
Detecting Unusual Activity in Video

Hua Zhong
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

zhonghh@cs.cmu.edu

Jianbo Shi Mirkó Visontai
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

{jshi,mirko}@cis.upenn.edu

Abstract

We present an unsupervised technique for detecting un-
usual activity in a large video set using many simple fea-
tures. No complex activity models and no supervised feature
selections are used. We divide the video into equal length
segments and classify the extracted features into prototypes,
from which a prototype–segment co-occurrence matrix is
computed. Motivated by a similar problem in document-
keyword analysis, we seek a correspondence relationship
between prototypes and video segments which satisfies the
transitive closure constraint. We show that an important
sub-family of correspondence functions can be reduced to
co-embedding prototypes and segments to N-D Euclidean
space. We prove that an efficient, globally optimal algorithm
exists for the co-embedding problem. Experiments on vari-
ous real-life videos have validated our approach.

1. Introduction

Imagine you are given a long video, possibly thousands
of hours in duration, depicting every day scenes like those
shown in figure 1. You are asked to analyze the video to find
unusual events. In surveillance applications unusual events
are those that should be reported for further examinations.
What makes unusual events hard to detect? Unusual events
are rare, difficult to describe, hard to predict and can be sub-
tle. However, given a large number of observations it is rel-
atively easy to verify if they are indeed unusual.

1.1. Model-based approach

This “hard to describe” but “easy to verify” property of
unusual events suggests an intuitive two-step solution for
their detection. In the first step, one extracts image features
from the video, typically achieved by detecting and track-
ing moving objects [14]. From tracked objects trajectory,

(a) Nursing home (b) Road (c) Poker game

Figure 1: Snapshots from the videos used for experiments.

speed, and possibly the shape descriptor of the moving ob-
jects can be computed [6]. In the second step the extracted
features are used to develop models for the “normal” ac-
tivities, either by hand or by applying supervised machine
learning techniques [7]. A common choice is to use Hidden
Markov Models [1, 9, 10] or other graphical models [11]
which quantize image features into a set of discrete states
and model how states change in time. In order to detect un-
usual events the video is matched against a set of normal
models and segments which do not fit the models is consid-
ered unusual.

This model-based approach can be quite effective in sit-
uations where “normal” activity is well-defined and con-
strained. However in a typical real-life video, like those
used in our experiments, the number of different “normal”
activity types observed can easily surpass the number of un-
usual types. Hence, defining and modeling what is the “nor-
mal” activity in an unconstrained environment can be more
difficult than defining what is unusual. If the goal is to de-
tect what unusual events in a long video, the model-based
approach is often over-kill.

1.2. Unsupervised approach

We propose a method to utilize the “hard to describe” but
“easy to verify” property of unusual events without build-
ing explicit models of normal events. One can compare each
event with all other events observed to determine how many
similar events exist. If an event is normal, there should be
many similar events in this large data set. If there are no sim-
ilar events we consider this unusual: although the event is

unknown, it is different from the others. Thus, detecting un-
usual events in a large data set does not require modeling
normal events, but rather the ability to compare two events
and measure their similarity.

1.3. Feature selection

How do we select the right feature set for event compar-
ison? We must make a compromise between two contradic-
tory desires. On one hand we would like features to be as
descriptive as possible: measuring the kinematics and dy-
namics of the object’s movements is very useful for event
comparison. On the other hand, we also want feature extrac-
tion to be extremely robust across many hours of video. De-
scriptive features are hard to extract. Object detection and
tracking often fails in an unconstrained environment. Basic
image features based on spatial/motion histogram of objects
are simple and reliable to compute [2, 5, 15]. The only draw-
back of these methods is that the (important) feature sig-
nal might be obscured by noise. Event similarity computed
naively could be overestimated, making unusual events ap-
pear similar to common ones. This over-dependence on the
feature set has been a general weakness for most unsuper-
vised approaches [13].

The situation is vastly improved if we can extract the im-
portant feature signal from a large set of simple features.
This problem resembles the problem of unusual event de-
tection itself as important signals are “hard to detect” but
“easy to verify”. In fact, unusual event detection and impor-
tant feature selection are two interlocked problems. We pro-
pose a correspondence function to measure such mutual in-
terdependence thereby detecting unusual events and impor-
tant features simultaneously. We show that for an important
subfamily of correspondence functions an efficient compu-
tational solution exists via co-embedding.

The paper is organized as follows: in Section 2 we show
our video representation. In Section 3 and 4 we describe
our algorithm for unusual event detection. In section 5 we
present our experimental results, and we conclude our pa-
per in Section 6.

2. Video Representation

Our overall goal is to extract simple and reliable features
which are descriptive, i.e. can be used by an unsupervised
algorithm to discover the important image features in a large
video set in order to detect unusual events.

2.1. Video Segmentation

Given a video V, we first slice it into N short segments:
V = (v1, v2, ..., vN). Ideally, each segment vj would con-
tain a single activity event. For simplicity, we slice the video

into fixed time duration (4 seconds) with overlapping time
window. The segmentation is not perfect, but the video seg-
ments typically contain enough information for determining
the activity type, e.g. in the nursing home video, in 4 sec-
onds people can take a few steps or pick up an object.

2.2. Image features

For each image frame in the video we extract ob-
jects of interest, typically moving objects. We make no
attempt to track objects. The motion information is com-
puted directly via spatiotemporal filtering of the im-
ageframes: It(x, y, t) = I(x, y, t) ∗ Gt ∗ Gx,y, where

Gt = te−(t
σt

)2 is the temporal Gaussian derivative fil-

ter and Gx,y = e
−((x

σx
)2+(y

σy
)2) is the spatial smoothing fil-

ter. This convolution is linearly separable in space and time
and is fast to compute. To detect moving objects, we thresh-
old the magnitude of the motion filter output to obtain a bi-
nary moving object map: M(x, y, t) = ||It(x, y, t)||2 > a.
The process is demonstrated in figure 2(a)-(b).

(a) (b) (c)

Figure 2: Feature extraction from video frames. (a) original
video frame from the card game sequence. (b) binary map
of objects (c) spatial histogram of (b).

The image feature we use is the spatial histogram
of the detected objects. Let Ht(i, j) be an m × m spa-
tial histogram, with m typically equal to 10. Ht(i, j) =
∑

x,y M(x, y, t) · δ(bx
i ≤ x < bx

i+1) · δ(by
j ≤ y < by

j+1),
where bx

i , by
j (i, j = 1 . . . m) are the boundaries of the spa-

tial bins. The spatial histograms, shown in 2(c), indicate
the rough area of object movement. Similarly, we can com-
pute a motion and color/texture histogram for the de-
tected object using the spatiotemporal filter output. As we
will see, these simple spatial histograms are sufficient to de-
tect many complex activities.

2.3. Prototype features

The feature space of m × m motion histograms is still
too large. To detect potentially important feature signals we
apply vector quantization to the histogram feature vectors
classifying them into a dictionary of K prototype features,
P = {p1, . . . , pK} using K-means (figure 3).

Note that using this discrete quantization, it is possible
that two image frames with similar features will have differ-

Figure 3: Create prototypes from set of features

ent prototype labels. In this case, the two prototypes must
also be similar. This problem is resolved, as we will see
later, by keeping track of similarity among the prototypes.

2.4. Video–prototype co-occurrence

A video segment vj can be represented by the occurrence
of prototype features in that video segment. We define a co-
occurrence matrix C ∈ RK×N between the video segments
and prototype features in the following way: C(i, j) = 1
iff segment vj contains and image frame whose image fea-
ture is classified as prototype pi. Figure 4 shows an exam-
ple for the roadway sequence. C contains all necessary in-
formation about what happened in the video. Each row i
of C reveals which video segment a prototype pi occurred
in, and each column j of C indicates which prototype fea-
tures occurred in the video segment vj .

Figure 4: (left) Video-prototype co-occurrence matrix C
contains all necessary video information. (right) Reorgani-
zation of rows and columns of C reveals the underlying cor-
respondence between thevideo segments and prototype fea-
tures, making it easy tofind both unusual events and impor-
tant features.

3. Algorithm

If we think of the video segments as documents, and pro-
totype features as keywords we observe that similar prob-
lems arise in the context of document-keyword clustering
[8, 4]. To illustrate the algorithm we propose, consider the
following example. We took 20 departmental emails and 6
research emails between the authors as our document set,
and words which occured more then once (across the 26
emails) as our keyword set. In the example we want to find

5 10 15 20 25

20

40

60

80

100

120

"events"
like
"sequence"
may
computer
how
if
data
after
day
clust
"define"
complete
friday
thinking
just
so
people
know
us
will
"similarity"
are
using
"video"
i

5 10 15 20 25

20

40

60

80

100

120"events"

like

"sequence"

may

computerhow

if

data

after

day

clust

"define"

complete

friday

thinking

just

so

people

know

us

will

"similarity"

are

using

"video"

i

(a) (b)
0 50 100

(c)

5 10 15 20 25

5

10

15

20

25
5 10 15 20 25

5

10

15

20

25
5 10 15 20 25

5

10

15

20

25

(d) (e) (f)

Figure 5: (a) Email-word co-occurrence matrix. (b) A reor-
ganized version of (a), where distinctive keywords related
to research emails are quoted. (c) Word occurrence count
for corresponding words in (b). (d)-(f) inferred email-email
similarity matrices: (d) ideal case, (e) without feature selec-
tion, (f) with feature selection.

the cluster of the documents (such as the 6 emails) based on
the co-occurrence (figure 5(a)) information. In the analo-
gous video setting we seek the clusters of similar video seg-
ments. In figure 5(b) we show that there is an optimal re-
ordering of the keywords and documents (reshuffling rows
and columns of C) such that the clustering of documents
and keywords can be readily inferred from the reshuffled
version of co-occurrance matrix. We can see that the top 20
words such as “sequence” or “define” are exclusively corre-
lated with the first 6 emails, which are the research emails.
To spot the 6 research emails, it is sufficient to check for
these 20 keywords, which do not occur in other emails. Ex-
amining the rest of matrix C, we see that majority of the
words do not have exclusive correlation with any particu-
lar group of emails. These include words such as “will” or
“if”, which occur with almost every email, and words “data”
and “people”, which occur randomly.

To cluster documents it is important to determine the in-
formative keywords, which might be only a small subset of
the total keywords. Such feature selection is vital in cluster-
ing the video segments as well.

3.1. How to extract document clusters from co-
occurrance matrix C?

To contrast our algorithm let us compare it with La-
tent Semantic Indexing (LSI, [3]), a commonly used ap-
proach in Natural Language Processing. LSI works
in two steps. First it computes the singular value de-
composition of the document–keyword co-occurrance
matrix: CK×N = UK×cΣc×cV

T
c×N . The singular vec-

tors V defines a new feature space where documents
can be clustered using similarity defined by V V T . Sim-
ilarly, the keywords can be clustered using UUT . Note
that the SVD of C is equivalent to the eigendecomposi-
tion CT C = V Σ2V T . Therefore the clustering informa-
tion used is contained in CT C. Expanding out the terms,
we see that (CT C)(i, j) =

∑K
k=1 C(k, i)C(k, j) de-

fines a document–document similarity measure by count-
ing the number of keywords occuring in both documents i
and j. As we have seen in the email example using the com-
plete set of keywords as a basis for similarity measure (5(e))
can obscure the true similarity (5(d)) provided by the infor-
mative keywords.

A remedy to this problem is to try to identify non-
informative keywords, e.g computing the keyword occur-
rance frequency count. This is insufficient. As we can see
in figure 5(c) the non-informative keywords can have both
high frequency (common keywords) and low frequency
(random keywords).

3.2. Bipartite graph coclustering

Clustering based on similarity information in CT C can
be though of as the following bipartite graph coclustering.
This concept has been explored in the document–keyword
analysis by Dhillon [4] and in bioinformatics by Kluger
et al. [8]. The document and keywords represent the two
sets of nodes in the bipartite graph, and the co-occurring
documents and keywords are connected by graph edges.

The graph has an edge weight matrix

(

0 C
CT 0

)

. These

methods are based on finding the normalized cut in this
graph. Intuitively, this is the right thing to do, we want to se-
lect a set of keyword for grouping a particular set of docu-
ments. Furthermore, this grouping gives the correspondence
between the informative keywords and relevant documents.
However, graphcuts on bipartite graphs amounts to separate
clustering on documents and on keywords, given by the fact

that

(

0 C
CT 0

)

and

(

CCT 0
0 CT C

)

have the same

eigenvectors. Thus, finding the optimal partition on the bi-
partite graph contradicts the concepts of coclustering and
simply results in clustering the documents on the informa-
tion given by CT C.

3.3. Document–keyword correspondence

Our goal is to cluster documents by identifying exclu-
sive correlations between keywords and documents. We can
think of this problem as graph editing. Edges incident on
common and random keywords must be removed, otherwise
the entire graph would be densely connected. Edges inci-
dent on informative keywords should be preserved, other-
wise the graph would be sparsely connected. A brute force
strategy would be to search through all possible addition
and deletion of edges such that the resulting graph parti-
tioning is neither too coarse nor too fine.

To make this task precise we define a correspon-
dence function CP (pi, vj) ∈ [0, 1] between a prototype
feature pi and video segment vj with following prop-
erties: CP (pi, vj) should be consistent through tran-
sitivity, i.e. CP (pi, vj) should be high if there is a
chain of correspondences linking them indirectly. We
can express this consistency constraint using the no-
tion of transitive closure. To allow continuous values in
CP (pi, vj), we introduce α-transitive-closure: ∀i1,i2,j1,j2

and ∀δ∈[0,1][CP (pi1 , vj1), CP (pi1 , vj2), CP (pi2 , vj1) >
1 − δ] ⇒ [CP (pi2 , vj2) > 1 − αδ]. Transitive closure as-
sures that no random or common features are in any corre-
spondence relationship.

In addition, CP (pi, vj) should be close to the co-
occurrence C(pi, vj), i.e. the graph editing should be
minimal. We maximize

EC(CP) =
∑

pi∈P,vj∈V

C(pi, vj)CP (pi, vj) (1)

under certain constraints that prevent the trivial solution.

3.4. Correspondence via co-embedding prototypes
and video segments

Computing a correspondence relationship satisfying
transitive-closure is in general a difficult problem. There-
fore we restrict our search to an important sub-family of
functions of CP (pi, vj), for which we can compute it ef-
ficiently. Let x : V ∪ P → RN denote the co-embedding
of the prototypes and video segments. The correspon-
dence function CE(pi, vj) = 1 − (x(pi) − x(vj))

2 sat-
isfies α-transitive closure with α = 9. By restricting our
search for correspondence to CE, we can rewrite the opti-
mization problem in (1):

maxEC(CE) =
∑

pi,vj
C(pi, vj)CE(pi, vj)⇔

min E
′

C(x) =

P

pi,vj
C(pi,vj)(x(pi)−x(vj))

2

σ2
x

, (2)

where σ2
x is the standard deviation of vector x (it removes

an arbitrary scaling factor in the embedding and also pre-
vents the trivial solution of x = 0).

The co-embedding optimization problem in (2) can be
visualized as finding a placement (embedding) vector x for
each prototype and video segment in a low dimensional
space. We can imagine the co-occurrence relationships as
springs that pull together (or apart) prototypes and video
segments, the nodes of figure 6(a), resulting in the co-
occurring elements being maximally aligned, as shown in
figure 6(b). Maximal alignment in this case means that cor-
responding nodes are placed close to each other (on x axis).
In order to arrange the prototypes in the N-D space, we
need to know the position of the video segments, and vice
versa. Note that the chicken–egg nature of our unusual event
detection is inherent in both the correspondence and the em-
bedding problem. Luckily, we can break this chicken-egg
deadlock in an optimal and computationally efficient way.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

e
v

e
n

ts
li

k
e

s
e

q
u

e
n

c
e

m
a

y
c

o
m

p
u

te
r

h
o

w
if d

a
ta

a
ft

e
r

d
a

y
c

lu
s

t
d

e
fi

n
e

c
o

m
p

le
te

fr
id

a
y

th
in

k
in

g
ju

s
t

s
o

p
e

o
p

le
k

n
o

w
u

s
w

il
l

s
im

il
a

ri
ty

a
re

u
s

in
g

v
id

e
o

i

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

s
e

q
u

e
n

c
e

s
im

il
a

ri
ty

e
v

e
n

ts
d

e
fi

n
e

v
id

e
o

th
in

k
in

g
p

e
o

p
le

a
ft

e
r

u
s

in
g

d
a

ta
c

lu
s

t
k

n
o

w
fr

id
a

y
i w

il
l

ju
s

t
c

o
m

p
le

te
if h

o
w

c
o

m
p

u
te

r
s

o
li

k
e

a
re

d
a

y
m

a
y

u
s

(a) (b)

Figure 6: Co-embedding of email-word example. The top
row represents emails, the bottom words, the edges are the
co-occurrence between them. (a) random embedding, (b)
optimal co-embedding using our method. The springs pull
corresponding elements in alignment.

To compute the optimal co-embedding, we define a
weighted graph G = (V , E). We take prototypes and video
segments as nodes, V = {v1, ..., vN} ∪ {p1, ..., pK}. The
edges of this graph consist of edges between prototypes and
video segments which represent the co-occuring relation-
ship (C), and edges between the prototype nodes, which
represent the similarity Sp ∈ RK×K between the proto-
types: E = {(pi, vj)|C(i, j) 6= 0} ∪ {(pi, pj)}. The edge
weight matrix is defined as:

W =

[

I CT

C βSp

]

∈ R|V|×|V| (3)

where β is a weighting factor. When β = 0, minimization
of (2) is equivalent to minimization of

EW (x) =

∑

(i,j)∈E W (i, j)(x(i) − x(j))2

σ2
x

(4)

Expanding the numerator of (4) we get 2xT (D − W)x,
where D ∈ R|V|×|V| is a diagonal matrix with D(i, i) =
∑

j W (i, j). Using the fact that

σ2
x =

∑

i∈V

x2(i)P (i) − (
∑

i∈V

x(i)P (i))2 (5)

where P (i) is an estimate of the prior occurrence likelihood
of each prototype or video segment, which can be estimated
by their occurrance frequency: P (i) = 1

γ
D(i, i), with γ =

D1. Centering the embedding around zero (i.e. xT D1 = 0),
we get σ2

x = 1
γ
xT Dx.

Putting all these together, we can rewrite (4) as

EW (x) = 2γ
xT (D − W)x

xT Dx
(6)

The global energy minimum of this function is achieved by
the eigenvector corresponding to the second smallest eigen-
value of

(D − W)x = λDx (7)

Note that the first N elements of vector x contain the co-
ordinates of the video segment nodes, and the next K ele-
ments contain the coordinates of the prototype features. In-
cidentally, this is the same eigenvector used in a different
context of image segmentation (Normalized Cuts, [12]).

3.5. Importance of prototype–prototype similarity

When β 6= 0, the Sp matrix gives us additional cues on
how the prototypes are related to each other, thereby provid-
ing information on how the video segments should be clus-
tered. In the email example, we used the word-length as cue
for keyword similarity and with this cue we are able to pick
up the right clustering of the emails (figure 5(f)). Further-
more, the Sp also helps to alleviate the sensitivity to over-
clustering of features into prototypes, by strengthening the
correspondence between the segments which have similar
but not necessarily identical prototypes.

3.6. Unusual event detection algorithm

Unusual events are the video segments that have corre-
spondences to distinctive important features, and vice versa.
Using the co-embedding coordinate x computed in (7), we
define inferred similarity among the video segments vi, vj

as: Sx(vi, vj) = e−||x(vi)−x(vj)||2 , as seen in figure 5(f). In
the co-embedding space, detecting unusual video segments
is done by finding spatially isolated clusters. We choose the
following simple solution for this:

• We apply K-means algorithm on the embedding coor-
dinates x to cluster video segments into disjoint sets
{V C1, . . . , V Cc},

• and we compute inter-cluster similarity on
SV C(V Ci, V Cj) =

∑

vi∈V Ci,vj∈V Cj
Sx(vi, vj).

• The clusters V Ck, with small total inter-cluster simi-
larity value,

∑

i SV C(V Ci, V Ck) < θ, are considered
as unusual events.

4. Algorithm summary

The outline of our algorithm is the following:
• for each frame t, detect moving object and extract mo-
tion and color/texture histogram: Ht ∈ Rm×m.
• quantize every histogram Ht into K prototypes: P =
{p1, . . . , pK}
• slice the video into T second long segments: V =
{v1, . . . , vN}
• compute the co-occurrence matrix C(i, j) ∈ RK×N

between each prototype feature pi and video segment vj

• compute pairwise similarity between all proto-
types using chi-square difference: Sp(pi, pj) =
χ2(H(pi), H(pj))
• construct graphG = (V , E) with associated weight ma-

trix W =

[

IN×N CT

C βSp

]

∈ R(N+K)×(N+K).

• solve for the smallest eigenvectors of (D − W)x =
λDx, the first N rows of the eigenvectors are the coor-
dinates for vjs in the embedding space, and the follow-
ing K rows are the coordinates for pis in the embedding
space.
• in the co-embedding space compute the inferred simi-
larity. Identify isolated clusters of vjs as unusual events.

4.1. Computational running time

The object detection is done by a spatiotemporal separa-
ble convolution (section 2). Hence the cost is: O(nfr ·npix),
where nfr, npix are the number of frames in the video, the
number of pixels in an image frame. The complexity of the
K-means algorithm is O(nfr ·K ·m2), where K, m, ik are
respectively the number of prototype vectors, the size of the
histograms (m × m) and the number of iterations. Build-
ing the co-occurrance and the similarity matrix has a cost
of O(nfr + d · K2). Finally finding the second eigenvec-
tor of a symmetrical sparse n×n matrix takes O(n

3

2) time,
where n = N + K. For example, the running times for the
20 hours road video are: 8 hours 40 minutes (object detec-
tion), 1 hours 36 minutes (K-means) and 3 seconds (eigen-
solver) on a Pentium IV 2.4GHz.

5. Experiments

In order to demonstrate the algorithm we conducted the
following tests on various test data. Table 1 gives a short
summary of the different tests. In the following experiments
for vector quantization we used K = 500 prototypes, for
segment length T = 4s and β is defined as 1/M where M
is the biggest value in Sp.

The first testset is a video shot in a dinning room of a
hospital. After removing the motionless frames, we still had
169 880 frames. We tested our embedding algorithm to see

Title Duration Type of test

Road 19h50min surveillance
Poker game 30min cheating detection

Hospital 12h patient monitoring
Webcam 3h analyzing the crowd

Table 1: The test videos used in our experiments

if it provides a good separation between different events. We
observed that the unusual activities are embedded far from
the usual ones, as can be seen in figure 7.

To quantify the “goodness” of the embedding provided
in our previous experiment we used another video from a
surveillance camera overlooking a road adjacent to a fenced
facility. We have tested our system on a continuous video
from 16:32pm till 12:22pm the next day, containing both
day time and night time videos (in total 1 063 802 image
frames). We applied our embedding algorithm and classi-
fied the embedded segments into two groups, i.e. usual and
unusual. To measure the performance we hand-labeled all
the sequences (which contained motion) if they were un-
usual or not and compared our results to the ground truth.
The promising results of this experiment are shown in fig-
ure 8. Though, this surveillance sequence is somewhat lim-
ited in the type of actions it contains (particularly it has just
23 unusual sequences), we would like to point out that even
without motion features, i.e. only with spatial histograms,
we were able to detect events such as cars making U-turns,
backing off, and people walking on and off the road.

Next experiment was aimed to measure the performance
in a more complex setting: we recorded a 30 minutes long
poker game sequence, where two players were asked to cre-
atively cheat. The video contains 17 902 frames, and ev-
ery 4 second hand-labelled with one of the 27 activity la-
bels. There is a wide variety of natural actions, in addition
to playing cards and cheating, players were drinking water,
talking, hand gesturing, scratching. Many of the cheatings
are among detected unusual events. To demonstrate we can
detect a specific cheating type, we find those unusual events
corresponding to a prototype feature chosen by us. The re-
sults of detecting two cheating types are shown in figure 9.

To show that the algorithm can be used for cat-
egorizing usual events as well we took 3 hours
long video from Berkeley Sproul Plaza webcam
(http://www.berkeley.edu/webcams/sproul.html), which
contained 28 208 frames. The embedding of video seg-
ments, and event category representatives are shown in
figure 10 (left). The automatic categorization of events po-
tentially can allow us to develop a statistical model of
activities, in an unsupervised fashion.

A B C D
E

Figure 7: Four unusual activities being discovered, corresponding to four remote clusters in the embedding space: A: a patent
eating alone at the near table, B: a man on wheel chair slowing goes in and out of the room while everyone else is eating, C:
a patient shaking, D: a nurse feeding a patient one-on-one with no one around. E: the 2-D embedding of the video segments.

(A) (B) (C) (D) (E)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True positive rate (recall)

P
re

ci
si

on

Precision−Recall curve

(F)

Figure 8: Results for 20 hours long road surveillance video. Usual events consist of cars moving along the road. Correctly
detected unusual events include: (A) cars pulling off the road, (B) cars stopping and backing up, (C) car making U-turns,
and people walking on the road. Undetected unusual events include: (D) cars stopping on the far end, due to coarseness
of spatial feature. False-positives include mainly birds flying by, and direct sunlight into camera (E). the Precision-Recall
curve of the results is shown in (F). The star indicates the operating condition achieving the precision/false positive and the
precision/recall trade-off shown in (A)-(E).

A1 B1 C1 D1 E1

A2 B2 C2 D2 E2

F1

F2

Figure 9: “Elbow” cheating detection. A1,B1,C1: examples of detected cheatings, “near player” reaches to his left elbow
to hide a card. D1: non-detected cheating, “near player” reaching to his elbow but doesn’t hide anything; E1: false positives,
the “near player” makes different movement with his hand. “Under” cheating detection. A2,B2,C2: example of detected
events, two players exchange cards under the table; D2: non-detected cheatings, the exchange is mostly occluded. E2: false
positives - the near player is drinking, due to camera angle his hand is in similar position. F1, F2: ROC curves of the two
events: The red stars indicate the operating condition for results shown here.

B C

 D

EF

A

82%

76% 61%

78%

64%
61%

5%

5%

7%

6%

8%

6%

11%

5%

20%

15%

18%

13%

9%

9%
17%

4%

Figure 10: (left) The embedding of the webcam video show videos are best organized by two independent event types in
the scene. The horizontal axis (A-D) represents crowd movements along the building: many people walking (A), and few
or no people walking (D). In the vertical axis (B-F) events of walking in/out of Sproul Hall are detected, and are organized
according to which orientation people entered/left: (B) along the bottom of image frame; (F) diagonally from the lower left
corner. (E) and (C) are compound events: (E) is combination of event (F) and (D), (C) is combination of (B) and (D). (right)
Given the classification of the video into distinct events, a transition model is estimated.

6. Conclusion

We have developed an unsupervised technique for de-
tecting unusual events in a large video set. This method can
utilize extremely simple features by automatically select-
ing the important feature signal. The computational solution
is efficient and stable. We have conducted large scale tests
with ground truth comparison on a variety of sequences,
processing over a million of video frames.

Acknowledgements

We would like to thank Takeo Kanade, Alyosha Efros for
helpful suggestions.

References

[1] M. Brand, N. Oliver, and A. Pentland. Coupled hidden
markov models for complex action recognition. In IEEE
Conf. on Computer Vision and Pattern Recognition, 1997.

[2] J. W. Davis and A. F. Bobick. The representation and recog-
nition of action using temporal templates. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
928–934, 1997.

[3] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas,
and R. A. Harshman. Indexing by latent semantic analysis.
J. of Society for Information Science, 41(6):391–407, 1990.

[4] I. S. Dhillon. Co-clustering documents and words using bi-
partite spectral graph partitioning. In ACM SIGKDD Inter-
national Conference on Knowledge discovery and data min-
ing, pages 269–274, San Francisco, August 2001.

[5] A. A. Efros, A. C. Berg, G. Mori, and J. Malik. Recognizing
action at a distance. In International Conference on Com-
puter Vision, Nice, October 2003.

[6] I. Haritaoglu, D. Harwood, and L. S. Davis. W4: Who?
when? where? what? a real time system for detecting and
tracking people. In International Conference on Face and
Gesture Recognition, Nara, April 1998.

[7] N. Johnson and D. Hogg. Learning the distribution of object
trajectories for event recognition. Image and Vision Comput-
ing, 14(8):609–615, August 1996.

[8] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein. Spectral
biclustering of microarray data: Coclustering genes and con-
ditions. Genome Research, 13(4):703–716, April 2003.

[9] G. Medioni, I. Cohen, F. Brémond, S. Hongeng, and
R. Nevatia. Event detection and analysis from video streams.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 23(8):873–889, 2001.

[10] D. J. Moore, I. A. Essa, and I. Monson H. Hayes. Exploit-
ing human actions and object context for recognition tasks.
In International Conference on Computer Vision, volume 1,
pages 80–86, Corfu, September 1999.

[11] M. R. Naphade and T. S. Huang. A probabilistic framework
for semantic indexing and retrieval in video. In IEEE Inter-
national Conference on Multimedia and Expo, 2000.

[12] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905, August 2000.

[13] C. Stauffer and E. Grimson. Learning patterns of activity us-
ing real-time tracking. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 22(8):747–757, August 2000.

[14] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-time tracking of the human body. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(7):780–785, July 1997.

[15] L. Zelnik-Manor and M. Irani. Event-based video analysis.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, December 2001.

