ R
2), seen

by the camera at the first position, and the set X ′ =
{x′0,x

′
1,x

′
2, ...,x

′
n} of the corresponding image points, seen by

the same camera at the next position. We assume that these

correspondences are given but are not certain; therefore we

say that xi is the putative image correspondence of x′i. We

assume that any information about the feature appearance

has already been used, and only the motion of the vehicle

can disambiguate between inliers and outliers. We define a

set of binary hidden variables {αi}
n
i=1 such that αi = 1 if the

i-th correspondence is an inlier, and 0 otherwise.

Let R ∈ SO(3) and T ∈R
3 represent the unknown relative

motion between the two camera positions. It is well known

that with a single camera we can only recover the direction of

the translation and not its length. Therefore, for convenience

we impose ‖T‖ = 1. The motion is therefore described by

five parameters.

X and X ′ represent the measured data, while R and T are

the quantities that we want to estimate from the data. Writing

this in probabilistic terms, the relative-motion estimation

problem consists in estimating the joint posterior probability

over R and T from the data X and X ′, that is

p(R,T|X ,X ′). (2)

When posed as a maximum-likelihood estimation problem,

the solution to the motion-estimation then becomes that of

finding the combination of R and T that maximize (2). An

alternative solution consists in drawing samples from (2) if it

must be used as a proposal distribution in a SLAM algorithm.

As a measure of the likelihood of a given motion, the

number of inliers that support the motion is generally adopted

[15]. In these terms, maximizing (2) becomes equivalent to

finding the motion that maximizes the number of inliers.1

A brute-force approach to solve (2) would be to perform

a full search over the five-dimensional space of motion

parameters. This is, however, computationally unfeasible.

A more practical solution to (2) is via random sample

consensus (i.e., RANSAC [7]). In RANSAC, motion hy-

potheses are generated by drawing randomly minimal sets of

point correspondences (e.g., five correspondences, see [8]).

These hypotheses are then tested against all the point corre-

spondences and the motion hypothesis that – after a given

number of iterations – returns the largest number of inliers

is taken as the solution to the problem.2 A typical problem

with RANSAC is that the minimum number of iterations

required to return a set of points free out outliers within a

given confidence grows exponentially with the percentage of

outliers in the data. Another problem of RANSAC is that,

sometimes, the best found solution – i.e., the one with the

largest number of inliers - is not the best solution to the

motion estimation problem [16]. Indeed, inliers do not all

have the same “quality”. Some inliers are better to estimate

rotation than translation, or vice versa. As shown in [4], far-

distance points are good for estimating rotation, while close-

distance points are optimal for estimating translation. This

means that, depending on the proportion of far and close

points in the data, the inliers found by RANSAC might be

different, and so the final motion estimate. Additionally, as

studied in [16], the solution of RANSAC is influenced by

the resolution of the camera, becoming more evident for

omnidirectional cameras.

Contrary to RANSAC, in this paper we propose to select

the motion hypotheses not from randomly-drawn minimal

sets of image correspondences but directly from a proposal

distribution of the motion which is obtained by exploiting

the non-holonomic constraints of the vehicle.

Let us parametrize the rotation R in terms of its yaw (θ ),

pitch (β ), and roll (γ) angles and T in terms of its azimuth (φ )

and elevation (δ ) angles. Using this angular parametrization,

(2) can be rewritten as

p(θ ,β ,γ,φ ,δ |X ,X ′). (3)

We call this distribution the target distribution as it is the

one that we want to compute.

1We recall that the inliers represent a subset of the all image correspon-
dences, for which the reprojection error is smaller than a user-specified
threshold (typically 1 pixel). The reprojection error is computed by, first,
triangulating the image points in the 3D space using the knowledge of
the motion, and, then, reprojecting the 3D feature into the images. The
reprojection error is defined as the distance in pixels between the measured
image point and the reprojected 3D point. More details can be found in
[15].

2The motion is then refined by including all the inliers generated by this
motion hypothesis.



Fig. 1. General Ackermann steering principle.

If we now apply the definition of conditional probability,

we can expand (3) as:

p(θ ,β ,γ,φ ,δ |X ,X ′) = p(θ |X ,X ′)p(β ,γ,φ ,δ |θ ,X ,X ′) (4)

We will refer to p(θ |X ,X ′) as the proposal distribution and

to p(β ,γ,φ ,δ |θ ,X ,X ′) as the motion prior.

In the next section, we will describe how to compute the

proposal distribution and the motion prior from image cor-

respondences. In particular, we will show that the proposal

distribution can be obtained directly and very efficiently from

image correspondences by exploiting the non-holonomic

constraints of the vehicle.

III. COMPUTING THE PROPOSAL DISTRIBUTION FOR θ

For a wheeled vehicle to exhibit rolling motion, a point

must exist around which each wheel of the vehicle follows

a circular course [17]. This point is known as Instanta-

neous Center of Rotation (ICR) and can be computed by

intersecting all the roll axes of the wheels (Fig. 1). This

property holds for any robot, and in particular for car-like and

differential-drive. For cars the existence of the ICR is ensured

by the Ackermann steering principle [17]. This principle

ensures a smooth movement of the vehicle by applying

different steering angles to the inner and outer front wheel

while turning (see Fig. 1).

As the reader can perceive, the motion of a camera fixed

on the vehicle can then be locally described with circular

motion.3 Notice that this constraint also reduces the degrees

of freedom of the motion to two, namely the rotation angle θ
and the radius of curvature. As will see, this constraint allows

us to compute directly the proposal distribution p(θ |X ,X ′)
from the point correspondences.

A. Incorporating vehicle non-holonomic constraints into the

camera motion

Let us assume that the camera is fixed somewhere on

the vehicle (with the origin in OC, Fig. 2) with the axis

zC orthogonal to the plane of motion and xC oriented

perpendicularly to the back wheel axis.4

The origin OV of the vehicle reference frame can be cho-

sen arbitrarily. For convenience, we set OV at the intersection

3Note, rectilinear motion can be represented along a circle with infinite
radius of curvature.

4Observe that once the camera is installed on the vehicle the axes can be
rearranged in the way above with a simple transformation of coordinates.

Fig. 2. Relation between camera axes in circular motion.

of xC with the rear-wheel axis,5 and xV aligned with xC (Fig.

2).

Following these considerations, the transformation AC
V =

(RC
V,TC

V) from the camera to the vehicle reference system

can be written as RC
V = I3×3 and TC

V = [−L,0,0]T , where L

is the distance between the camera and the back wheel axis

(Fig. 2).

If the vehicle undergoes perfect circular motion with

rotation angle θ , then the direction of translation φ of the

vehicle must satisfy the circular motion constraint

φ = θ/2, (5)

which can be easily verified by trigonometry. Accordingly,

the transformation between the first and the second vehicle

position AV
V ′ = (RV

V′ ,T
V
V′) can be written as:

RV
V′ =





cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



 , TV
V′ = ρ ·





cos( θ
2
)

sin( θ
2
)

0





(6)

where ρ is the vehicle displacement (Fig. 2).

Following these considerations, the overall transformation

AC
C′ = (RC

C′ ,T
C
C′) between the first and second camera po-

sition can be computed as a composition of the following

three transformations, that is:

AC
C′ = AC

V ◦AV
V ′ ◦AV ′

C′ = AC
V ◦AV

V ′ ◦AC
V

−1
(7)

where we used AV ′

C′ = AC
V

−1
. And from this, we obtain:

RC
C′ = RV

V′ ,and TC
C′ =





Lcos(θ)−ρ cos( θ
2
)−L

ρ sin( θ
2
)−Lsin(θ)

0



 . (8)

B. Applying epipolar geometry

We would like to recall some fundamentals of computer

vision. Let x = [u,v,w]T and x′ = [u′,v′,w′]T be the normal-

ized image coordinates of a scene point seen from the two

camera positions.6

5We observed that by this choice the equations are notably simplified.
6With the term normalized image coordinates we denote the 3D vectors

obtained by back projecting the image points onto a unit sphere with origin
on the camera center. This operation is always possible if the camera is
calibrated.



As known in computer vision [15], the two unknown

camera positions and the image coordinates must verify the

epipolar constraint

x′
T

Ex = 0. (9)

E is called essential matrix and is defined as E = [T]×R. 7

This said, we can then compute the essential matrix for

our case as E = [TC
C′ ]×RC

C′ , that is,

E =







0 0 sin( θ
2
)− L

ρ sin(θ)

0 0 cos( θ
2
)+ L

ρ (1− cos(θ))
L
ρ sin(θ)+ sin( θ

2
) L

ρ (1− cos(θ))− cos( θ
2
) 0






.

(10)

At this point, notice that if we assume L = 0 8 (10) gets

notably simplified and can be rewritten as

E =





0 0 sin( θ
2
)

0 0 cos( θ
2
)

sin( θ
2
) −cos( θ

2
) 0



 . (11)

Finally, by substituting (11) into the epipolar constraint

(9), we obtain the following homogeneous equation that

needs to be satisfied by every pair of point correspondences

x, x′:

sin

(

θ

2

)

·(u′w + w′u) + cos

(

θ

2

)

·(v′w − w′v) = 0 (12)

C. Extracting the proposal distribution

We can see that (12) depends only on the single parameter

θ , which can be computed from a single feature correspon-

dence as

θ = −2tan−1

(

v′w − w′v

u′w + w′u

)

. (13)

We will refer to (13) as the 1-point algorithm [13], [14].

For n feature correspondences we can then build a his-

togram, where each bin contains the number of points that

vote for the same θ . This histogram represents exactly the

proposal distribution p(θ |X ,X ′) that we were looking for. As

we can see, it is computed directly from the correspondence

sets X and X ′ without requiring any prior motion estimation

step or RANSAC scheme.

To recap, equation (13) has been determined from the

following assumptions:

• The vehicle motion is planar: i.e., β = 0, γ = 0, and

δ = 0.

• The vehicle motion is circular: φ = θ/2 (see equation

(5))

• L/ρ = 0.

From this we can expect that the shape of the proposal

distribution will in general change depending on deviations

from the planar-and-circular-motion assumption and from the

condition L/ρ = 0. Additionally, it will depend on the image

noise and on the percentage of outliers in the data.

7[T]× is the skew symmetric matrix





0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0





8This is always satisfied when the camera is positioned above the rear-
wheel axis or, alternatively, when the ration L/ρ is sufficiently smaller than
1

(a) (b)

(c) (d)

Fig. 3. Sample histograms generated from simulated data assuming:
(a) No image noise, no outliers, and L = 0.
(b) 0.5 pixel Gaussian noise, no outliers, and L = 0.
(c) 0.5 pixel Gaussian noise, 50% outliers, and L = 0.
(d) 0.5 pixel Gaussian noise, 50% outliers, L/ρ = 2, and non-planar and
non-circular motion (we added 5 degrees in roll and pitch for the rotation,
5 degrees in elevation for the translation, and a 10-degree deviation from
the circular motion constraint (5)).

We analyzed in simulation the influence of these factors

on the proposal distribution. Some sample histograms are

depicted in Fig. 3. As we can expect, if the camera motion

is both planar and circular and, additionally, there is no image

noise and no outliers, all point correspondences will vote for

the same θ and the histogram will feature a single bin (Fig.

3a). Conversely, if we just add a 0.5 pixel standard-deviation

Gaussian noise to the point correspondences, the distribution

broadens (Fig. 3b). Adding 50% outliers in addition to the

image noise only increases the tails of the distribution (Fig.

3c). Finally, small deviations from the planar and circular

motion assumption and from the condition L/ρ = 0 increase

the variance of the distribution (Fig. 3d).

This behavior reflects that of the probability distribution

we were looking for: the closer we are to the ideal condition

of perfectly-planar-circular motion, the narrower the distri-

bution. The farther we are we from the ideal condition, the

wider the distribution, and – in other words – the less certain

we are about the real motion of the car.

The next question that now we would like to answer is:

How well does this proposal distribution represent the true

distribution of the true yaw angle of the car? To answer this

question we need to compare the best estimate of θ obtained

from the distribution with ground truth values.

In any of the situations analyzed in Fig. 3 we found that

the median9 of the distribution was always very close (within

only 0.5 degrees) to the true value of θ . This conjecture

was then tested on real data. We computed the proposal

9We would like to remind that for non-Gaussian distributions the median

(and not the arithmetic mean) is the best estimate of the true value.



Fig. 4. Comparison between the median of the proposal distribution for
θ and ground truth. The ground truth was recorded from GPS, IMU, and
wheel odometry.

distribution for a dataset of 15000 images collected from

a car in a urban environment. We found that in 99% of the

cases the median of the distribution differed from the ground-

truth by less than 0.5 degrees. A comparison between the

median of the distribution and the ground truth for 1600

frames is depicted in Fig. 4. The ground truth was recorded

from GPS, IMU, and wheel odometry.

D. Computational cost

Finally, observe that the proposal distribution just requires

to compute (13) n times, where n is the number of putative

correspondences. In our experiments we limited n to 4000.

The computation of the proposal distribution took less than

1 microsecond for every image pair on a 2GHz Dual Core

laptop.

IV. COMPUTING THE MOTION PRIOR

The next step towards the estimation of the target distri-

bution (4) is the computation of the motion prior

p(β ,γ,φ ,δ |θ ,X ,X ′). (14)

Recall that θ represents the yaw angle of the rotation,

while φ the azimuth of the translation vector, and, therefore,

they encode the planar component of the vehicle motion.

Conversely, β and γ represent the roll and pitch angles of

the rotation, while δ is the elevation angle of the translation

vector. Thus, they encode the non planar component of the

motion.

As explained in the previous sections, if the motion was

exactly planar (β ,γ,δ = 0), the parameter θ could be esti-

mated very efficiently using the 1-point algorithm (13), and

the kinematic constraints would impose φ = θ
2

.

In practice, the motion of a vehicle in an urban environ-

ment is not exactly planar. Therefore, the θ and φ estimated

assuming planar motion would not be correct. However, the

vehicle motion is not very far from planarity either. There-

fore, the value of θ estimated using the planarity assumption

does have some information about the real θ and the other

parameters. More precisely, we need an expression for the

distribution (14), which we interpret as the distribution of

the complete motion given the yaw value (θ ) of its planar

component.

We can have a direct estimate of the distribution (14)

by looking at either the distribution of the solution, or by

looking at the ground-truth data obtained by using other

sensors, such as IMU. In our experiments conducted in

real and diversified urban environments [6], [13], [14], we

found two characteristics of that distributions: the planar

component is by far the dominant component, meaning that

the non-planar components are very small; and the deviations

from the planar motion are essentially uncorrelated with the

planar components, because they are due mainly to steps,

humps, and road irregularities.

These characteristics make it reasonable to assume a

Gaussian distribution for the parameters β ,γ,φ ,δ :

p(β ,γ,φ ,δ |θ ,X ,X ′) = p(β ,γ,φ ,δ |θ) = N (µ ,Σ),10 (15)

where µ is the mean of the distribution and Σ its covariance

matrix. The mean µ is given by the planar component of the

motion:

µ = [β̂ , γ̂ , φ̂ , δ̂ ] = [0 , 0 ,
θ

2
, 0]. (16)

For the covariance matrix Σ, we assume that β , γ , φ , and δ
are uncorrelated11.

At this point, we can choose the individual variances

according to the maximum deviations from the planar and

circular motion constraint that we can tolerate. In our exper-

iments, we found that it was good to assume fixed values

of

σβ = σγ = σδ = 3deg.

If we accept a 99%-confidence, this means we can tolerate

deviations from the planar assumption up to 3σ , that is, up

to 9 degrees.

The uncertainty of φ , instead, depends on the value of θ .

We found in our experiments that the translation direction

φ never exceeded the ideal value θ/2 by more than θ/2.

Again, assuming that 3σφ = θ/2, we chose

σφ = θ/6.

Finally, we note that some of the considerations for urban

environments would fail should the vehicle be driving in

extreme conditions (inclined racetracks, off-road driving).

However, notice that the algorithm degrades gracefully, as

we could take care of those conditions by increasing the

variance parameters. More samples would be needed in the

next step, but, as long as the planar component of the motion

has some relevance to the actual motion, there still would

be an advantage in using this proposal distribution for the

search.

10Notice that we removed X and X ′ because the motion prior does not
depend on the data points.

11This assumption does not cause a decrease of the performance. By
contrary, it means that we are less certain about the motion and that,
consequently, we have more choice in selecting the good motion parameters.
Indeed, when variables are uncorrelated the Gaussian distribution will appear
less “stretched” than when variable are correlated.



V. THE COMPLETE ALGORITHM

A. Estimating the motion solution and the joint posterior

At this point, we have all the pieces ready to describe the

complete method, which is shown as Algorithm 1. We name

our algorithm MOBRAS (MOdel Based RAndom Sampling).

The basic idea is to use the efficient 1-point algorithm

(described in Section III) and the knowledge of the motion

prior (described in Section IV) to be able to generate guesses

of the complete motion by sampling. More in detail: one

samples a random correspondence pair. From the two points,

one computes θ k under the assumption of planar motion

using (13).12 Then, using the motion prior, one can obtain a

sample of the other parameters β (k),γ(k),φ (k),δ (k).

Given a guess for the motion, we can easily distinguish

inliers from outliers using the reprojection error (this was

summarized in footnote 1); this means, we can compute

deterministically the variables {α
(k)
i }n

i=1. Now, given the in-

liers, we can compute the refined complete motion (R(k), t(k))
very efficiently and accurately using least squares (for this,

we used the algorithm in [8]).

The distribution (R(k), t(k)) represents the answer to the

visual odometry problem (2). If only one answer is needed –

that is, we are looking for the maximum likelihood solution –

then one can choose the solution that has given more inliers.

Algorithm 1 MOBRAS

Repeat N times:

1) Sample from p(θ |X ,X ′):

a) Sample a random feature correspondence k.

b) Compute θ (k) under the assumption of planar

motion using (13).

2) Sample β (k),γ(k),φ (k),δ (k) from the motion prior

p(β ,γ,φ ,δ |θ).
3) Given a guess for the complete motion,

compute inliers and outliers: {α
(k)
i }n

i=1 =
compute-inliers(β (k),γ(k),φ (k),δ (k),X ,X ′)

4) Recompute the optimal motion (R(k), t(k)) using least-

squares on the inliers.

B. Remarks

We are sampling from a 5-dimensional distribution, thus

one might think intuitively that this would be a very inef-

ficient method as many samples would be needed to cover

a 5-dimensional Gaussian distribution. However, there are

several considerations to be made. Firstly, remember that

the assumption is that the motion is almost planar, and that

we compute exactly the planar component of the motion,

which serves as the mean of the distribution. Therefore, we

use sampling only to capture the unmodelled effects, while

effectively we solve analytically for the main component of

the motion. Thus the distribution is very compact.

12Notice that this is perfectly equivalent to sampling from the proposal
distribution. The advantage of doing so is that we avoid explicitly computing
the proposal distribution, thus making the algorithm even more efficient.

Moreover, notice that we do not need to cover the whole

distribution to capture all possible hypotheses: the samples

are still only guesses for the whole motion that are used

to choose the inliers. In fact, the final motion is computed

from the inliers, forgetting the motion guess. Thus, we only

need to sample as many guesses as necessary to be able to

capture the ambiguities in the choice of the inliers. In the

next section, we will show that using 100 samples is more

than sufficient to compute accurately the relative motion for

typical data in urban environments.

Finally, one might erroneously think that N iterations of

our algorithm cost as much as N iterations of RANSAC.

This is not true. In fact, in RANSAC motion hypotheses

are generated from minimal sets of data points, while in

our algorithm motion hypotheses are generated directly from

the proposal distribution, thus avoiding the expensive step

of computing them from the data points. In fact, notice

that for each candidate point set the 5-point RANSAC

returns up to ten motion solutions and this involves both

SVD and Groebner-basis decompositions. Another reason

our algorithm is faster than RANSAC is that the motion

hypotheses are not generated at random but from both a

proposal distribution and a motion prior which take into

account the dominant planar component of the motion. In the

standard 5-point RANSAC this prior information is not used

and therefore the number of iterations grows (exponentially)

with the number of outlier. Conversely, we can always use

the same number of samples regardless of the number of

outliers in the data.

VI. RESULTS

The method described in this paper was successfully tested

on an 15000-image dataset collected from a real vehicle

moving in a urban environment (Fig. 5).

To show the generality of application of our approach,

the images were taken with an omnidirectional camera. The

camera used was a SONY XCD-SX910 – image size 640×
480 pixels – equipped with a panoramic hyperbolic mirror

from EyeSee360.

For ground-truth data acquisition, the vehicle was

equipped with a GPS, an inertial measurement unit (IMU),

and wheel encoders. The position and orientation of the

vehicle was computed by means of an extended Kalman filter

as described in [18].

For feature extraction, we used the Harris detector [19].

The performance of the proposed algorithm is compared

to that of the 5-point RANSAC, which is considered the

standard in visual odometry [1]. The performance is evalu-

ated in terms of accuracy of the estimated motion, number

of samples, and execution time.

A. Motion accuracy

There are two different criteria to evaluate the motion ac-

curacy. The first one is by comparing the estimated trajectory

with ground-truth data. The second one is by comparing the

estimate of the relative motion between consecutive frames

with ground-truth data. With the first criterion, however, one



Fig. 5. Our vehicle equipped with an omnidirectional camera.

Fig. 6. Comparison between estimated trajectories. (black) Ground truth.
(red) MOBRAS. (cyan) 5-point RANSAC.

has the problem that the estimated trajectory is affected by

drift. The drift appears either as an effect of the motion

error accumulated over time or as the consequence of spu-

rious errors in the motion-estimation algorithm, which can

cause sudden deviations of the estimated trajectory. With the

second criterion, conversely, spurious errors can be detected

very easily.

B. Trajectory estimation

The comparison between the trajectories estimated by

the two algorithms is shown in figures 6 and 7 for two

different paths. We fixed the number of iterations of the 5-

point RANSAC to 1000. This number was calculated using

expression (1) assuming a 99% confidence and 50% of

outliers in the data. According to (1) the minimum number

of iteration of 5-point RANSAC should be 145. However, it

is common by multiply this factor by 10 to increase the

probability that the returned solution is the one with the

largest consensus. Conversely, we tested MOBRAS with both

100 and 1000 samples. The two trajectories shown in these

figures were both obtained with just 100 samples. As can be

observed, in both cases the path estimated by MOBRAS is

closer to the ground truth than that estimated by the 5-point

RANSAC. This result confirms what we discussed in the

preceding sections, that is, MOBRAS is expected to be more

accurate than RANSAC because it captures the dominant

component of the motion.

Fig. 7. Comparison between estimated trajectories. (black) Ground truth.
(red) MOBRAS. (cyan) 5-point RANSAC.

C. Orientation error

In Fig. 8, we compare the error in orientation between

the two algorithms with respect to the ground truth for the

trajectory in Fig. 7. The error is calculated for the roll, pitch,

and yaw angles. First of all, we can notice that the errors of

the two algorithms are very well correlated. Additionally,

they look very similar. However, notice that the yaw error

introduced by the 5-point RANSAC was larger than that

of MOBRAS in four occasions. After visual inspection, we

found that this was not due to a lower number of inliers

found by RANSAC, but rather to different inliers.

D. Execution time

Finally, we compared the execution time of the two

algorithms for the case of 100 samples (MOBRAS) and

100 iterations (5-point RANSAC).13 The distribution of the

execution times is shown in Fig. 9. It can be noticed that

MOBRAS is about 50 times faster than 5-point RANSAC.14

This result is perfectly in agreement with the discussion in

Section V-B.

VII. CONCLUSIONS

In this paper, we presented an algorithm (MOBRAS) to

compute both the relative motion of a single camera and

wrong data associations, which does not rely on a RANSAC-

scheme.

Visual odometry was posed as a maximum-likelihood

estimation problem. The algorithm operates by estimating a

proposal distribution that captures the main components of

the motion, and which is based on the vehicle non-holonomic

constraints. We showed that sampling from this proposal is

equivalent to computing the joint posterior probability of the

complete motion. Alternatively, if one is looking only for

the maximum-likelihood solution, then one can choose the

solution that has given more inliers.

We successfully tested the algorithm on a large image

dataset collected from a car while driving in a urban en-

vironment. The results of MOBRAS were compared against

13We used the implementation of the 5-point algorithm available from
the authors’ webpage [20].

14The execution time of both algorithms scales linearly with the number
of samples/iterations.



Fig. 8. Comparison between estimated orientations. (blue) MOBRAS. (red)
5-point RANSAC. The arrows indicate spots where the error of the 5-point
RANSAC was larger than that of MOBRAS. This happened, however, only
four times over 1000 frames.

those of the well known 5-point RANSAC using ground-

truth data. We showed that MOBRAS is significantly faster

(by a factor of 50) than the 5-point RANSAC. Additionally,

we showed that the returned solution is more accurate in

that it favors the underlying motion model of the vehicle,

thus overcoming the typical limitations of RANSAC.

Finally, the proposed algorithm provides the likelihood of

the motion estimate, which can be very useful in all those

applications where a probability distribution of the position

of the vehicle is required (e.g., SLAM).

Fig. 9. Comparison between execution times.
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