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ABSTRACT 

Scene understanding is one of the most essential functionalities of human vision and also a 
major goal of computer vision research. Object recognition and object parsing are two 
critical components of scene understanding and their progresses largely determine the level 
of it. Due to the rapid development and popularization of cameras, a wide range of 
applications such as image and video search, intelligent human-computer interaction, 
surveillance, medical image analysis, etc. demand more and more from object recognition 
and parsing. Though many aspects of scene understanding in computer vision have 
significantly advanced in the past several decades, the recognizing and parsing of complex 
objects in real scenes still remain largely unsolved. The challenges are the great 
within-category variations of objects and the complexity of the environment due to occlusion, 
viewpoint, illumination, background clutter, etc. By absorbing essentials from the latest 
progresses in multiple disciplines including neuroscience, psychophysics, machine learning 
and computer vision, this thesis seeks to advance the research on object recognition in 
human vision by psychophysical experiments, modeling and learning deep and layered 
recognition in computer vision, and robust object parsing with saliency-based search. 
 
1. Currently object recognition is driven by top-down tasks, which can output different 
semantics such as the category labels and the within-category attributes or states, according 
to the predefined semantic level of the output space. However, such a task-dependent 
recognition strategy hasn’t taken into account the data itself and the properties of object 
recognition in human vision, therefore the results of it are either not deep enough or 
overdetermined, but not the satisfying ones adaptive to the input data. So can we break the 
rules to properly interpret the input data by outputting deep and layered recognition results 
just like what seems to be done in human vision? To support such a proposal, we collected a 
gallery of 3132 images with 8567 instances of two common and representative objects: car 
and pedestrian, and designed a group of strict psychophysical experiments to test the deep 
and layered recognition in human vision according to the recent progress on human rapid 
object recognition in psychophysics. By doing so, we built a new object recognition dataset 
representing the deep and layered human recognition property with annotations from as 
many as 20 subjects, which is named “IAIR-CarPed”. The annotated results of IAIR-CarPed 
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show that the human rapid recognition of objects without specific visual difficulties is 
semantically layered, which reveals the fact that the object recognition results of humans 
depend on the input stimuli. This dataset and the human recognition results can serve as the 
first benchmark for deep and layered object recognition, and the evaluation criterion based 
on the human confusions between different semantics can well represent the performance of 
a computer vision algorithm compared to the human recognition results. Unlike other 
datasets, we annotated the visual difficulties separately so that it can be used to analyze the 
robustness of the recognition system in details and compare different systems. 
 
2. It is a new challenge to mimic human deep and layered recognition in computers, as the 
output is structured and the evaluation criterion is special. Based on the latest progress in 
machine learning on structured prediction, a generic structured prediction model has been 
built for solving the problem of Deep and Layered Recognition (DLR), along with the 
analysis of several possible loss functions and feature representation strategies. To efficiently 
optimize such a structured learning problem and make it scalable to large amounts of high 
dimensional visual data, we present the first structured online learning algorithm (SOnline). 
Such an algorithm works well on the concrete deep and layered object recognition problem 
in the IAIR-CarPed dataset. Comparative results show the superiority of the proposed model 
on both deep and layered object classification and object detection compared to traditional 
multiclass recognition and binary recognition models. The experimental results demonstrate 
that DLR not only generates rich and adaptive outputs, but also improves the performance on 
traditional object categorization. 
 
3. Object parsing aims at extracting the object parts and labeling their states. Existing 
approaches can be grouped into two categories: one is top-down template matching, and the 
other is sequential bottom-up perceptual grouping and top-down template matching. These 
two either ignore the intrinsic structure of the data or limit itself to the results generated by 
bottom-up grouping. Instead, we propose a novel approach called saliency-based 
opportunistic search which effectively fuses the bottom-up grouping and top-down matching. 
Such an approach optimizes both the grouping loss and the matching loss. It encourages 
more and better object part matching results while at the same time constrains their positions 
and saliency; therefore it can avoid false matching and explore bottom-up grouping gradually. 
Experiments on challenging statue faces demonstrate the robustness of our approach to 
partial occlusions, inner clutter and data defacement, and show that it generates significantly 
better results than the currently dominant approach using much fewer exemplars. 
 
KEY WORDS:  Scene understanding; Object recognition; Loss function; Object parsing; Heuristic search 
TYPE OF DISSERTATION: Application Fundamentals 
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1. Introduction

CHAPTER 1

Introduction

Scene understanding is a major goal of computer vision, while object recognition and

object parsing are two critical and fundamental problems in scene understanding 1©.

This chapter introduces the research background of object recognition and parsing, and

presents the research content and contributions of this thesis, followed by an overview

of its structure.

1.1 Research Background

“Vision is the process of discovering from images what is presented in the world, and

where it is. ” said by David Marr in his book [1]. The keywords of “what” and

“where” show that the ultimate goal of vision is to understand the content within the

scene, though the discovering process may include many other low-level and middle-

level visual computations such as sensing, filtering, grouping and abstraction. Due to

its great importance and fascination, scene understanding is always of great interest to

vision researchers including those from brain and neural science, psychology, cognitive

science and computer science. Generally speaking, scene understanding involves both

recognition (e.g. categorization) and parsing (into meaningful regions), typically at

the scene level and the object level. Object recognition and parsing is of fundamental

importance, because it is not only an important component of scene understanding, but

also the basis of the scene-level recognition and parsing. Therefore, this thesis focuses

on promoting the research on it.

Object recognition and parsing has a long history of at least 50 years [2], and it

has been greatly developed in the last two decades due to the rapid advances in both

academics and industry. In the academic perspective, as shown in Figure 1-1, new pro-

gresses in three different research areas have significantly influenced the development

of the research on object recognition and parsing. In neuroscience and psychophysics,

more and more publications are on or closely related to human vision or primate vision

on object recognition, among which the work done by Tomaso Poggio’s team in MIT on

a hierarchical computational model for feedforward rapid recognition [3–5] has the most

significant influence, which is a successful case on modeling new findings in neuroscience

and psychophysics for machine recognition. In machine learning, numerous learning
1©The “object recognition” mentioned in this thesis is a general term which may refer to one or more specific

visual object recognition problems including object presence vs. absence classification, object localization,

object detection, object categorization, within-category object classification and object identification, while

“object parsing” means to extract the semantic parts of the objects and label them.

1
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Figure 1-1 The progress of object recognition and parsing mainly dues to the advances in three
different disciplines. The work presented in this thesis absorbs essentials from the recent advances
in all these three disciplines and tries to promote the research in all these three directions.

algorithms have been used for object recognition, including generative methods such

as Bayesian approaches, graphical models and many manifold learning algorithms, and

discriminative methods such as decision trees, boosting and support vector machines

(SVMs). Recently, the progress in structured prediction and inference [6] provides new

tools for object recognition with complex output structures, e.g. localization [7]. In

computer vision, a lot of powerful visual features (such as SIFT (Scale Invariant Fea-

ture Transform) [8], HOG (Histogram of Gradients)[9], Shape Context [10], etc.) and

recognition models (such as bag of words (BoW) and part-based models, etc.) have

greatly encouraged the research efforts. The research work presented in this thesis also

largely depends on all of these progresses. On the industry side, the rapid development

of working conditions including the hardware (cameras, computers, etc.), software and

the network (especially the Internet) have greatly accelerated the research, especially

towards large scale computation.

Besides of that, object recognition and parsing has a wide range of applications as

follows, which have been driving the research towards solving practical problems.

1. Image and video search. There are billions of images and videos on the Internet,

how to efficiently index and search them becomes an important practical issue.

Though currently the public search engines are still based on text search, many

researches are going on towards fast and robust content-based image and video

search. However, there is still a long way to go for using object recognition in

multimedia data search as the problem itself remains largely unsolved. Nevertheless,

great efforts have been put into it. A notable mention is the construction of several

large scale object recognition databases like 80 million tiny images [11] and ImageNet
[12]. It is foreseeable that any significant progress in object recognition will greatly

influence the image and video search.

2
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2. Intelligent vehicle systems. Recently, intelligent vehicles have been extensively

researched with the goal of increasing drive safety, improving operational efficiency

and enhancing drive experience. To achieve these goals, many object recognition

tasks may be involved, such as road sign recognition, lane marking recognition, traf-

fic light recognition, vehicle detection and the most important pedestrian detection.

As more and more competitions have been held for driverless vehicles in different

countries such as the DARPA Urban Challenge in the United States and the on-

going annual “Future Challenge” of intelligent vehicles in China, the research on

object recognition for intelligent vehicles gathers more and more attention. Mean-

while, two carefully annotated datasets on the real urban traffics captured from a

driver’s view have been published recently [13, 14], which are expected to be able

to drive the research on object recognition especially pedestrian detection towards

real applications.

3. Robots. Object recognition is an important aspect of robot intelligence. Though

the difficulty of object recognition itself has limited its application in robotics, there

are still many successfully cases and valuable trials. In the 1980s, robots were able to

recognize and pick up regular objects like blocks and ensemble them, such researches

result in applications in bin picking tasks. There are many reported progresses

of robots on recognizing specific objects like faces and hand gestures, including

those on the most famous robot ASIMO. The STanford Artificial Intelligence Robot

(STAIR) team has designed robots that can pick plates, grasp staplers, and open

doors based on automatic recognition of these objects [15]. Recently, a challenge

named “The Semantic Robot Vision Challenge” has been held annually to advance

the semantic object recognition in robotics 1©. Object recognition has also been used

in robot localization and navigation[16], and service robots [17].

4. Security and surveillance. Biometric identification is an important application

of specific object recognition in public security, which includes the recognition of

many biological features such as fingerprints, irises, gaits, faces, and so on. Among

them, face recognition is most widely researched[18]. In surveillance, human recogni-

tion and human activity recognition are very important, in which object recognition

and parsing plays a critical role.

5. Medical image analysis. Rapid advances in medical imaging technology have

dramatically increased the amount of medical image data generated daily by hospi-

tals, pharmaceutical companies, and academic medical research[19], therefore auto-

matic analysis of such data for both scientific research and clinical analysis becomes

an urgency. Object recognition techniques have been widely used for such a pur-

pose. Most of the applications are on the detection of particular objects, such as

anatomical regions [20], disease areas [21], and functional organs[22]. Besides that,
1©www.semantic-robot-vision-challenge.org

3
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some others have also worked on generic object recognition and image search in

medical images[19]. Due to its specificity, object recognition in medical images usu-

ally incorporates certain domain knowledge about the objects.

6. Other applications. Object recognition and parsing has also been used in many

other applications including optical or handwritten character recognition, industrial

inspection, human computer interaction, entertainments (e.g. games and movies),

etc.

Currently, object recognition and parsing has become the hottest research topic in

computer vision, which owns the largest number of publication in major vision confer-

ences. Even though, only some specific object recognition problems under controlled

conditions have got satisfying results, while most of the others are still far from be-

ing solved, for example pedestrian/human detection and generic object categorization.

There are many challenges which have made the problem hard to solve in real appli-

cations: viewpoint and pose changes, within-class shape and appearance variations,

illumination, occlusion, and background clutter. However, the human vision system has

great robustness to them and it can recognize thousands of object categories rapidly

without much effort. Therefore, it is still worthwhile to learn from the human vision

system and find new ways to advance the research on object recognition and parsing in

computer vision.

1.2 Research Contents and Contributions

Instead of trying to solve the big problem of scene understanding directly as shown in

Figure 1-2, this thesis focuses on two critical and fundamental components of it: ob-

ject recognition and object parsing. Object recognition seeks to interpret the objects

themselves while object parsing goes down to explain the semantic parts of the objects.

Despite their different focuses, these two problems are highly correlated. Part-level pars-

ing results are precious middle-level representations for robust object-level recognition

invariant to within-class appearance changes, while object-level recognition results may

serve as global constraints for part extraction and labeling. Though a tightly-coupled

co-optimization of these two is not involved in this thesis, the research on each of them

provides a valuable foundation for integrating them towards deep scene understanding

in the future.

Object recognition has been widely researched in the past five decades, and a lot

of work has been done in different ways to promote it, such as building new datasets,

proposing novel features, designing better models, exploring different machine learning

techniques, and so on. Even though, the generic object recognition in real scenes remains

largely unsolved. Instead of working on the existing datasets and trying to improve the

performances of them by proposing new algorithms, we take a step back to begin with

4
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Figure 1-2 The research contents of this thesis in the context of scene understanding. (a) A
detailed scene understanding framework which can be viewed as an interlaced process of recognition
and parsing of entities at different semantic levels. (b) and (c) are the two research focuses of this
thesis which aim at solving the two critical and fundamental components of scene understanding
at the object level, and they can be potentially extended to other semantic levels. The visual
content of the scene may vary a lot due to both the intra-class variations of the objects and
the changes of the environment. Instead of doing simple object categorization or within-category
classification disregarding these variations, we propose to interpret the objects properly based on
their visual appearance, i.e. dynamic deep and layered object recognition representing the scene
content variations as shown in (b). Object instances belonging to the same semantic category
may be interpreted into different within-category semantic layers constructed by the attributes
or states of the objects. (c) presents a typical object parsing problem with the help of object
subcategorization. This thesis proposes a new robust approach for solving this problem.

comparing the way we do object recognition in computer vision with the way humans

recognize objects. We found that the deep and layered interpretations of object instances

belonging to the same category not only enrich human recognition results, but also help

people to remember objects of great within-category variations. Inspired by this, we

focus on the problem of deep and layered recognition by learning how people recognize

objects and designing computer vision models and algorithms to mimic it.

Compared to object recognition, object parsing is more constrained. Usually the

5
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part model of the object is given, and the goal is to match each object part to the image.

The difficulty is the variation of the model (such as viewpoint changes and deformation,

etc.) and the visual difficulties within the data (such as illumination changes, image

clutters, occlusions, low contrast, etc.). Traditional approaches either concentrate on

top-down model based matching or sequentially do bottom-up grouping and top-down

matching, so that they are sensitive to visual difficulties especially image clutters. Our

research focuses on finding a new robust approach for parsing objects with partial oc-

clusions, heavy clutters and data defacement.

Specifically, this thesis makes four important contributions.

1. A novel problem called deep and layered object recognition for adap-

tively interpreting the objects within a scene, and a new benchmark

dataset (IAIR-CarPed) built for the research on it. To better understand

object recognition, two critical properties of human vision on object recognition

have been researched recently: the deep within-category interpretation and the

layered categorization. However, currently these two promising trends are still sep-

arate. Deep non-categorial semantics are treated as flat multiclass labels while

layered semantics are restricted to object categories. Inspired by human visual ex-

periences, we propose to do flexible deep and layered recognition of objects, even

when they are of the same category and in the same scene. To support such a pro-

posal, we built the “IAIR-CarPed” dataset by having 20 subjects to recognize 8567

cars and pedestrians in 3132 images via a strict psychophysical experiment. The

human recognition results well prove this proposal and provide valuable annotations

for mimicking the deep and layered recognition in computer vision. The layered

semantics are on the specificity of the object orientation and the clearness of the

key object part. We propose an evaluation criterion called confusion loss for this

new recognition problem based on the statistical human confusions on these seman-

tics. We are making this novel dataset along with the psychophysical annotations

publicly available for advancing the research on it.

2. A generic formulation for the deep and layered object recognition (DLR)

problem, with detailed analyses on modeling, learning, evaluating and

implementing it; a case study on recognizing cars and pedestrians in

IAIR-CarPed dataset demonstrating the superiority of the proposed

model against traditional recognition models. We present a general definition

of DLR which can be modeled as a structured prediction problem. A discrimina-

tive max-margin based learning model is recommended for solving it, in which the

loss function represents the output structure and also suggests proper evaluation

criterion. Different loss functions have been discussed for both categorization and

localization in deep and layered recognition. Moreover, two key issues on feature

representation have been analysed for implementing the strategy. We instantiate

6
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this generic strategy for deep and layered recognition of cars and pedestrians in

IAIR-CarPed dataset and show that DLR is superior to multiclass recognition and

binary classification strategies on object recognition tasks.

3. A discriminative structured online learning algorithm (SOnline) which

can learn a structured prediction model efficiently and incrementally.

Though the max-margin based structured learning formulation of DLR can be

solved using off-the-shelf tools like SVMStruct [23], in practise these tools have two

major drawbacks for our application. One is that the training is usually very slow

when there are many training examples with a high dimensionality, and the other

is that the object localization in DLR needs recursive bootstrapping which results

in expensive retraining when new non-object examples are mined. In contrast,

the proposed SOnline algorithm, which is extended from a successful multi-class

classification algorithm LaRank[24], is so far the first structured online learning

algorithm which can get near optimal solution quickly, and it updates the model

incrementally thus needs no retraining. We present details on using this algorithm

for deep and layered recognition. Potentially, this algorithm can be used for many

other structured prediction problems with large amounts of training data, especially

those online learning and prediction applications.

4. A new approach named saliency based opportunistic search fusing bottom-

up grouping and top-down matching for object parsing robust to partial

occlusion, inner clutter and data defacement. Object parsing is very impor-

tant for understanding the objects within a scene, as it can reveal the states of

the objects by reasoning about the configurations of their parts. Existing methods

either do pure top-down template matching with the part-level geometric context

which is sensitive to image clutter or do unsupervised bottom-up segment group-

ing and top-down template matching sequentially whose performance is limited by

the grouping results. We propose a saliency based opportunistic search to fuse the

bottom-up grouping and top-down matching so that bottom-up grouping can be

guided by top-down matching while at the same time provides it with high quality

salient image segments. Experiments on challenging statue faces demonstrate the

robustness of our approach compared to the currently dominant approach.

1.3 Arrangements

Focusing on object recognition and parsing with the ultimate goal of deep scene under-

standing, this thesis presents the research work as follows.

Chapter 2 is an overview of the literature on the topic of object recognition and

parsing. It starts with a brief review of its half-century history by partitioning it into

three typical eras so that the evolution trace can be clearly identified. Then the represen-

7
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tative research progress on both representation and computation is stated and analyzed

respectively. Finally, four core and unsolved issues are discussed along with the state-

of-the-art research efforts on them.

Chapter 3 introduces a brand new benchmark dataset named “IAIR-CarPed” which

proposes a novel research problem: deep and layered object recognition. First, the

reasons for building this dataset are given after analyzing the current trends on dataset

building. Then the details on the construction and annotation of this dataset are stated.

Unlike other datasets, the annotation is done by a psychophysical experiment with 20

participants, so the setup and the process of the experiment are described thoroughly.

The statistics of the dataset are given for revealing the content and properties of the

data which can help the designing of experiments and also the recognition models and

methods. Finally, three typical applications of this dataset are discussed and some

primary experiments have been done on the first two of them with evaluation methods

and baseline experimental results.

Chapter 4 focuses on formulating and solving the deep and layered recognition

problem proposed in Chapter 3. The generic definition of DLR is given in the begin-

ning, followed by its modeling and learning methods. The evaluation of this problem

and the important feature representation issue are discussed thereafter. Specifically, an

instantiation of DLR for recognizing cars and pedestrians in the IAIR-CarPed dataset

is presented. Experimental results show that the proposed model with human confusion

losses is superior to other recognition models on deep and layered object recognition,

within-category classification and the category-level object detection. Moreover, the

effectiveness of the adopted features, the overall robustness of the algorithm and its

complexity are discussed.

Chapter 5 proposes a new approach named saliency based opportunistic search

for robust object parsing. The object parsing problem is conditioned on the object

recognition problem presented in Chapter 3 and 4 which selects the right model for

parsing when the object cannot be represented by a single model. After presenting the

motivation and related work, the key idea of the proposed approach on fusing the bottom-

up grouping and top-down matching is explained in details. Then a case study on face

parsing is given with implementation details. Finally, experimental results demonstrate

that the proposed approach significantly outperforms the dominant approach on parsing

faces with heavy clutters and data defacement.

Chapter 6 concludes the research work presented in this thesis, and points out

possible extensions for future research.

The relationship between different chapters are shown in Figure 1-3.

8



1. Introduction

Research Background

Literature Overview 

A New Benchmark 

Dataset

Solving A New 

Recognition Problem

A New Parsing

Approach

Conclusion and 

Future Work

Object Recognition Object Parsing

Figure 1-3 The relationship between the chapters.

9



Dissertation of Xi’an Jiaotong University

CHAPTER 2

Object Recognition and Parsing: An Overview

Object recognition and parsing has a long history of about 50 years, and it is currently

a very active research topic in computer vision. Due to its wide applications and funda-

mental difficulties related to all levels of vision problems, such a high-level vision problem

has been researched a lot in many different ways, resulting in a huge literature. This

chapter presents an overview of it, which is organized as follows. First, the history is

briefly reviewed by tracing the evolutionary process. Then we state the major progresses

of the two main components of the research topic (representation and computation). Fi-

nally, some core and unsolved issues along with the state-of-the-art efforts on them are

discussed.

2.1 A Brief History

The research on visual object recognition dates back to the 1960’s, when people started

working on the perception of 3-D solid objects like blocks [25]. At that time, these objects

are restricted to contrived textureless objects with clean backgrounds, and therefore

the research was focused on the shape and geometry of objects. Since the beginning

of 1990’s, the focus has been clearly shifted to textured objects, in which appearance

plays an important role. To build a robust appearance model of the interested object,

the algorithms are usually learning-based, firstly on exemplars and then on categories,

and the representation changed from global features to local ones which are robust to

cluttered backgrounds. Following this path, the robustness and generalization ability of

object recognition algorithms are growing rapidly as shown in Figure 2-1. We categorize

the history into three different eras and briefly review the representative researches of

each of them as follows.

2.1.1 The Geometric Era

From 1950’s to early 1990’s, geometric representations have dominated the research on

object recognition [2, 26]. One of the earliest work used the moment-based geometric

invariants to describe the characters for recognition [27], while the others mainly focused

on geometric measurements using real geometric elements of objects, such as corners,

lines, planes and spheres for regular man-made objects and generalized cylinders for

natural objects with curved shapes.

Projecting the whole objects (3-D to 2-D projection). In the late 1960’s and early

1970’s, the blocks world was the main stream of the research, in which objects are
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Time1990's1960's

The geometric era

2000's

Robustness /

Generalization 

ability

Exemplar-based 

global appearance era
Category-based 

local appearance era

- Textured objects

- Cluttered backgrounds

- Local invariant features

- Various computational models

- Powerful machine learning techniques

- Textured objects

- Clean backgrounds

- Eigenspace representation

- 2D image-based template 

matching

- Textureless objects

- Clean backgrounds

- Shape representation

- Geometric projection

- Shape matching and voting

Figure 2-1 Visual object recognition in the past five decades. Generally speaking, the research
can be roughly categorized into three eras, and there is a clear trend that the data is becoming
harder and harder while the representation and modeling is more and more flexible. Thus the
robustness and generalization ability of the algorithms are growing rapidly.

restricted to polyhedral shapes and the background is uniform. The goal is to recognize

polyhedral shapes in 2-D images, which may be arbitrarily placed in the image with

occlusions, using the 3-D models of these shapes. The most significant work on it was

done by L. G. Roberts [25], who had detailed research on the problem of projecting

polyhedra into the perspective images.

Decomposing and constructing curved objects (2-D to 2-D, and 3-D to 3-D recog-

nition). An extension of the blocks world is the work on line drawings extensively re-

searched by Guzman[28]. It goes beyond the regular polyhedra to curved objects with

curved parts. Guzman proposed to use a set of hand drawn parts for representing generic

objects, while taking into account of the contextual relationships between these parts.

Another significant advance is the generalized cylinders (GC) proposed by Thomas Bin-

ford in 1971 [29], and then further developed by his students Gerald Agin [30] and Ram

Nevatia [31, 32]. Unlike the line drawings which is 2-D, the generalized cylinders are gen-

erated automatically from 3-D range data and the recognition is usually done in 3-D

directly. Later on GC was also been used by Nevatia to recognize simple objects like

coffee pots in 2-D images [33].

Hypothesizing objects by model-based matching (mainly 3-D to 2-D projection).

From the beginning of 1980’s, people start to deal with the recognition of real objects (not

blocks anymore) in 2-D images with significant illumination changes and occlusions, for
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example the plastic razors recognized by David Lowe’s SCERPO 1© system [34]. The main

stream was to hypothesize the 2D projection of the 3D object exemplars by local image

features (such as corners, lines, etc.), and the hypotheses are generated by checking the

consistency of the features respect to the projection determined by a minimum feature

set (e.g. the geometric transform of three points can define an affine projection). Such

methods are referred to as minimum feature set matching [2], a typical example of which

is geometric hashing[35]. Unlike the blocks world which is trying to build a generic object

representation using regular blocks, the minimum feature set matching mainly focuses

on specific 3-D models capturing the exact shape of an object, namely, the recognition

shifted from category recognition to exemplar recognition. Among many successful real

applications of it, Joseph Mundy and Dan Thompson’s work on vertex-pair constrained

recognition showed encouraging results on detecting aircrafts at airfields which have

bland backgrounds and limited occlusions [36].

Achievements and Limitations. The research on geometric object representation

for recognition has several achievements including:

• Convinced that shape is important for recognizing objects especially man-made

ones.

• Developed several shape representation approaches and 3-D shape to 2-D image

projection and matching techniques, and demonstrated their advantage of being

invariant to viewpoint changes.

• Showed the power of distributed representations of objects using sharable parts and

the relationships between them.

• Provided successful applications in some restricted tasks.

While at the same time it suffers from some critical drawbacks which have limited its

further development:

• The lack of reliable image segmentation and feature extraction methods.

• Its high demands on model construction.

• Its inability to deal with deformable objects with textures.

At the beginning of the 1990’s, a group of outstanding researchers enthusiastically

looked into the problem of finding geometric invariance for modeling and recognizing

general objects but soon get defeated by two facts [2]: a) it was proved independently

by several researchers that no viewpoint invariants exist for general 3-d shapes and b)

the feature grouping problem is unsolved. While at the same time, faster machines and

cheaper cameras made possible the recognition using dense appearance based methods

which works on pixels directly without suffering from the error-prone image segmentation
1©Spatial Correspondence, Evidential Reasoning, and Perceptual Organization.

12



2. Object Recognition and Parsing: An Overview

and the demanding modeling for geometric description. Due to these reasons, a new era

of using appearance came.

2.1.2 Exemplar-based Global Appearance Era

The research on using object appearance for recognition starts from 1990 on human

face recognition using eigen-functions [37] and then the eigenfaces [38]. From then on, the

strategy of using the raw images with dimension reduction techniques like eigenspace de-

composition has dominated the research until the beginning of 2000’s. Such a movement

has a clear characteristic: using the global appearance as the representation of objects

and the recognition is exemplar-based. In another word, the recognition is mainly about

object identification using 2-D image templates learned from the exemplars. Despite

its simplicity, recognition systems constructed using this strategy were able to recognize

arbitrarily complex objects with texture and surface markings, which is a significant

advance over geometric methods.

Murase and Nayar’s 3-D object recognition and pose estimation system [39] based on

eigenspace representation and nearest neighbor search in the low-dimensional manifold

of the objects showed very good results on 20 objects with complex shape and reflectance

properties in the COIL-100 database[40]. Murase and Nayar’s work generated tremen-

dous interest, overshadowing ongoing recognition research based on geometry [2]. After

that, some researchers have worked on improving the ability of the eigenspace based

approaches, such as making it capable to deal with occlusions [41, 42], associating it with

density estimation and maximum-likelihood estimation [43], building a hierarchical rep-

resentation by exploring object parts and their relationships [44] and applying it to the

visual tracking of articulated objects [45]. Even though, the global appearance based

methods are still too rigid to generalize to object categories with large intra-class trans-

formations and appearance variations.

2.1.3 Category-based Local Appearance Era

Since 2000, a clear trend has driven the research to object categorization based on local

features. At the beginning of 2000’s, a lot of local invariant features have been proposed

and they soon got great successes in object recognition when combined with the simple

bag of words model and the later part-based models with pair-wise geometric constraints.

From then on, local appearance based methods have dominated the research. In the

following sections, major progresses of the category-based local appearance era will be

reviewed in details, so they are not mentioned here.
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2.2 Representation

Though generally representation includes input data representation, output space rep-

resentation and also certain recognition models which bridge these two, this section

narrows the concept to input data representation only, leaving the others to be dis-

cussed elsewhere. As can be seen from the historic review in 2.1, data representation

plays a central role in the evolution of object recognition. Usually, data representation

is also referred to as feature representation when the concept of feature means arbitrary

mapping of the data. We review only the features that have been used in the past two

decades for the purpose of object recognition and parsing by roughly dividing them into

three groups: local features, global features, and combined local and global features.

Due to the richness of the literature, presenting a complete list of the all the features is

almost intractable and also unnecessary. Instead, only the representative features which

have significant impacts are mentioned, while discussions on the general properties of

these types of features are given.

Notes on Terminology A recent survey on local invariant feature detectors [46] de-

fines a local feature as “an image pattern which differs from its immediate neighborhood”

which concerns on only the local features representing image changes. To cover all possi-

ble instantiations actually been used, a more intuitive definition is proposed here: a local

feature is a representation or mapping of a part of the visual data (e.g. a region/patch of

the image or object) which has a restricted extent. In contrast, a global feature means a

holistic representation of all the visual data, i.e. the whole image or object. Note that a

global representation based on local features may be referred to as global features in the

literature. To clarify the concepts, we propose a simple strategy based on the feature

extraction/mapping function to differentiate local and global features: if each element

of the feature is a function of all the visual data then the feature is global, and if all the

elements are functions of local areas of the data then the feature is local, leaving the

mixed cases as combined local and global features.

2.2.1 Local Features

The power of local features Local features have in fact become the standard data

representation for most object recognition and parsing tasks. The powerfulness of such

features is ensured by their great properties including the followings.

• Flexibility and Richness. Their amounts, locations, spatial extents, types and

structures are all flexible. Therefore in general there are large amounts of local

features, and one can easily design new ones for his/her needs.

• Invariance and Robustness. The representation flexibility of local features

makes them possible to be invariant to image transformations and viewpoint changes,
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while their locality ensures a certain degree of robustness to occlusion, nonuniform

illumination and object deformations.

• Versatility and Controllability. Many of the outstanding local features are de-

signed to be task independent so that they can be used in various applications.

One can choose his/her own way of using them by tuning the free parameters,

and their competing properties can be balanced for different scenarios, such as dis-

tinctiveness versus invariance/robustness, localization accuracy versus robustness,

repeatability/stability versus quantity, quantity/richness versus efficiency, etc.

Despite their great variability, local features are usually constructed through two

steps: feature localization and feature description, where localization means finding the

locations for each local feature while description stands for the data representation on

these locations. We briefly categorize the strategies for each one of them and discuss

the feature construction problem for different applications.

Feature localization strategies. Feature localization is to decide where the features

should come from. For some applications based on image matching, the repeatability,

distinctiveness and localization accuracy of these locations are very important so that

the problem is usually referred to as feature detection, i.e. to detect the locations with

such properties. For the problem of object recognition, however, feature locations are

not that important as the ultimate goal is to represent the data for better recognition

performance. Common strategies for feature localization aimed for object recognition

and parsing are the following three.

• Uniform sampling. Uniform sampling means sampling the locations from the image

exhaustively without selection. Depending on the scenario, it may be referred to

as dense sampling as in the case of extracting features from every possible location
[47, 48], or grid sampling when the locations are placed on a fixed grid [9]. Such a

strategy is very simple but may be inefficient when the number of locations is very

large, and as the features are blindly placed, a feature selection or weighting step

is needed after the constructing the raw features.

• Biased sampling. Instead of placing the features blindly, one may choose to sample

them based on certain priors or cues, such as putting them along the edges [49, 50]

and using a bottom-up saliency map to guide the sampling[51].

• Interest point detection. Numerous detectors have been proposed for extracting

interest points with different levels of invariance, such as rotation invariant detec-

tors (e.g. Harris corner detector [52], Hessian blob detector[53], and SUSAN corner

detector[54]), scale invariant detectors (e.g. Harris-Laplace [55], Hessian-Laplace [56],

DoG [57] and SURF [58]), affine invariant detectors (e.g. Harris-Affine [55], Hessian-

Affine[55], and Salient Regions [59]), and perspective invariant detectors (e.g. MSER
[60] and Superpixels[61]). The first three groups represent corners and blobs while
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the last one represents regions. Besides the level of invariance, their properties and

computational efficiency also vary a lot. Detailed descriptions and comparisons of

them can be found in Tuytelaars and Mikolajczyk’s survey on local invariant feature

detectors [46] and an earlier comparison presented by Mikolajczyk et al. [62] on affine

region detectors only. Locations proposed by the invariant feature detectors have

two major advantages: a) being sparse, distinctive (informative), and stable, and

b) the information of the characteristic scale and affine transformation parameters

can be used for invariant feature description.

Feature description strategies. There are mainly three different strategies for feature

description:

• Quantization and histograming. This is the most popular feature description strat-

egy due to its simplicity, flexibility and representation ability. One can quantize

different data such as the intensity values (e.g. spin image [63]), color values (e.g.

color histograms [64] ), gradient orientations (e.g. Shape Context [10], SIFT [8],

GLOH [65], and HOG [9] ), etc. Then a histogram can be build upon the image

space and the quantized value space. Spatially, grid histograms and log-polar his-

tograms are two widely used ones. One may normalize the histogram globally like

SIFT or locally like HOG. The quantization and histograming make the feature

description invariant to spatial shifts and slight variations within the space of the

quantized value.

• Filtering. In general any filters are applicable as long as they are able to generate

effective features. Typical ones are wavelets (e.g. haar-like features [47], Gabor filters
[66]), differential invariants proposed by Florack et al. [67], steerable filters developed

by Freeman and Adelson [68] and complex filters introduced by Schaffalitzky and

Zisserman [69].

• Computing spatial statistics. Van Gool et al. [70] proposed a set of generalize

moment invariants to describe the multispectral nature of the image data. Though

it can generate moments of any order and degree, moments with high order and

degree are two sensitive to small variations of the image data. Therefore usually

only up to the second order and the second degree are taken into account, while all

the color channels are described independently [65].

Feature construction. As mentioned before, a local feature representation is a com-

bination of feature localization and description. To construct proper local features for

certain application, one has to choose the right strategy for each of these two steps. In

object recognition tasks where the object candidates are well aligned (including object

detection based the exhaustive sliding window approach), uniform sampling along with

histograming (e.g. HOG features) or filtering (e.g. wavelets) can generate good results

using feature weighting and selection learning tools like SVM and Boosting [9, 47]. For
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object categorization or presence/absence classification when the objects are not well

aligned, extracting local invariant features like SIFT on interest points is a plausible

choice and has been proved to be effective when combined with Bag-of-words (BoW)

model [71], and biased sampling upon the interest points (a combination of the two

strategies) can boost the performance a bit [51]. About choosing the concrete detectors

and descriptors for constructing local invariant features aimed for object recognition,

Hessian-Laplace, Hessian-Affine and MSER are good detectors while SIFT, GLOH and

Shape Context are more likely better than other descriptors. Such a judgement has been

proved by two recent performance comparison papers [72, 73] and many other experiments

in the literature. Note that the setting of the free parameters for both localization and

description may significant influence the recognition performance [9], and one should bal-

ance the invariance and discriminability of the features based on the concrete problem

he/she is working on.

2.2.2 Global Features

Global features provide a holistic representation of an image or object. Generally, the

scale or size of an object is one of the simplest global features. Global transforms

like Fourier transform has been introduced for representing object shapes in the early

ages. The most important global features are those extracted by dimension reduc-

tion approaches such as Principle Component Analysis(PCA), Independent Component

Analysis(ICA), and numerous manifold learning methods proposed in 2000’s, for exam-

ple ISOMAP, LLE, and Laplacian Eigenmaps[74]. These approaches aim at finding a

low-dimensional embedding of the training data which presents the intrinsic geometric

structures of the data so that the objects can be better classified in the embedding

space. These methods have mostly been tested on face recognition datasets and also

some character recognition datasets [74], in which the data contains only well-aligned

objects without background clutter and occlusions. Another global feature for repre-

senting the whole image is the gist feature proposed by Torralba et al.[75] for scene

understanding, which can be used in context modeling for object recognition.

Global features have the advantages of being able to capture the holistic information

of the object/image and usually being computationally efficient, but they are weak

for representing objects with significant background clutters, occlusions and intra-class

variations. Even though, global features may be good complementary features to local

ones (as discussed in the next subsection), and the approaches for extracting global

features may be used to compress the high dimensional local features for efficient classifier

learning without losing the discriminative power (e.g. PCA-SIFT [76] or PCA-HOG [77]).
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2.2.3 Combined Local and Global Features

There are evidences in psychophysics and neurophysiology that both global and local

features are crucial for face recognition [18, 78], therefore many people have looked into

the problem of combining local and global features for improving face recognition results.

To name just a few: Gao et al. [79] fused the results of Adaboost on multi-scale and

multiorientation Gabor features and global features generated by Linear Discriminant

Analysis (LDA); Huang et al. [80]also used local Gabor features, but fused three types

of global features(eigenface, spectroface, and ICA); Chen et al. [81] used Gabor filters

and Local Binary Patterns (LBP) together with global features generated by Fourier

transforms instead.

Besides faces, combined local and global features have also been used for the recog-

nition of other objects. Murphy et al. [82] showed that using both global gist features

and local features produced by various filters can significantly improve the detection per-

formance of generic objects while at the same time gain an increase in speed. Lisin et

al.[83] tried two different methods (stacking and hierarchical classification) for combining

the local and global features and got a significant performance boost on classifying gray-

scale images of zooplankton. All these examples show that local features and global

features may be representationally complementary and when properly combined they

can generate better results than using either one of them.

2.3 Computational Models and Methods

There are many computational models and learning methods in the literature (as shown

in Figure 2-2), of which the following three groups are considered to be most represen-

tative.

ROI

Images
Attention

(optional)
Visual entities

Scene

Object

Region / Part

Pixel / Point

4

3

2

1

Feature + Classifier (Classical)

Bag of words (BOW) models

Part-based models

Biologically inspired models

Context-based models

Recognition and segmentation

. . .

Models and methods

1,2,3,4

2,3,4

2,3

1,2,3,4

1,2,3,4

2,3,4

Figure 2-2 Object recognition models and methods. Different models and methods focus on
different subsets of visual entities. Visual attention may be used to extract the regions of interest
(ROI) from images before recognition, but it is optional.
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2.3.1 Bag of Words (BoW) Models

As its name shows, ”bag of words” model comes from the field of natural language

processing (NLP), where the whole document is treated as a bag of words when the

order of them is disregarded. Similarly, in the field of image processing and understand-

ing, the image itself can be treated as a bag, but the ”words” are not off-the-shelf as

those natural words in the documents. A common strategy is to construct compact

and representative visual words from the local features. These words form a codebook

(i.e. codewords dictionary), which can be used to represent the images or objects by

constructing histograms on it. After that, the histograms serve as feature representation

for training a classifier for recognition, as shown in Figure 2-3.

Local feature 

representation

Learning

Recognition

Clustering

Codewords dictionary

Bag of words representation

Image 1 Image n

F
re
q
u
e
n
c
y

Codewords

Images

Classifier

Figure 2-3 A general framework of bag of words models.

There are mainly three critical issues to be considered in designing a BoW model

which make the research on BoW continue being advanced:

1. image/object representation (different local feature localization and description

strategies);

2. dictionary building (by unsupervised clustering [84] or supervised learning);

3. distance function / similarity measurement (it is recently an active research topic

with plenty of publications).

BoW models may have great invariance and robustness, as it can inherit them from

the local features while at the same time enhancing the translation invariance and the

robustness to deformations and occlusions. However, the greatest translation invariance

is also the biggest shortage of BoW because it is an unordered representation which has

no structure information. Many people have tried to improve it. Savarese et al. [85]

proposed correlogram features to capture the spatial co-occurrences at the feature level.

Sudderth et al. [86] took into account of the relative positions of the visual words. The

spatial pyramid match proposed by Lazebnik et al.[87] hierarchically divides the spatial

space into finer subregions and build BoW representations on each of these subregions,

the ordering of which encodes the rough spatial information of the local features while
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the advantages of BoW are maintained. Despite such extensions, the BoW models still

cannot capture the rigorous information of object components or parts, and many of

its properties such as the scale invariance and the viewpoint invariance haven’t been

extensively tested.

2.3.2 Part-based Models

Why part-based models? Many of the objects in the world are made of parts (either

semantic parts or geometric parts), and the global shape or appearance of objects may

vary a lot while the relationships of these parts are relatively more stable. For these

cases, global template matching may be too rigid to adapt to the intra-class variations

while bag of words models could be too loose to differentiate the structured objects

from distracters with similar parts but in the wrong arrangements. Therefore, it may

be better to represent the intrinsic structures of the objects and use them to handle the

global shape or appearance variations. As early as 1973, Fischler and Elschlager have

proposed a pictorial structure representation for matching faces as shown in the upper

left part of Figure 2-4 [88]. Such a “parts and structure” model has motivated a lot of

research on part-based models after 1990 for both face recognition and generic object

recognition and parsing.
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Figure 2-4 Part-based models: (a) the pictorial structure proposed by Fischler and Elschlager
[88]; (b) the commonly used tree structure for human body parsing; (c) some recently proposed
structures for part-based models [89]. Note that bag of words model is not a part-based model,
and it is presented here only for contrasting.

Definition and key issues. Part-based models refer to a broad class of models

that represent the objects by a set of parts and the relationships between them. There
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are three major issues for any part-based models: 1) the structure of the model (in-

cluding the parts and the contextual relationships between them), 2) the representation

(appearance or shape) of the parts, and 3) an efficient inference algorithm

for finding the object parts in the test image. The first one and the third one are highly

correlated as the structure of the model determines how it can be inferred. For some

models, the structure is fixed and its parameters are learned from the data, while for

some others both the structure and the parameters are learned.

Recent progresses. As shown in part (c) of Figure 2-4, the simplest structure yet

one of the pioneering work on statistical part-based models is the constellation model

introduced by Dr. Perona and his colleagues[90, 91], which is a fully connected graph

with a complexity of O(NP ) where N is the number of possible positions for each part

and P is the number of parts. To reduce the rigidity and computational complexity,

several new structures have been proposed thereafter, such as star shape[92, 93], k-fan[94],

trees[95], hierarchies[96], a sparse flexible model [89], and so on. About the representation

of parts, image patches are most commonly used[90–92], while shape pieces (linelets,

edgelets, junctions, contours, etc.) have also been investigated[97, 98]. For some specific

objects like human bodies, the semantic parts and their relationships can be predefined

instead of learning from the data. The lower left part of Figure 2-4 shows a typical tree

structure which has been widely used in human body parsing and pose estimation[95].

Discussions. Compared to other models, part-based models find the explicit corre-

spondences between object parts and the images, which can result in better recognition

performance on object categories with large but constrained within-category variations
[77], while at the same time they can provide object parsing results when the parts are

semantic ones. Note that in some cases defining the structure of the model is not an easy

task when the objects are not naturally separable and the appearances of the instances

vary a lot. For the cases when the objects are extremely rigid or highly deformable,

simpler models and methods like template matching or bag of words might be better

choices.

2.3.3 A Biologically Inspired Feedforward Recognition Model

Since humans and other primates have great object recognition power that well outper-

forms any machine vision systems, building a system that emulates object recognition in

visual cortex has always been an attractive idea. Serre et al. [4] proposed a biologically-

motivated framework for robust object recognition, which used a hierarchical image rep-

resentation expanded from the standard model of object recognition in primate cortex
[3]. This framework alternately performs template matching (tuning) and max pooling

operations to achieve a good trade-off between selectivity and invariance. Its built-in

gradual shift- and scale-tolerance allowed it to outperform most contemporaneous com-

plex computer vision systems.
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Figure 2-5 A biologically inspired feedforward recognition model: (a) the functional primitives
of the feedforward model[5]; (b) the feedforward computational model[4]. Due to the space, only 8
of the 16 scales at S1 are shown. “M” stands for the MAX operation, while “P” denotes a word
in the codebook (in the original model it is just an image patch).

Figure 7 shows the tentative feed-forward information passing model in visual cor-

tex [5] and the computational model for rapid object recognition proposed in [4]. Such

a feedforward recognition model showed great performances on object presence vs. ab-

sence classification [5] and multiclass object categorization [4]. Even though, many as-

pects of this framework could be modified to improve it. Wolf et al. [99] focused on

discussing different perception strategies in hierarchical vision systems besides Serre et

al.’s feed-forward framework. Mutch and Lowe [100] proposed many useful modifications

that further improved recognition performance on multi-class experiments including an

SVM-based supervised feature selecting technique to build the codebook. However,

these efforts disobeyed the feed-forward motivation. Instead, Wu et al. [101] provided a

simple yet effective unsupervised codebook generation strategy based on an information

measurement.

This model is a great effort towards emulating the human vision on visual recog-

nition, though its performance has been shadowed by some new machine learning tech-

niques. The thoughts of it are long lasting which may be revisited years later.
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2.4 Core and Unsolved Issues

The above sections give a brief review of the relatively mature and widely recognized

researches on object recognition. Besides of them, there are also many important but

un-solved issues and new research trends which have been or start being the focuses of

current researchers.

As shown in Figure 2-6, we group these issues and trends into four different aspects.

Visual perception in human vision is the centric one which inspires and influences all the

other three aspects. Representation and computation is the technical support to per-

formance evaluation and application. Performance evaluation is critical for guiding the

modeling in representation and computation and evaluating its effectiveness. It can also

be used as the human prior or feedback to practical applications. Different applications

may require different evaluation measurements, and motivate different representation

and computation methods. Therefore, these three aspects are highly correlated and the

research on each of them should significantly influence the others. In the following, we

analysis the recent progresses on each of the four aspects and give our comments on

them, along with our predictions for future trends.

Visual 
Perception

Application

Performance 

Evaluation

Representa-

tion & 

Computation

- Image and video search engine

- Surveillance

- Human-machine interaction

- …

- Benchmark datasets

- ROC/DET/P-R curves

- Human perception 

measurement

- Appearance & 

Shape

- Local & global

- Bottom-up & 

top-down

Figure 2-6 The relationship among the unsolved issues and future trends.

2.4.1 Local, Global Representation and Beyond

Local vs. Global. The first question is about the relative superiority between local

and global representations for object recognition. Perceptually, it is clear that some

objects are better to recognized as a whole like an egg or a bottle, while some others can

be recognized using only several distinctive parts of them like a face or a bike. Further

more, the importance of local and global information may vary in different recognition

tasks, for example global information may be more important for categorization while the

local one should be more suitable for within-category classification. Therefore, we cannot

conclude with which one is better. Currently, in computer vision, local features have
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dominated the representation due to their simplicity, flexibility, stability and robustness,

but it does not mean that they are fundamentally superior to global ones. There are

reasons to believe that abstracted global representations of objects exist in human vision

system which are closer to the recognition results than local representations and they

are robust to variations of the object appearance and shape. It has been confirmed

by many psychophysical experiments that global perception is not a sum of the local

perceptions [102], which suggests that the global representation cannot be replaced by

the local ones. The two representations have their own advantages and disadvantages.

Global representation is more unambiguous than the local ones, but it is not detailed

enough to deal with local deformations and occlusions which can be easily handled by

the local ones. Therefore, in general it is better to properly integrate both of them.

Integration. As can be seen from the literature, we are still lack of powerful tools to

extract invariant and robust global features from cluttered images which need perceptual

grouping and abstraction. For example currently we cannot explicitly extract a robust

global representation for humans in images. Instead, we can describe the global repre-

sentation by its properties, such as the pictorial structure of the human body, and use

them as the global constraints for arranging the local parts. For computational issues,

these constraints are usually decomposed into pair-wise relationships, which is exactly

what the part-based models are trying to do. As a plus, global object templates can also

be used as global representations as in Felzenszwalb et al.’s work on object detection [77].

We can generalize the idea by treating objects as the local ones and the whole scene as

the global representation, then the integration becomes the popular context modeling

problem for object recognition [103] which is a currently a hot topic and there exist a lot

of modeling and learning methods [104–106].

Precedence. Computationally, local parts have to be constrained by the global rep-

resentation while the later depends on the localization of the local ones, which is an

chicken and egg problem. Perceptually, it is an open question about which one is first

captured by the humans. In neural science or physiology, it is of little doubt that the

processing of the visual data is from local stimulation to global structure and concept,

but the order in which processing is initiated may not be nearly as relevant for deter-

mining perceptual experience as the order in which it is completed [107]. Though it was

widely believed that the neural processing of visual recognition is in a local-to-global

order, psychologist David Navon [108]and Lin Chen [109] both demonstrated that object

perception can be global precedent. Up to now, the dispute on the precedence of them

still continues. In computer vision, these two representations are usually modeled and

optimized together, such as the latent SVM algorithm for simultaneous object parts

localization and the global and local appearance model learning [77]. Practically, when

they have to be optimized iteratively, one can choose either of them to start with.

Note that local and global are relative concepts, and the representation does not

need to be only two layers. One can build a hierarchical representation from very local
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generic primitives to part components, to semantic parts and to objects, and the local

and global representations can be iteratively propagated between each two layers.

2.4.2 Modeling and Computation: Bottom-up and Top-down

A long lasting debate about object recognition and parsing is whether it should be a

bottom-up process or a top-down process. The bottom-up process means gradually con-

structing higher level representations/abstractions by unsupervised perceptual grouping

of the image data until reaching the semantic object-level/part-level representation. The

top-down process is the opposite, i.e., going down from high-level semantic representa-

tions (e.g. a trained model or a task-specific prior) to low level representations for

interpreting the data and the decision is made by evaluating the matching between the

model and the data. There are numerous models and methods on either of these two

strategies (e.g. BoW models are bottom-up ones while part-based models are top-down

ones), and there are also many efforts trying to combine them.

In neural science or psychophysics, the bottom-up process and top-down process

have been extensively researched for revealing the characteristics of visual attention

which is closely related to the recognition and parsing of objects in cluttered images.

Timothy and Miller [110] have recorded the neural activities of these two processes of

monkeys, which indicate that top-down and bottom-up signals arise from the frontal and

sensory cortex, respectively, and different modes of attention (top-down or bottom-up)

may emphasize synchrony of the cortex at different frequencies. Such findings suggest

the independence of these two processes. Chikkerur et al. [111] used the independence to

build a Bayesian inference model for visual attention, and demonstrated the importance

and complementariness of these two processes for object recognition. In their work, top-

down attention is about the context for object localization which is also called spatial

attention, while bottom-up attention is determined by local feature representation of

the object therefore it is referred to as feature attention.

The findings in visual attention coincide well with the discussion on local and global

representations where local representation is about the object/part features while global

representation is about the contextual prior. The bottom-up and top-down processes

can be viewed as ways for extracting these representations. Instead of treating them

separately like extracting bottom-up local representation first and then perform the

recognition or parsing along with the top-down global priors, we propose to have a

deeper integration of them using the close-loop Hypothesis-Verification approach
[102]. Briefly speaking, it generates object and/or part hypotheses on the bottom-up local

representation and then verifies them base on the global prior; if some of the hypotheses

do not satisfy the global constraints, then the locations of these hypothesized objects

or parts will be updated (based on the global prior and the locations of other objects

or parts) and new bottom-up local representation with corresponding new hypotheses
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will be generated from the data. The Hypothesis-Verification progress continues until it

converges. The kernel advantage of this approach is that after each round of verification

it goes back to the data and regenerate local representations.

Recently, a lot of examples can be found on combining the bottom-up process and

the top-down process for the tasks of combined segmentation and recognition[92, 112, 113],

simultaneous localization and recognition[106, 114–117], and whole image parsing (segmen-

tation, annotation/detection and classification)[118, 119]. Specifically, Yang et al.[120] have

presented a method to quantitatively evaluate information contributions of individual

bottom-up and top-down computing processes (two bottom-up processes from the ob-

ject itself and its parts respectively and one top-down process from the context of the

object) for object recognition. Since such a combination is still an open challenge, the

modeling of which varies a lot and so do the learning and inference methods, and one

can refer to each of them for details.

2.4.3 Performance Evaluation and Benchmark Datasets

Building a good benchmark dataset with proper performance evaluation methods is

rather critical as it can motivate novel ideas on advancing the research and also evaluate

different strategies and algorithms.

There are dozens of publicly available datasets on the topic of object recognition,

which can be roughly categorized into four different groups according to the tasks and

annotations of them as follows.

• Presence vs. Absence Image Classification. This task is to tell whether an

image contains object instances of a specific category or not, which is usually eval-

uated by the precision-recall (P-R) curves. The most popular benchmark is the

PASCAL VOC (visual object classes) database [71], which has 20 classes with thou-

sands of images. Besides that, there are also some others focusing on hierarchical

image classification based on the ontology of WordNet[121], such as the TinyIm-

age [11] dataset with 80 million tiny images (32 × 32 pixels each), the ESP [122]

dataset which utilizes an online computer game to label millions of images via word

matching, and the ImageNet [12] database of 3.2 million (expected to be 50 million)

full resolution images with relatively clean labels. These large-scale hierarchical

datasets collected from the Internet may promote the research on content-based

image retrieval which takes the advantage of large amounts of data and various

machine learning techniques, but they are not suitable for modeling the objects

themselves due to the influence of backgrounds and the large intra-class variations.

• Object Detection and Localization. Object detection is to detect and spatially

localize object instances of certain category in images that may contain any number

of them (including zero), while object localization is usually referred to the specific
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problem where each test image has one and only one object instance in it 1©. For

detection, usually P-R curves or ROC (Receiver Operating Characteristic) curves

and its variant DET (Detection Error Tradeoff) curves are used as performance

measurement, while for localization a soft overlap ratio can be used [7].

Object detection is one of the most popular tasks of object recognition and there

are many databases on it, such as the CMU-MIT frontal face images [123], the UIUC

car detection database [124], the MIT pedestrian dataset [125] along with many other

pedestrian detection datasets from small ones with hundreds of images to large ones

with about 1 million video frames [14, 126–130], and also some general purpose detec-

tion databases which contain multiple categories like the Caltech dataset [131] and

the PASCAL VOC Challenge [71]. The PASCAL VOC Challenge [71] is currently

the most unbiased detection dataset which has become a popular benchmark, how-

ever, it may not be good for guiding the promotion of current research, as too many

aspects are involved[26].

• Object Categorization and Scene Parsing. The object categorization here is

restricted to the problem of categorizing images or image subwindows with only

one single object instance in each of them and usually the object occupies the

major space of the image or the image subwindow, this is to differentiate it from

image classification. The evaluation for them is usually the confusion matrix or

the average recognition rate. Typical datasets include COIL-100 [40], Caltech-101
[132] and Caltech-256 [133]. Besides categorizing images with single objects, there is

another valuable effort on categorizing regions in scene images where multiple object

appears simultaneously. This is commonly referred to as scene/image parsing or

scene understanding. Recently, a lot of databases have been built towards this goal,

such as LabelMe [134], CBCL StreetScenes [135], the Microsoft Research Cambridge

(MSRC) database [136], the CamVid database [13], and the Lotus Hill Database [137].

There is a new trend on object categorization using object attributes which can be

shared by different object categories, and several new datasets have been built,

such as the Animals with Attributions database [138], aPascal and aYahoo datasets
[139]. The efforts on using attributes go deeper into the objects than traditional

categorization methods by exploring the middle-level semantics, which to some

extent coincides with the human vision system.

• Within-category Object Classification and Identification. Unlike category-

level object recognition, within-category classification aims at separating objects

belonging to a specific category into finer groups, while identification can be viewed

as the extreme case of within-category classification in which each object instance is

a separate class. The confusion matrix and the average recognition rate are proper
1©However, different people may have different understandings, and some of them may treat them as the same

thing.
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measurements for them respectively.

For within-category object classification, a few researches have been proposed re-

cently, one example is the multiplicative kernels [140] which has been used to classify

the view angles of cars in a dataset collected from LabelMe database [134], and an-

other work directly targeting at within-object classification [141] represents results

on three different databases: a new face database for gender classification, the

Baum lab RNAi cell phenotype database and a new pedestrian database collected

by the authors for pose estimation. Object identification, which is an important

type of object recognition, has been widely used in biometric identification, for

example face recognition which has many publicly available databases [142, 143]. Be-

sides that, the identification of some other objects like cars [144] and license plates
[145] have also been researched.

Though many object recognition datasets have been built in the last few years and

we can compare our algorithms on them, usually it is hard to say whether these datasets

reflect the strengths and weaknesses of these algorithms. It’s not that the database

collections are not large and representative enough, it’s that they are not systemati-

cally parameterized so that our algorithms’ failure modes can be clearly identified [26].

Therefore, we need a benchmark dataset that clearly isolate the conditions which may

influence the recognition performance, so that we can test the algorithms on different

conditions and always be aware of the process we have made and the shortcomings we

need to improve. Furthermore, the semantic annotations of current datasets are usually

either too simple (e.g. only category labels) or too detailed (e.g. the parsing results

and attributes) disregarding the state of the data, which is unlike the flexible human

recognition results. Designing a proper annotation strategy for a deeper learning of the

recognition and parsing ability of humans will be a challenging but valuable future work.

2.4.4 Scalability to Large Amounts of Visual Data

As the cameras get cheaper and cheaper, and the storage and computation resources

become much more affordable than before, people pay more and more attention to taking

pictures and videos, for recording their live experiences or just for fan. The high speed

Internet connection makes sharing pictures and videos with other people all around the

world possible and fast. In the recent few years, larger and larger object recognition

datasets have been built and the internet-based applications demand even more on the

scalability of the algorithms. Therefore, more and more researchers start to work on

the challenging issue of making their recognition algorithms scalable to large amounts

of data.

Three different ways have been tried to improve the scalability of the recognition

model and method:

• Incremental learning. When the learning set is large or even huge, traditional
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batch learning is infeasible. Therefore, an incremental learning algorithm is needed.

Fei-Fei et al. [146] and Opelt et al.[147] have shown some pioneering work on it.

• Efficient search and inference. The branch-and-bound search strategy [148] and

the hashing based indexing strategies (including the Locality Sensitive Hashing)[149]

are two representatives. Saliency based approaches can also accelerate the search

for objects in images when the saliency map can be fast computed.

• Shareable structure. When there are too many object categories, a sharable

structure like a class hierarchy or a common codebook will not only make the

learning of a new category efficient but also accelerates the inference process. Tor-

ralba et al.’s work on sharing features [150] and Lin et al.’s AND-OR graphs [151]

are two of the many representatives.

This is currently a very active topic, and there is still a long way to go for making the

recognition algorithms both effective and scalable.

2.5 Conclusion

The research focus of object recognition and parsing has clearly shifted from pure ge-

ometric modeling of several human-designed rigid objects with clean backgrounds to

appearance-based statistical learning of the huge amount of real objects with dramatic

variations and complex backgrounds. During this evolution, significant progress has

been made on designing generic local features and proposing effective computational

models such as BoW models and part-based models, which enable the machine to do

some real-life object recognition and parsing tasks without specific constraints. Even

though, the performance on generic object recognition is still far from being well enough

for real applications, while many core issues of recognition and parsing remains unsolved,

such as the integrating of local and global representations and the bridging of bottom-up

and top-down processes.

There are mainly two future research trends: one is application-oriented, i.e. col-

lecting larger and larger datasets with more and more real-life visual difficulties and

trying to incorporate new machine learning techniques to handle them and make the

best use of them; while the other is problem-oriented, i.e. trying to reveal the intrinsic

mechanisms of recognition and generate new solutions for these fundamental problems.

Clearly, most people are working on the former one which is relatively easier to follow,

but the later is more important in the long run. A possible way to pursue on the later

trend is to build new datasets that can better represent the human recognition proper-

ties and try to find or design computer vision algorithms for achieving the same results.

This thesis is an attempt along this way.
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CHAPTER 3

A Psychophysically Annotated Dataset with Deep and

Layered Semantics for Object Recognition

Building a good dataset is critical for steering the research and encouraging novel ideas

towards solving valuable problems. Unlike the other object recognition datasets which

are designed for either category-level recognition or within-category classification, we

introduce a novel dataset called “IAIR-CarPed” with not only categorial labels, but

also deep and layered within-category semantics gathered from 20 subjects via a strict

psychophysical experiment. To the best of our knowledge, it reveals the flexibility and

the confusion statistics of human vision on object recognition in a psychophysical way

for the first time, which can be used to design recognition algorithms mimicking such

properties of the human vision system.

This dataset focuses on two object categories “car” and “pedestrian”, which are

representative for doing research and also very important for real applications. It in-

volves 3132 images collected from pictures taken under various conditions and 8567

objects carefully annotated by all the 20 subjects. Besides deep and layered semantics,

five types of detailed visual difficulties of these objects are also provided, which can

be adopted for evaluating the representation and generalization ability of the recogni-

tion systems against individual difficulties. We present here the details of building this

dataset, its statistics and properties, and discuss possible applications of it on object

recognition, in which a novel application called deep and layered object recognition is

specially recommended for exploring this dataset. We hope that IAIR-CarPed can mo-

tivate research on solving the proposed deep and layered object recognition problem

towards the ultimate goal of deep scene understanding.

3.1 How About Being Deep and Layered?

There are several trends in the progress of building new object recognition databases as

can be seen from the above review:

1. Larger (Collecting more images). As the computational power of machines in-

creases and the visual data on the Internet grows, people are trying to collect

larger and larger databases for object recognition tasks. For presence vs. absence

image classification, the currently widely used PASCAL VOC Challenges [71] which

has only 20 object categories with thousands of images starts facing competitive

large-scale databases such as ESP [122], 80 million Tiny Images [11] and ImageNet
[12] which have millions of images for thousands of object categories. In object
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detection, the MIT Pedestrian database [125] and the INRIA Person database [126]

which have only hundreds or thousands of positive examples are being replaced

by much larger databases like the Daimler Pedestrian Detection Benchmark [129]

and the Caltech Pedestrian Detection Benchmark [14] which have tens of thousands

or even hundreds of thousands of annotated pedestrians. In object categorization

and scene parsing, Caltech-101 [132] gives way to Caltech-256 [133], while CBCL

StreetScenes [135] and the Microsoft Research Cambridge (MSRC) database [136]

are being challenged by LabelMe [134], CamVid [13] and the Lotus Hill Database
[137].

2. Harder (Involving more variations). Performances of the newly proposed recog-

nition algorithms on early simple databases (such as the Caltech-101 [132] dataset,

the MIT Pedestrian database [125] and the FERET face recognition database [142])

are becoming saturated, therefore, much harder databases have recently been pro-

posed. Many of the newly proposed databases are either trying to use the images

on the Internet directly which have great unbiased intra-class variations (like PAS-

CAL VOC Challenges [71], LabelMe [134] and ImageNet [12]), or targeting at object

recognition in real applications like the Caltech Pedestrian Detection Benchmark
[14] which is captured in typical urban streets using a camera mounted on a vehicle

for the purpose of automotive safety. These databases are much harder than those

specific ones captured in controlled environments as they involve many visual dif-

ficulties, such as the variations of view, pose, illumination, occlusion, backgrounds,

etc. Though a good recognition algorithm is expected to be robust to all these diffi-

culties, it is hard to find such an algorithm. Therefore a good benchmark database

is expected to be able to isolate the various difficulties that we need to conquer, so

that we can tell the exact differences between different algorithms [26].

3. Deeper (Providing non-categorial semantics). The annotation of the object recog-

nition databases is going deeper and deeper to reveal more details of how humans

perceive the objects, therefore it may motivate new object recognition models.

Spatially, more databases provide pixel-wise segmentation ground truths instead of

polygons and bounding boxes for the annotated objects, while semantically, peo-

ple start to provide within-category semantics like gender and pose [140, 141] and

cross-category middle-level semantics like attributes [138, 139]. Deep semantics are

important elements for understanding the highly abstracted category-level seman-

tics while themselves are useful for real applications.

4. More layered (Constructing hierarchical semantics). There are tremendous ob-

jects in the world and the number of semantics attached to them is also huge. After

a long time of evolution, we humans have developed efficient structures to organize

them and therefore we are able to quickly recognize different things and distinguish

them from other very similar ones. The taxonomy is one of such structures, and
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many recent databases [11, 12] have used the WordNet [121] to collect images from

the Internet. Such a layered tree structure is proved to be very helpful for object

recognition [12].

Within these four trends, the first two are natural choices especially for Internet-

based applications which have high demands on the scalability and robustness, but

setting higher goals may not necessarily results in better understanding of the intrinsic

mechanisms of object recognition in human vision, while the other two go deeper into

the box and try to borrow more from the human vision system. However, currently the

two later trends are still separate, deep non-categorial semantics are forced to be labeled

disregarding the layer of confidence, while layered semantics are still limiting themselves

to categories which are all nouns but no adjectives.

In our daily lives, however, we are neither interpreting all the objects appear in

our sights as deep as possible (from categories to attributes and other within-category

descriptions) nor just categorizing them into a few abstracted categories. Instead, object

recognition in our vision systems seems to be both deep and layered, i.e., some of the

objects are deeply classified (into subcategories), while the others are recognized at a

coarser level. Though visual attention plays an important role in layered recognition,

it still holds when the effect of visual attention is excluded. Closer objects tend to be

deeply interpreted while farther ones are more likely to be coarsely treated as the visual

information is weaker. The left part of Figure 3-1 shows a concrete example of the

deep and layered human recognition results of different object instances within a single

image, while the middle part illustrates the currently focused tasks based on the existing

datasets. The problem is: can we build up a dataset with deep and layered semantics

like the right part of Figure 3-1 which is close to the human recognition results?

Currently Focused Tasks

Task 1 [categorization]： Car.

Task 2 [detection]: Car 1- 3, with bounding boxes.

Task 3 [classification]

    Car 1: front, car 2: rear, car 3: rear (maybe front).

Task x

Our Proposal

Car 1: Frontal car with clear license plate.

Car 2: Rear, can not see license plate clearly.

Car 3: Front or rear.

Human Rapid Recognition

Car 1:  Frontal silvery car, with license plate.

Car 2:  White car, rear, can not see the license 

            plate clearly.

Car 3:  Small car, front or rear.

3

2
1

3

2
1

3

2
1

Figure 3-1 Motivation of building the IAIR-CarPed dataset.

We present here the IAIR-CarPed dataset, which is as far as we are aware the first

object recognition dataset with carefully collected deep and layered semantic labels. It

consists of 3132 images collected from pictures taken under various conditions, in which

8567 objects of two representative categories (“car” and “pedestrian”) have been labeled
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by 20 subjects through a strict psychophysical experiment. We focus on the layered

orientational information of the object (from totally unspecific to surely specific) and

the clearness of its key part (the license plate of a car or the face of a pedestrian) if

visible. The annotations for each object include the object bounding box, the category

of the object, 20 semantic labels from the subjects, the difficulty labels indicating the

presence of 5 different types of visual difficulties, 20 votes for the clearness of the key

part if the object has certain orientations, and the bounding box of the key part if it is

clear.

This dataset has the following four contributions for advancing the research on

object recognition:

• Deep and layered semantic labels are obtained from 20 subjects for all the annotated

objects in the dataset, which can be used as a benchmark for evaluating algorithms

targeting at deep and layered object recognition.

• Votes to different semantic labels reveal the confusions of the human vision among

the semantics, and they may be valuable for guiding the learning of human-like

recognition algorithms.

• The bounding boxes of the objects are suitable for researches on object detection.

Due to the large within-class variations, it is a challenging and valuable dataset for

this traditional task.

• Difficulty labels of the objects are applicable for evaluating the representation and

generalization ability of different features and/or learning algorithms.

The rest of this chapter is organized as follows. Section 3.2 shows how this dataset

was constructed, from choosing the categories and the semantic structure to the col-

lection and cleaning of the data. Section 3.3 presents the details for annotation via a

psychophysical experiment. The voting integration strategy for the final semantic label,

the computation of human confusions and some other statistics of the dataset are stated

in section 3.4. We discuss possible applications of the proposed dataset in section 3.5.

Finally, discussions and conclusions are given in section 3.6.

3.2 Dataset Construction

We present here the details for constructing the IAIR-CarPed dataset, including the

choosing of object categories, designing their semantic structures for annotation, and

the process of collecting and cleaning the images.

Instead of trying to collect a large-scale dataset which contains a huge number of

object categories, we choose to collect data on only two representative ones: car and

pedestrian, believing in that it is more important to research on the intrinsic mech-

anism of deep and layered recognition itself than to explore its scalability. Cars and
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pedestrians are within the most common objects in our daily lives and very important

to computer vision based applications like automotive safety and surveillance. More-

over, they cover both rigid and deformable objects which expose different challenges in

real scenes. Therefore, choosing these two categories for building a deep and layered

recognition dataset is promising. We are also trying to make the dataset best represent

the real world by involving sufficient difficulties, but unlike other existing datasets, we

separate the difficulties by labeling them independently so that the dataset can be used

to measure the robustness of algorithms against each of them.

3.2.1 Deep and Layered Semantics

For each category we are interested in, we would like to do deep within-category recogni-

tion with layered semantics, and the ground truth label of each annotated object in the

IAIR-CarPed dataset will depend on the human visual perception result of its appear-

ance. Based on our visual experiences, we find the orientation is an important property

of the interested objects from these two categories in static images, and its value can be

layered depending on the appearance of the objects. We choose to use the uncertainty

of the orientation as the measurement for designing the layers as shown in Figure 3-2.

In the two tree structures, objects belonging to the root nodes (“unspecific”) are the

most uncertain ones, i.e., we almost have no feelings of the concrete value of their ori-

entations. The second layer of the trees indicates that the orientation can be narrowed

down into smaller ranges but still cannot go down to very specific values. The labels

in the third layer are those specific orientations. To make things easier, we choose to

use semantically intuitive orientation labels (such as front, back/rear, left and right) for

the third level semantics, instead of trying to tell the concrete degree of the orienta-

tion which is visually hard. Therefore semantic nodes in the second layer are defined

as “front/back(rear)” and “left/right” which are more ambiguous than the third-level

semantics, but more certain than the root nodes. For those objects whose orientations

stay between two specific orientations, we treat them as orientation unspecific ones, i.e.,

put them into the root nodes.

In addition to the orientations of the objects, some object parts are also important

and may be of great interest to humans, such as the license plate of a car and the

face of a pedestrian. Therefore, we treat the object with a clear key part as a deeper

interpretation than global orientation classification. To make it easier, we only consider

the clearness of the key part when the orientation is specific, i.e., the frontal and rear

cars and the frontal pedestrians. In these cases, the key parts (license plate and face)

are more likely to be reliably detected than the others.
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Figure 3-2 The tree structure of the deep and layered semantics for each category. The top
three layers are about the orientation of the objects, while the fourth layer is on the clearness of the
key parts. Going down along the trees, the semantics get more and more certain and specific. The
shapes of the nodes are designed to illustrate the semantic meanings associated to them. Beside
the nodes are the average images of the annotated objects with the corresponding semantic labels
(excluding the truncated objects). We also choose proper abbreviations for the semantic labels
so that they can be indicated easily. For convenience, they may be used later without specific
declaration.

3.2.2 Data Collection and Preprocessing

We were trying to make the dataset as representative as possible when we collected the

data. There are two key points which have guided our collection: a) to make sure there

are sufficient examples for each output state, the data itself should have enough diversity

in term of the aspects determining the variability of the outputs, namely sufficient

between-class variation, and b) to make the dataset as generic and natural as possible,

we should also involve as many variances of object appearance as possible even when

these objects have the same output values, namely significant within-class variation.

Details about how this dataset was constructed are as follows.

Taking/Collecting Pictures Most pictures are taken from natural scenes in a city

with original image size of 2048×1536 or 640×480. These natural scenes include campus,

park, street, mountain, and rural areas. To make the dataset most generic, we also

gathered some other images taken under unusual weather conditions (like thick fog,

snow and sand storm) or special shooting angles (like sunrise/sunset and backlight)

from the Internet or taken by us in controlled environment. The diversity of pictures

ensures the enrichment of object orientations, including ambiguous orientations caused

by the environment, e.g. front/back ambiguity under backlight condition. We haven’t

considered frames taken from videos, but they can be our future candidates.

Selecting Pictures There are some rules which have guided our selection of the taken

pictures or those from the Internet. For better understanding of the IAIR-CarPed
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dataset, we list them as follows.

• Very low quality pictures are rejected. Cases are those highly blurred ones and very

low contrast ones.

• Pictures with only unusual cars and other vehicles are not selected. Trucks, buses,

and other types of non-car motors are of this type. Racing cars or irregular concept

cars are also out of consideration.

• Pedestrians are restricted to be upright people (standing, walking, running, lifting,

backpacking, etc.). Upright people with very unusual poses are also rejected.

• Avoid extreme occlusion. We do not considered highly occluded cases, like the

objects with more than 2 out of 3 of them occluded.

• The objects shouldn’t be truncated too much. Less than 50 percent is acceptable.

• The pitch angle of the camera should be normal (say held by a person with reason-

able distance to the object), neither too high nor too low.

• Statistically, the amount of samples with different semantics in the predefined out-

put space should be as balanced as possible.

Note that some of the demands are on objects but not images. There are cases that

some objects in an image satisfy the demands while the others in the same image do

not, we might still keep it for further processing.

Cropping and Resizing During the selection process, we got some pictures which

partially satisfy the demands. For example, some pedestrians are highly blurred due to

motion and low illumination while the others are in good conditions. In order to make

the best out of these pictures, we tried to crop subimages from them and used these

cropped images instead, ensuring that in each image most objects are acceptable. To

make the distribution of object size reasonable, we also downsized some images before

cropping. Been cropped or not, all the images were finally resized to a fixed size of

512×384 for consistency and convenience. Whenever the resize operation was used,

only downsizing was allowed to ensure the quality of the data, and the aspect ratio of

the objects were kept as they had been to avoid distortion.

3.3 Annotation

There are totally 3132 images adopted for annotation, each of which contains at least

one instance of the interested objects. For each image, we label all the object instances

(cars and/or pedestrians) within it which satisfy our demands: visually tellable, with

less than two thirds’ occlusion, truncated less than one half, type(for car) or pose(for

pedestrian) satisfying the demands in 3.2.2, and above minimum size (car 30-pixel wide

and pedestrian 45-pixel high).
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Our annotations are mainly two typed: semantics and localizations. The semantics

are the nodes shown in Figure 3-2 while the localizations are the bounding boxes of the

objects and their key parts (if clear). Figure 3-3 shows some examples of the annotated

images with an integrated semantic ground truth for each object in the image. The way

to annotate the objects is introduced in this section, while the method we have used for

integrating the semantic labels will be presented in 3.4.1.

Figure 3-3 Example images and their annotations. Green and red bounding boxes represent
annotated cars and pedestrians respectively, while the sign above each object illustrates its semantic
label.

3.3.1 Visual Difficulties and Object Localization

As stated in 3.2.2, the dataset is made to be as generic and representative as possible,

therefore it has great variations in the data, including significant visual difficulties. We

follow the suggestion of Sven Dickinson [26] to isolate the visual difficulties by categorizing

them into 5 different types as list below, hoping that it can aid the analysis of the

robustness of different recognition algorithms and thus indicating improving directions.

Since there are examples with mixed difficulties, we check the 5 difficulties one by one for

each object to see whether the object has it or not, resulting in a 5-dimensional difficulty

label vector. Each element of the vector is a binary value, for which 1 indicates that the

corresponding difficulty exists while 0 means the opposite.

The five difficulty types are:

• Occlusion. Occluding less than 2/3 of the object area is considered, while larger

occlusion or very little occlusion (less than 1/5) is ignored.

• Truncation. 1/5 to 1/2 of the object is truncated, based on the area of the

bounding box.

• Nonuniform illumination. Caused by shadows of other objects like trees, or

uneven lightings at night.

• Low contrast. Under conditions of low illumination (e.g. in the rain), or motion

blur.
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• Unfrequent shape. We want the 3-D shapes of the cars and pedestrians to vary

as little as possible. Therefore, car types besides sedan are treated as unfrequent

ones, and pedestrians with unusual pose or little children are of this type. Actually,

in the IAIR-CarPed dataset, they are unfrequent.

Truncation

Unfrequent shapeLow contrastNonuniform illumination

Occlusion

Figure 3-4 Visual difficulties and their actual examples in IAIR-CarPed dataset.

Figure 3-4 shows some annotated objects with one of the five visual difficulties.

Though most of the time occlusion and truncation are treated as the same, we would

like to differentiate these two concepts in this work so that they can refer to different

scenarios which can be handled in different ways. The way we differentiate them is based

on the bounding box of the object. We label the bounding box of a object as tight as

possible to just bound the visible parts of the object without objective estimation of

its missing parts. Then we define “occlusion” and “truncation” as: occlusion – some

part(s) of the object in the labeled bounding box is/are occluded by other objects, and

truncation – the labeled bounding box is considered to be smaller than the actual

bounding box if the object is fully visible. Note that our definition of these two concepts

are not mutually-exclusive, so that one object may have both of these two difficulties.

By separating these two concepts, it is expected that pure occlusion without truncation

is relatively easier to handle as the extension of the object is still tellable, while the

cases in which truncation is involved are very challenging as the real bounding boxes are

hidden. Therefore, in our setting, truncation is the most challenging difficulty, and it

needs to be handled using latent part based models with part presence reasoning which

is an even harder optimization problem than the part-based deformable model [77]. We

leave it as an open challenge for future research.

Since the difficulty labels and the bounding boxes are deterministic, we had them

labeled by one single person and checked by another.
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3.3.2 Orientation

The orientation of the objects is the main cue used by us to design deep and layered

semantics as shown in Figure 3-2. It can be seen that these semantic labels cannot

be easily separated for some ambiguous cases and different people may have different

opinions on them. Therefore, we decided to use the strategy of having a group of people

(usually several dozens) to label them independently and then integrate the results, as

widely used in psychophysical experiments.

However, we immediately found that human vision system is so powerful that by

careful examination it can use very minor details to tell the exact orientations even

though the objects are very small or look ambiguous at a glance. In our daily lives,

however, we usually do not try to recognize every single object as deep in the semantic

hierarchy as possible no matter how far it is away from us. Closer objects tend to be

more informative so that they can be more easily categorized into deeper layers. Such

a phenomenon shows the high efficiency of the human vision system based on the so

called rapid recognition, which has been researched a lot by neuroscientists in the past

few years [5]. In order to ensure the consistency and the layered property of the labeling

results, we followed the rapid recognition idea, and extended it from binary presence

vs. non-presence image classification to our deep and layered recognition. Unlike the

assembling of a sequence of binary labeling processes of ImageNet database as stated in
[12], a one-shot multiclass assignment is used for the deep and layered labeling of IAIR-

CarPed. Our experiments show that humans perform pretty well on this task without

much effort, which proves our observation and proposition.

Stimulus (20~50 ms)

ISI (0~30 ms)

Mask (80 ms)

Orientation?

50 ms SOA 

(Stimulus + ISI)

Timeline

Figure 3-5 Deep and layered semantic annotation through rapid recognition. Please refer to
the text for details.

We hired as many as 20 undergraduate and graduate students to participate in the

psychophysical experiment which is designed according to the one presented in [5]. As

shown in Figure 3-5, our experiment operates as follows. At each time, the machine
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randomly picks an unlabeled object instance cropped from the original image using its

bounding box with some margin, and shows it in the middle of the screen against a

black background for a stimulus time ranging from 20ms to 50ms, which is in inverse

proportion to the scale of the object. When the stimulus time is less than 50ms, an

interstimulus interval (ISI) is shown with the black background only until the stimulus

onset asynchrony (SOA), which is the stimulus plus the interstimulus interval, lasts as

long as 50ms. After that, a mask with random noises which has the same size as the

image shown before is displayed in the middle of the screen against the black background

for 80ms. This is to block possible top-town back-projection. Then the mask disappears,

leaving only the black background. The subject who is participating in the experiment

is asked to tell the orientation of the object by assigning one of 7 labels in the first three

layers of the semantic tree to this object. This is done by pressing a predefined key and

usually it takes less than 1s if the subject sees the object. Once the label is saved, the

system transfers to the next one, and a new round begins.

The reason for varying the stimulus time is to compensate the response time of

the eyes for adapting to the downsizing of the object scale. The smaller the object is,

the longer the stimulus lasts. Though we haven’t found the psychophysical or biolog-

ical prove for the exact relationship between the scale of the object and the stimulus

time needed for rapid recognition, experimentally we found that such a simple strategy

generates reasonably good results.

Our labeling tool is designed to be considerate and user-friendly. Late response

exceeding 1s will be treated as a sign indicating that the subject is not sure about the

orientation of the object, therefore his/her choice will be considered to be unreliable,

and the labeling tool will automatically choose the parent label of the label chosen by

the subject to increase the reliability. If the subject needs a break, he/she can just leave

the tool without response and come back to press a resume key to continue the labeling.

If one realizes that a mistake has been made, then the tool can roll back to the former

object and let the subject reassign a label.

Note that for objects with at least one of the three visual difficulties of occlusion,

truncation, and low contrast, rapid recognition is very hard to generate reliable results.

These objects usually need selective visual attention or even visual reasoning which

require feedback circles in the cortex. Therefore, we designed a separate experiment for

labeling these objects by extending the stimulus time to as long as 500ms.

3.3.3 Key Part Clearness

In addition to the orientation, we also labeled the clearness of the key parts for objects

with certain orientations: frontal/rear cars and frontal pedestrians. This is so far the

deepest layer of our semantic structure which goes beyond the object itself to its key

part. It is motivated by the visual experiences that we humans are very interested in

40



3. A Psychophysically Annotated Dataset with Deep and Layered Semantics for Object Recognition

the key parts (especially the faces of pedestrians) when they are clearly visible, and such

an extension naturally fits the layered human recognition of these two types of objects.

However, it is impossible to put the key part clearness labeling directly into the rapid

recognition framework, because the key part recognition is usually competing with the

recognition of the global object. When the object is shown very rapidly, humans can

usually focus on either the orientation of the object or the key part of it, but not both

as there is no time for saccade. In this situation, saliency and visual attention will play

an important role on the final result. If the object itself is more salient than its key part,

then it’s more likely that humans will get its orientation while disregarding the clearness

of its key part. On the opposite, if the key part is more salient, then it may attract

humans’ attention, making them forget to tell the orientation of the object. Therefore,

we chose to label the orientation first by forcing the subjects to focus on the global

appearance of the object, and after getting the final orientation of the objects through

the annotation integration as to be represented in the next section, we asked the subject

to label the key part clearness of the frontal/rear cars and frontal pedestrians by just

looking at the local areas where the key parts may appear.

Note that the clearness of the key parts is not easy to be properly defined, as we

do not know the exact perceptual threshold of it and how this threshold can be used

for consistent labeling by many subjects. After plenty of observation, we defined it as:

for license plate the clearness means that most of the characters on it are readable, and

for face it means that the facial features (especially the eyes) of it are tellable. We

observed that when the characters on the license plate are perceptually separable, they

are usually also tellable, therefore we chose the separability as our measurement instead

of the recognition results of characters for its simplicity and efficiency. The clearness

check seems to be more complex than the simple presence classification, rapid response

may be unreliable. Therefore, enough stimulus time (1s) is given for this task.

3.4 Statistics

We present some informative statistics of the dataset based on the annotations. The

most important statistic is the integrated semantic label for each object from the original

20 labels, which is presented in 3.4.1. Another critical information for understanding

the intrinsic mechanism of object recognition in human vision is the confusion matrix,

which may guide the learning of a human-like recognition model and can also be used for

evaluation. We show the details of it in 3.4.2. Other statistics such as the distributions of

the semantic labels, the object scale distributions for each semantic label are presented

in 3.4.3.
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3.4.1 Voting for Annotation Integration

As presented in section 3.3, the semantic labels were gathered from the subjects through

two separate stages: one for orientation labeling, and the other for key part clearness

labeling. Since the later is a binary classification problem, a simple majority voting is

used to integrate the labels, i.e., the clearness is confirmed if and only if more than half

of the labels are “yes”.

For object orientation labeling which is a multiclass classification problem, though

normal voting is a simple and fair way to integrate the labels, it is not suitable for our

problem. If an object has very diverse votes, for example, 5 to “front or back”, 6 to

”front”, 5 to ”back”, and 4 to the others, then it will be dangerous by choosing “front”

as its ground truth, as most people do not agree with that. However, if we choose

“front and back” instead, then the 11 people who have chosen “front” or “back” would

partially support that, and maybe change their ideas to “front or back” to get a common

agreement. This is plausible because the diverse votes indicate that the example is hard

to tell whether it is “front” or “back”. Actually, such a case is normal in our rapid

recognition setting. When an object’s orientation is ambiguous, people may choose the

right semantic label in the two upper layers of the tree, but may also choose either one of

its children (i.e., a more specific orientation) if they think they can somehow weakly tell

its orientation. These risky judgements result in the diversity of votes for the visually

ambiguous object. From the actual labeling results we found that the subjects hired by

us tend to make such risky decisions instead of conservative ones.

To integrate such labeling results, we propose a transferred super-majority voting

strategy as shown in algorithm 1.

1   1   0   10 2   0   6

Round 1:

Round 2:

U
n
s

F
/B F B

L
/R L R

Original 

votes:

1  11 0   0   2   0   6

20 0   0   0   0   0   0

<0.7

<0.8

Figure 3-6 A real example of the transferred super-majority voting for label integration. In
this example, though the majority of the votes are “back”, they cannot go beyond the threshold
0.7. After two rounds of label transferring and subtree integration, the final label is “unspecific”,
which is a suitable assignment with respect to the original votes.

The goal of the transferred super-majority voting algorithm is to find the deepest

label for the object which has enough supports from all the original votes with respect

to predefined thresholds. In our case, the thresholds for the nodes in the same level of
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Algorithm 1 Transferred Super-majority Voting:
Input:

The semantic tree structure T = {V , E}, where V = {N1, . . . , Nn} are the nodes,

and E are the edges (if (Ni, Nj) ∈ E , then Ni is the parent of Nj);

The original semantic vote results v = (v1, . . . , vn)T of the input object to the tree

nodes;

A group of predefined winning thresholds t = (t1, . . . , tn)T .

Output:

The final label index of the input object l ∈ {1, . . . , n}.
1: Normal voting: l = arg max

i
vi. Note that if l has multiple initial values due to equal

votes, then go through the following steps until termination with each one of them,

and pick the one lies deepest in the tree T as the final label index l from all the

results.

2: Thresholding and decision making: if vl/
∑n

i=1 vi ≥ tl, then terminate and return l.

3: Subtree integration: ∀Ni ∈ V , if (Nl, Ni) ∈ E , then vl = vl + vi, vi = 0.

4: Termination or label transferring: if vl/
∑n

i=1 vi < tl and ∃i, (Ni, Nl) ∈ E , then l = i

and go back to step 3, else terminate and return l.

the tree are set to be the same, and the ones for the three different semantic levels are

set to be 0, 0.8 and 0.7 respectively from top to bottom. We found that such a setting

results in semantically plausible final labels for the annotated objects. An example of

the transferred super-majority vote is shown in Figure 3-6.

Bbox              [53 142 464 275] 

Label                          9

Label_hit      [0 0 0 0 0 0 0 0 20]

Original_label    <1x20 double>

Category               ‘car’
Keypart_bbox            []

Difficulty label    [1 0 0 0 0]

Bbox               [182 50 255 270] 

Label                            4

Label_hit         [1 0 19 0 0 0 0 0]

Original_label  <1x20 double>

Category            ‘pedestrian’
Keypart_bbox    [202 56 233 87]

Keypart_label      <1x20double>

Difficulty label      [0 0 0 0 0]

Figure 3-7 Examples of the final annotation information provided for each object. The “La-
bel hit” stands for the transferred votes for each semantic label in the tree structure in a depth
first order including the key part clearness label, while the “Label” is the index of the final label
after annotation integration. “Original label” and “Keypart label” are the original labels from the
20 subjects.

We provide both the original labels from all the subjects and the final voted label

in the annotation of each object, so that one can choose to use our proposed label as the

ground truth or generate his/her own result from the original labels based on any other

vote integration strategies when needed. Figure 3-7 presents two typical examples of the

final annotation information for the annotated objects in the IAIR-CarPed dataset.
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3.4.2 Semantic Confusions of Humans

The original votes not only provide elements for final label assignment, but also reveal

the recognition ability of humans on distinguishing different semantic subsets. We treat

the final voted label as the ground truth of the object, and the votes to the other labels

as recognition mistakes. By computing the average percentage of the number of votes to

the mistaken node Nj while its voted ground truth is Ni, we can see how likely humans

may mistake the semantic label associated with Ni for the one associated with Nj . We

believe that the semantic confusions of humans are valuable for guiding the learning

of a recognition model to generate reasonable results as close to those of the humans

as possible. If humans seldom make certain mistakes, the machine is better to avoid

making them. And if humans usually get confused on some semantic labels, the same

types of mistakes made by the machines should be relatively more acceptable.

Since we have two stages of labeling and voting, a confusion matrix involving all

the semantic labels in our output space as shown in Figure 3-2 needs to fuse the voting

records from these two stages. Though it’s very easy to do so, we discuss here only the

confusions between different orientational semantics, as they can represent the human

confusions more clearly and intuitively. When working on all the semantics including

the clearness of the key parts, one only needs to separate the votes to the third layer

and the fourth layer by the key part clearness label of these objects, then an augmented

confusion matrix can be got.

After getting the final labels from the voting, we can compute the confusion ma-

trices using the original votes, which are referred to as original confusions. To see

how people make mistakes on different data, we compute the confusion matrices on two

different subsets of the two categories (car and pedestrian) respectively: set “S” con-

tains objects without any visual difficulties, i.e., only simple examples, while set “D” is

the complementary subset, containing objects with at least one special difficulty. Note

that set “S” is labeled though rapid recognition only, while most of the examples in

set “D” are not labeled by rapid recognition due to their difficulties. The results are

shown in the upper row of Figure 3-8. It can be seen that there are very tiny differences

between the two different subsets of both car and pedestrian, which demonstrates that

our rapid recognition strategy is reliable, as humans can almost eliminate all the visual

difficulties on set “D” when enough time is given and therefore the confusions on that

set are considered to be the real representations of how people may confuse these se-

mantics. Compared to the confusions on set “D”, those on set “S” from “Uns”, “F/Rr”,

“F/B” and “L/R” to their child semantics are slightly larger, which indicates that in

rapid recognition people tend to make more mistakes on ambiguous examples. This is

reasonable because in rapid recognition humans do not have enough time to carefully

check the details if they are not clear.

Though the original votes directly represent the recognition results of humans,
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Figure 3-8 The human confusions on the object orientations through rapid recognition. The
upper row shows the human confusions computed using the original labels which are aggressive,
while the lower row presents the adjusted confusions which look much more conservative. The
adjusted confusions are computed using the transferred labels which significantly prevent predicting
ambiguous objects with deeper labels than they should have.

votes of semantically ambiguous objects are relatively diverse. Therefore, confusions

computed on these semantic labels (such as “Uns”, “F/B(Rr)” and “L/R”) are very

large, especially those confusions to their child nodes. Following this kind of confusions

may end up with aggressive predictions which might be risky in some applications.

Therefore, we propose to use the conservative confusions computed using the adjusted

votes after the transferred super-majority voting, namely, after each subtree integration,

the votes to the nodes in the subtree are all redirected to the root node of the subtree.

By doing so, the original confusion matrices shown in the first row of Figure 3-8 are

mapped into the ones shown in the second row of the same figure, which are referred

to as adjusted confusions. Such an adjustment has significant effects on reducing the

confusions from ambiguous semantics to their child semantics.

Note that the confusions shown in the figure are from all the applicable examples

in the dataset. When the confusion matrix is used for model training, it should be

computed from the training examples only.

45



Dissertation of Xi’an Jiaotong University

3.4.3 Data Distributions

Scale distributions Intuitively, it can be inferred that objects belonging to the higher

layers tend to have smaller scales. To verify this and show the actual distributions of our

data, we compute an object scale histogram for each semantic subset as shown in Figure

3-9 excluding the objects with truncations whose actual size are unknown. Undoubtedly,

semantically ambiguous subsets have more examples in smaller scales. And the scale

distributions present some statistical properties of the data: a) there are more cars in the

parallel directions than in the vertical directions and the majority of the cars are far way

especially in the parallel directions, which is reasonable when we capture the pictures

along the streets; b) few of the pedestrians come close or very close to the camera, and

numbers of them in the other two groups are very close; c) unlike the cars, pedestrians

in the four orientation specific subsets have very similar scale distribution though the

parallel directions have relatively more examples.
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Figure 3-9 The scale distributions of the objects on the semantic subsets. We briefly quantize
the scales into four groups (far, medium, close, and very close) according to the width of the car
and the height of the pedestrian respectively. More specific, for cars, the four groups are [30, 128],
(128, 256], (256, 384] and (384, 512], while for pedestrians they are [45, 96], (96, 192], (192, 288],
and (288, 384].

Difficulty distributions The detailed labeling of visual difficulties is an important

and distinguishing property of IAIR-CarPed which enables the robustness analysis of

the features and/or the recognition algorithms. Since we labeled the presence of the five

difficulties (occlusion, truncation, non-uniform illumination, low contrast, and unfre-

quent shape) independently, there are totally 25 combinational states. We list 8 of them

with their distributions on the semantic subsets in Table 3-1. They include the simple

set “S” without any difficulties, the five sets with only one single type of difficulty (from

“D1” to “D5”), the whole dataset excluding only the truncated examples (“SD-D2”),

and the whole dataset itself (“SD”). It can be seen that there are totally 3292 cars and

5275 pedestrians in the dataset, in which about half of them are difficult ones with at

lease one visual difficulty. For both car and pedestrian, “L/R” contains the smallest
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number of examples, which indicates that for these two categories, left and right are

relatively easier to tell from each other. As mentioned before, due to the fact that we

have only labeled the tight bounding boxes for truncated objects, it is not easy to these

examples as the actual extents of them need to be estimated during training. Therefore,

the set of “D2” and “SD” in the table are usually not used for experiments, while the

other six are recommended. Briefly speaking, for these six sets, the distributions of the

number of examples belonging to different semantic subsets are similar, though the total

number of examples varies.

Table 3-1: Distributions of the number of objects in subsets with various difficulties. The capital
‘S’ and ‘D’ in the second column stand for “simple” and “difficult” respectively. The abbreviations
are set notations, while the numbers in the parentheses are the corresponding visual difficulty
labels. ‘1’ means the difficulty presents while ‘0’ means not, and ‘x’ means ‘0’ or ‘1’.

Category Set Uns F/Rr(B) F FLP (FCF) Rr (B) RLP L/R L R All

S (00000) 388 167 233 84 265 100 20 253 190 1700
D1 (10000) 136 24 34 4 36 3 25 57 74 393
D2 (01000) 67 14 16 5 36 2 5 40 30 215

Car D3 (00100) 24 14 12 11 21 4 1 6 2 95
D4 (00010) 41 27 7 0 11 0 3 10 7 106
D5 (00001) 28 14 14 7 27 6 0 17 5 118
SD-D2 (x0xxx) 711 283 326 109 384 118 60 380 299 2670
SD (xxxxx) 953 320 362 116 454 123 106 476 382 3292

S (00000) 591 130 569 158 760 0 15 316 336 2895
D1 (10000) 198 24 89 27 276 0 3 84 114 815
D2 (01000) 41 3 50 12 43 0 2 23 18 192

Pedestrian D3 (00100) 6 1 7 3 9 0 1 0 2 29
D4 (00010) 265 164 91 1 75 0 5 62 51 714
D5 (00001) 46 9 31 7 36 0 5 31 36 201
SD-D2 (x0xxx) 1215 348 824 201 1219 0 35 507 562 4911
SD (xxxxx) 1309 355 910 216 1302 0 37 544 602 5275

Training and testing data To make the IAIR-CarPed dataset ready for experiments

and performance comparison, we split the whole image set (containing 3132 images) into

two equally sized subsets for training and testing by random sampling. Therefore, each

one of them includes 1566 images, and the numbers of objects for training and testing

are roughly the same for both car and pedestrian. The indices of the images for training

and testing are distributed along with the dataset. Note that all the subsets listed in

Table 3-1 contain both training and testing examples.

3.5 Applications

The IAIR-CarPed dataset provides new opportunities for advancing the research on

object recognition. One of them is object detection using only the bounding boxes and

the category labels, and another is the opposite, i.e., within-category object classification

using these deep and layered semantic labels assuming the bounding boxes of the objects

are known, which is called deep and layered object classification in this thesis. We present

some primary experimental results on these two applications with discussions on the

inspirations they bring to us. Further more, we propose a new challenge on this dataset,
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which is a combination of the first two problems, i.e., simultaneous detection and layered

within-category classification. Due to its complexity, we discuss here only some possible

issues towards solving it, leaving the solution itself for further exploration.

3.5.1 Object Detection

There are a lot of publicly available datasets for car and pedestrian detection, such as

the widely used UIUC side-view car detection dataset [124], some multiview car detection

datasets [48, 140] collected from other general purpose databases, the small scale pedes-

trian detection datasets collected in different scenarios [126–128], the recently proposed

large scale pedestrian detection datasets captured in street scenes only [14, 129, 130], and

the challenging unconstrained car and people data in the PASCAL VOC challenges [71].

Even though, the IAIR-CarPed dataset is still a valuable benchmark for car and pedes-

trian detection which cannot be replaced by the others, as it has three advantages: a)

moderate size (thousands of objects in thousands of images) which is computationally

desirable for most algorithms; b) sufficient but constrained intra-class variations (vari-

ous environmental conditions, but relatively constrained poses); and c) separated visual

difficulty labels which can be used to measure the performances in different ways.

Unlike the other datasets, the IAIR-CarPed dataset contains no specific negative

images for training and testing which are considered by us to be unnecessary. Instead,

one can use the sliding windows which have less than 50% overlap with the labeled

ground truths as negative examples. Such a strategy not only directly differentiates

the objects and their related backgrounds, but also takes into account the possible false

positives due to misalignments, like the region within two pedestrians.

We propose a baseline algorithm using the two-layer HOG features (please refer to

4.7.2 for details) and the linear SVM classifier for object detection on the IAIR-CarPed

dataset. For comparison, the state-of-the-art part-based deformable model [77], which has

winning performances on the PASCAL VOC 2008 challenge dataset, has been adopted

to test on it. We trained our baseline algorithm on set “SD-D2” which contains all the

applicable object instances, and tested the trained model on six different subsets: “S”,

“D1”, “D3”, “D4”, “D5” and “SD-D2”. For the part-based deformable model, we used

the pre-trained model on the PASCAL VOC 2008 challenge dataset to directly test on

these six different subsets. By doing so, we can have a rough sense of the complexity of

the IAIR-CarPed dataset compared to the INRIA person dataset [126] which is the closest

competitor on pedestrian detection. Since the minimum size of the annotated objects

in the IAIR-CarPed dataset is about twice smaller than the size of HOG templates, we

upscaled the images by two times for training and testing.

The experimental results are shown in Figure 3-10, which is measured by the per-

image Detection Error Tradeoff (DET) curves on a log-log scale, i.e, miss rate versus

FPPI, as proposed in [14]. Such a per-image measurement is proved to be more reliable
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Figure 3-10 Object detection results measured by per-image DET curves.

and fair than the traditional per-window measurement. Besides the per-image DET

curve, the Precision-Recall (PR) curves are also good for measuring the detection per-

formance, which has been used in PASCAL VOC challenges [71]. However, as we want

to compare the performance on different subsets which has different numbers of positive

examples, the precision measurement will bias on larger subsets, and such a bias can

results in significant disorder of the curves as shown in Figure 3-11. So that for the pur-

pose of comparing detection performances of one algorithm on different positive subsets

of the dataset, one should look into the per-image DET curves but not the PR curves.

For the purpose of comparing different algorithms on the same dataset, however, both

of these two measurements are applicable.

From the results in Figure 3-10, we can see that comparing to the baseline algo-

rithm, part-based deformable model generalizes better to objects with unfrequent shape

and occlusions, proving the benefit of using the latent part-based deformable model.

Since both of these two algorithms are based on HOG features, they all suffer from the
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Figure 3-11 The disorder of the PR curves dues to different numbers of positive examples in
the listed testing subsets. Since the precision is computed by the true positives vs. true positives
plus the false positives, for a given FPPI of the model, it’s more likely that those subsets with
more positives have more true positives (i.e., higher precision).

low contrast difficulty which weakens the gradients. Though these two algorithms are

not completely comparable as they were trained on different data, by comparing their

results on car and pedestrian we can still get the inspiration that a divide-and-conqueror

strategy can promote the performance of the model. The superiority of the part-based

deformable model is more significant on cars than on pedestrians because the two compo-

nents of the car model trained on PASCAL are all applicable to the IAIR-CarPed dataset

while only one component of the two-component person model can be used to detect

the full body pedestrians. Therefore, if a detection model can take the advantage of the

deep and layered semantics provided by the IAIR-CarPed dataset, it may significantly

boost the performance. This is one of the motivations for simultaneous localization and

classification which is exactly the new challenge we are going to propose.

The pedestrian detection results of the part-based deformable model on the IAIR-

CarPed dataset also demonstrate that it is a more challenging benchmark for pedestrian

detection comparing to the INRIA person dataset. As presented in [14], the miss rate of

the part-based deformable model at 1 FPPI on the INRIA person dataset is 0.21, while

for subset “S” and subset “SD-D2” of the IAIR-CarPed dataset, it has a value of 0.29

and 0.34 respectively.

3.5.2 Deep and Layered Object Classification

This is a within-category multiclass classification problem, but it has an important

characteristic compared to other similar problems: the classes have layered semantic
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relationships between them. To model these structured relationships, we can use the

maximum-margin based discriminative structured learning algorithms like SVMstruct
[23]. We choose to use a relatively more efficient learning algorithm named SOnline (see

4.7.3) to do our experiments. It is an online learning algorithm which can also been used

in a batch mode by repeating the online learning process several times until it converges

or reaches the maximum number of iterations. For our experiments, a 3-epoch batch

learning is adopted and it can generate reasonably good results. Since the number of

training examples for this application is not very large, no training set updating is needed

when using SOnline for learning.

About the loss function in the structured learning problem for classification, a de-

tailed discussion can be found in 4.5.1. Both the zero-one loss l0/1 and the confusion

loss lConf are used in our experiments for comparison, in which the parameter η control-

ling the diversity of the confusion loss is set to 0.2. As discussed before, the adjusted

confusions are better for learning a conservative model which is semantically more plau-

sible. Therefore, we use the adjusted confusions on the training data for computing the

confusion loss.

Usually for multiclass classification, the performance is measured by the error rate

which is computed based on the zero-one loss. However, it may not be a good measure-

ment for structured prediction problems like the problem we are working on, as different

mistakes are not equally bad. Using the confusion loss instead is a plausible choice, as

it represents the way in which humans tolerate the mistakes. To compare these two

measurements, we computed both of them in our experiments.

Note that the dataset provides a hybrid semantic annotation which contains both

orientational information and key part clearness information as shown in Figure 3-2.

Though semantically correlated, these two types of information need to be represented

by different features. The key parts we have chosen (license plates and faces) are very

specific patterns, so their clearness (or equivalently presences) are better to be described

by corresponding detectors, while the orientation of the object is better to be represented

by other object-level features like global shape features. To make things easier and

clearer, we choose to do some primary experiments on the orientational semantics (i.e.,

the first three layers) only. However, they can be easily extended to deal with all the

semantics as long as the features and the loss function are computed.

We choose the well-known HOG features [126] as our data descriptor for this applica-

tion, which has been proved to be good for representing cars and pedestrians. However,

unlike the detection problem, the within-category classification needs to explore the

shape subtleties between the semantics. Therefore, we use a dense HOG with 12 × 16

cells for cars and 24×8 cells for pedestrians without margins (as the margins may be use-

less for the within-category classification problem). For both efficiency and effectiveness,

we use the PCA-HOG [77] instead of the original HOG in our experiments.

Baseline results By training and also testing on set “S” (using their corresponding
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Table 3-2: Baseline deep and layered object classification results using different loss functions
for training and measured by different testing losses. The columns are different losses for training
while the rows are losses for performance evaluation.

Car Pedestrian

Loss function l0/1 lConf l0/1 lConf

l0/1 0.1957 0.2372 0.3663 0.3822
lConf 0.1680 0.1659 0.3217 0.2905

examples of it), we got the results as listed in Table 3-2. It can be seen that for both cars

and pedestrians, training with lConf results in larger zero-one loss but smaller confusion

loss in testing than training with l0/1. Figure 3-12 shows the detailed confusions on

the test data after training with these two different loss functions. Clearly, because the

confusion loss biases on conservative recognition, the results of training with lConf have

fewer aggressive mistakes but more conservative mistakes than the results using l0/1.

The experimental results indicate that by setting a proper loss function, the algorithm

can generate recognition results with desired properties.

Note that cars have much smaller test errors (losses) than pedestrians, which means

that cars have greater within-category shape variations (captured by HOG) due to ori-

entation changes than pedestrians, which is visually provable.

Robustness to visual difficulties To use the difficulty labels for robustness analysis,

we propose to train the model on set “S” and test it on the difficult subsets with only

one visual difficulty in them, such as “D1”, “D3”, “D4” and “D5” (“D2” is not used due

to its special ground truth and performance measurement), in comparison to the test

performance on set “S”.

Table 3-3: Robustness of the baseline deep and layered classification algorithm against individual
visual difficulties. The model is trained using lConf on set “S”. Performance on set “S” is presented
for comparison

Car Pedestrian

Test set S D1 D3 D4 D5 S D1 D3 D4 D5

l0/1 0.2372 0.4592 0.3469 0.3962 0.3061 0.3822 0.4296 0.2941 0.4971 0.6147

lConf 0.1659 0.3146 0.1938 0.3430 0.1357 0.2905 0.3150 0.1748 0.4086 0.4598

Table 3-3 shows the results using the dense HOG features and training with the

confusion loss. The results inform us that the robustness to certain difficulty not only

depends on the feature representation, but also depends on the object category, i.e., the

data itself. For the four different difficulties we are interested in, low contrast (in set

“D4”) consistently reduces the performance of HOG features as it weaken the gradients,

while occlusion (in set “D1”) has much larger influence on cars than pedestrians which
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Figure 3-12 The confusions in the test results using the two different loss functions. It shows
that comparing to the flat multiclass classification, structured learning using the relatively more
conservative confusion loss can lead to more conservative predictions.

may suggest that the normal occlusions of these two categories are not equally serious.

Note that the occlusion defined by us does not contain truncation, so that cars are usually

occluded by pedestrians or trees which may influence the orientation classification a lot,

while pedestrians are more often to be occluded by bags which has little impact on

judging the orientation. The other two visual difficulties have opposite impacts on these

two categories: nonuniform illumination (in set “D3”) hurts cars a lot but little to

pedestrians, while unfrequent shape (in set “D5”) is a big problem for pedestrians but

not as disturbing for cars. Such contrasting results mainly due to the properties of

the data but not the features and the algorithms. Nonuniform illumination has so few

examples for pedestrians (as shown in Table 3-1) that its results are not statistically

meaningful, while the unfrequent shape for cars is not challenging as it stands for those

vehicles having very similar shape to sedans.

This is just a demo on how these difficult subsets can be used, it will be more

meaningful if different features and/or different algorithms are compared on them to

reveal the differences between them, which is open to the public.

53



Dissertation of Xi’an Jiaotong University

How much can feature representation improve? From the results presented

above, we can see that this deep and layered recognition is really challenging. As we

have only explored the dense HOG features, one may doubt that tuning the parameter of

HOG or using a hierarchical feature representation may improve the performance. But

how much can it improve? We present here more experimental results using different

HOG features as shown in Table 3-4, in which “Coarse HOG” has only 6 × 8 cells for

cars and 12×4 cells for pedestrians which is very close to the usual settings for detection
[77] while “Fine HOG” stands for the dense HOG used before, and “Two-layer HOG”

means using both of them. It can be seen that using finer HOG can only reduce the

error rate by no more than 1 percent while combining both coarse and fine HOG can

get another 1 percept improvement (showing that they are complementary). Therefore,

to get a significantly performance improvement, one has to introduce other features

which is complementary to HOG features. On the other hand, designing better learning

algorithm may also help.

Table 3-4: Results of deep and layered classification using various HOG features. Since lConf is
a better performance measurement than l0/1, the results are compared using lConf only.

Car Pedestrian

Feature Coarse HOG Fine HOG Two-layer HOG Coarse HOG Fine HOG Two-layer HOG

lConf 0.1677 0.1659 0.1530 0.3009 0.2905 0.2806

3.5.3 A New Challenge: Deep and Layered Object Recognition

Though the two applications presented above are valuable research topics for object

recognition and the dataset can serve as a good benchmark for them, we are interested in

a uniform recognition framework whose desired outputs are exactly what have be anno-

tated, i.e. simultaneous object detection and deep and layered object classification. We

call this uniform object recognition problem deep and layered object recognition,

which contains both category-level recognition and layered within-category recognition.

We believe that such a problem with both these two components is more promising than

problems with either one of them, because these two are highly correlated and they may

help each other.

For solving the brand new object recognition problem, the feature representation

has to be powerful enough to distinguish the objects from their backgrounds while at

the same time differentiate the within-category subsets with nonidentical semantics.

The learning algorithm should be able to make use of the relationships among these

semantics, and train the model in an efficient way since the task is more complex than

the others. Moreover, the relationship between objects and their key parts should be

properly modeled and the features for representing them should be somehow combined.
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Note that there can be any number of interested objects in a single test image from zero

to many, and the performance should depend on both the classification and localization

results.

Though the category-level labels and layered within-category labels of the dataset

are collected through separate annotation processes for practical considerations, the

human vision system seems to be able to output these two types of labels simultaneously.

Therefore, designing a computer algorithm which can do the same task will be very

useful.

3.6 Conclusion and Discussion

The ultimate goal of object recognition is to understand the colorful objects within the

visual world. To achieve this goal, the recognition should not be limited to localization,

categorization and within-category classification, but better to be modeled for adaptive

interpretation which can choose the fittest semantic label for each object from a layered

semantic set which contains both categorial and non-categorial semantics. However,

currently there is no object recognition dataset designed for such a purpose. There-

fore, we introduce the IAIR-CarPed dataset for deep and layered object recognition

with carefully collected human annotations on two representative categories: car and

pedestrian.

The IAIR-CarPed dataset distinguishes itself from the others by two major prop-

erties: a) deep and layered human object recognition results with inspiring confusions

of human vision, and b) detailed difficulty labels which can be used to evaluate the

robustness of the algorithm/system against individual factors. The first property makes

the dataset a benchmark for learning and evaluating deep and layered recognition algo-

rithms, while the second one fractionizes the dataset for in-depth study of the general-

ization ability of the algorithms.

Three typical applications of this dataset have been discussed with primary exper-

imental results on the first two of them. The first application on object detection is a

byproduct of the dataset, but it is contributive to researchers working on detecting cars

and pedestrians as it provides a moderate dataset with some new properties that other

detection datasets do not have. Experiments on this application show that this dataset

is more challenging than the well-known INRIA person dataset, and within-category

classification may help detection. The second application on deep and layered object

classification is a simplified version of the third application on deep and layered object

recognition. Even though, we got some valuable results from the primary experiments on

it: a) the loss function can significantly drive the recognition results, and the confusion

loss based on human confusions is more plausible than the zero-one loss for both the

training and the evaluation of deep and layered classification; b) the difficulty labels of

the dataset can reveal the robustness of visual features to different variations. Though
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we haven’t presented experimental results on the third application, hints on designing

algorithms for solving it have been given. Exploring effective and efficient algorithms

for such an application will be our future work.

Due to the semantics we have chosen, the annotation based on human rapid recog-

nition is informative but also expensive. IAIR-CarPed took about 200 person hours

for the semantic labeling in controlled environment. For generalizing the idea to many

other object categories, we can design new less demanding semantics for them and put

the annotation tool on the Internet for collecting the labels from the public. Possible

solutions may be making the annotation a game like the ESP dataset [122], or using the

service of Amazon Mechanical Turk (AMT) like the ImageNet database [12]. Anyway,

for both research purpose and real applications, IAIR-CarPed is a proper starting point,

and we hope that it will open a door to the new exciting research field on deep and

layered recognition.

To summarize, the IAIR-CarPed dataset is a proper benchmark for the research on

both the newly proposed deep and layered object recognition (including deep and lay-

ered classification) and traditional object detection, and it is suitable for the robustness

evaluation of algorithms/systems. The limitation is two-fold: it contains only two repre-

sentative object categories: car and pedestrian, and the layered semantics are restricted

to the orientation of the object and the clearness of the key parts.
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CHAPTER 4

Deep and Layered Object Recognition

In this chapter we present a generic definition of Deep and Layered Object Recognition

(DLR), followed by detailed discussions on practical issues of modeling, learning, eval-

uating and implementing it in computer vision. A case study on recognizing cars and

pedestrians in the IAIR-CarPed dataset with deep and layered semantics shows the ef-

fectiveness of the proposed model and demonstrates its superiorities against traditional

object recognition models.

4.1 Motivation and Contribution

When talking about object recognition, we are no strangers to the amazing functional-

ity of animals including ourselves, and the challenging problem we are working on for

decades in both computational neural science and computer vision. A picture is worth

a thousand words. There is much information embedded in even a single still image

and it holds for many common objects like cars and pedestrians. Cars and pedestrians

may have various appearance and they may appear at different places under changeable

illumination conditions. However, we have no problems living in the world with tremen-

dous amounts of such objects. How can we do this? What information do we get from

different instances of the same object category when we see them in the real world?

To make things easier, neural scientists paid special attention to the so called feed-

forward rapid recognition in primate visual cortex [5, 152], which is thought to be a good

simplified model for understanding human recognition, and one example of simulating

it in computer vision is proposed in [4]. Though most existing cognition experiments on

rapid recognition are about object presence classification and category-level recognition,

our new experiment presented in chapter 3 shows that a 20-50 ms rapid stimulation

period can result in deeper and more layered recognition results. It seems natural for

our humans to get the deep and layered interpretations of the visual objects rapidly and

effortlessly, and such a recognition manner works well in our daily life.

However, the existing problems about object recognition we are trying to solve in

computer vision are not like that. We may work on one of several concrete recognition

tasks for understanding an image. One can categorize the whole image into predefined

groups, like the recent work presented in [64] and [51], which are two of many papers

on such a task. One can localize or detect the specific object instances (like cars)

in images [77, 148, 153]. One can go further to do multi-class classification by assigning

quantized direction labels to the objects, which in substance is the same as multi-class

57



Dissertation of Xi’an Jiaotong University

object categorization problems [154, 155]. Beyond that, one can also identify every object

instance [156, 157]. Besides the work on these separate recognition tasks, some others have

dug into the combined problems like recently proposed concurrent object localization and

classification or state estimation [106, 114–117]. Compared to the flexible deep and layered

recognition results of humans, the outputs of current object recognition techniques look

much more stiff and pallid.

The common character of the above efforts is that we are trying to eliminate the

variances of object instances and assign category-level semantics to them (except the

identification problem), more theoretically, to model the constancy of recognition. It is

reproachless to do so and a good recognition system should have the constancy property.

We can also ask the subjects to output the category label of the objects directly, and we

will find that human beings do have very good recognition constancy. But, do they only

see the category information? Or do they extract invariant and discriminative features

for a specific category and put them into a classifier to make the decision directly? If so,

we should be able to describe such features as the reasons for making such a decision,

and then we have already solved the recognition problem. The fact is, usually we cannot

figure out any features robust to arbitrary object variations in the real world. Instead,

we may argue that we make the decision because we see this feature and it happens only

when the object instances of this category present in such a state as shown in this picture

and no others. The underlying magic is that we use the “divide and conquer” principle.

That’s why we can easily perform recognition but very hard to find an invariant feature.

As argued in [158], low in-class variability leads to better detection performance for a

classifier. If we ask a classifier to handle very high intra-class variability (like the class

of “person” under all conditions), the performance won’t be very good no matter how

hard we try it, see the latest results in PASCAL VOC Challenge [159].

To learn more from human vision about recognition, we have to go deeper to in-

terpret the visual differences of objects, and make the right tradeoff between inter-class

discrimination and intra-class representation. We find that the key is to make the recog-

nition deep and layered. Different object instances may have different appearance which

expose different information to us. If you can clearly tell the key part of the object (like

the license plate of a car) and be sure to its direction, you shouldn’t just say that you

only got its category label. As the opposite, if you can hardly tell the details of the

object, concrete intra-class categorization will be risky. It’s better to recognize it as it

is without promotion (trying to extract subtle features from small, noisy, cluttered, and

weakly-illuminated image regions where the interested objects present) and degradation

(trying to ignore salient details from large, clear, clean, and well-illuminated visual ob-

jects). Then the results may be more reliable and useful. This is much closer to the

way human beings perceive and recognize objects, and we call it deep and layered

recognition in this thesis, where “deep” means detailed within-category interpretation

to distinguish it from traditional categorization, and “layered” indicates that the inter-
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pretation is semantically layered, not biasing on the deepest within-category semantics.

The contributions of this work include the following three:

• proposing a general computational model for DLR based on structured learning

and prediction;

• presenting two feature representation strategies along with concrete examples for

DLR;

• providing an efficient structured online learning algorithm (SOnline) to train the

proposed DLR model.

In the following sections, we first discuss how others’ work inspired us and helped

us with the implementation details of DLR, then we present our definition of DLR and

some brief ideas towards solving it. The major issues of modeling, learning, evaluating

and implementing DLR are discussed thereafter, followed by a concrete case study on

recognizing cars and pedestrians with the implementation details. Experiments on the

IAIR-CarPed dataset demonstrate two typical advantages of DLR against traditional

category-level recognition models:

• Rich functionalities and adaptive interpretation. Instead of predicting only the

category-level labels, DLR can output much richer recognition results such as sub-

category labels, part information, object attributes and so on, and it is adaptive.

This is done by making proper use of different information in the original image and

systematically manipulate the relationship between the input feature representation

and the output labeling structure.

• Improved performance on category-level recognition. By making a proper trade-off

between intra-class differentiation and inter-class collaboration of object instances

belonging to the same category, DLR can make better use of the training examples

and achieve better performance on category-level recognition than former recogni-

tion approaches.

4.2 Related Work

We are aiming at humanizing recognition of objects based on their visual appearance. In

general, the output interpretation can be category labels, subcategory labels, locations,

identities, and any attributes or descriptions of the objects, including the semantics for

their parts. The key is that the recognition should show its respect to the data, assigning

proper labels or states to various object instances even when they present in the same

scene or image. As far as we are aware, there are no sufficiently overlapped ideas or

work proposed. However, there is a lot of work which has ever inspired us and given us

much help on figuring out some of the details.
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Deep within-category semantics have recently been investigated by several research

groups. Specially, attributes have been proven to be helpful for category-level recog-

nition, as shown by Lampert et al.[138] who looked into the problem of between-class

attribute transfer for recognizing new object classes with no training examples, while

at the same time Farhardi et al.[139] shifted the goal of recognition from naming to de-

scribing, which significantly improves the categorization performance and also enables

learning new categories. Besides attributes-based approaches, there are some other

prior researches on within-category classification/description. The work on multiplica-

tive kernels [140] manages to classify the view angles of cars in a dataset collected from

LabelMe database [134], and another work directly targeting at within-object classifica-

tion [141] represents results on three different databases. Though our DLR also involves

describing the attributes of objects and classifying the objects into subcategories, we are

neither trying to use the attributes as the middle-level representation for categorization

nor aiming at attribute inference or within-category classification. Instead, our recogni-

tion results are layered, which may and also may not be sub-categorial semantics with

attributes.

Meanwhile, semantic hierarchies have also been widely researched in the past few

years on visual recognition. Marszalek and Schmid[160] proposed a semantic hierarchical

classifier that uses the semantics of image labels to promote multiclass object detection

performance. Binder et al[161] tried to classify images into a given, pre-determined tax-

onomy using a structured learning framework. Their empirical results on Caltech256

and PASCAL VOC2006 data show that the algorithm exploiting the structure of the

taxonomy outperforms multi-class classification approaches. Zweig and Weinshall [162]

demonstrated that training a single classifier using object hierarchies obtained from pub-

licly available datasets can significantly improve multi-class object recognition results.

Kapoor et al[163] combined kernels designed at each level of a object class hierarchy to

benefit both computational efficiency and performance in Caltech 101 multi-class cat-

egorization. However, almost all these existing papers are limiting themselves to the

object category and the levels above, but not for exploring object subcategories and

attributes to better describe an object instance. There are also some work on exploring

both the object-level information and the information of its parts, such as the research

on the combination of bottom-up and top-down processes proposed by Yang et al. [120].

Though they have combined the information from three different levels, their goal is

to interpret the middle level only. Chen et al[164] aimed at simultaneous object detec-

tion, segmentation and part parsing using a rapid inference algorithm on a specifically

designed AND/OR graph, however, the three types of outputs are forced to be predicted.

In the learning part, we are facing the same problem of outputting multilabel or

structural labels as the above referred work and many other structure learning applica-

tions. Specifically, we are interested in a principle structure learning framework which

can model the problem in a compact way and solve it efficiently. Tsochantaridis et al
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[165] investigated large margin methods of doing so. Bordes et al[24] proposed an efficient

online learning algorithm for multiclass classification problems in a maximum margin

discriminative learning framework. Recently, Wu et al[166] extended this framework to

handle more general structural output prediction problems and showed experimental

results on digits recognition. Lampert and Blaschko[167] proposed to use the joint kernel

directly for structured prediction by an alternative model named Joint Kernel Support

Estimation (JKSE).

On the side of data representation, we would like to follow the two-layer HOG

representation of objects in [77], but without latent part localization for efficiency. Using

histograms of different scales in a fixed form is also effective, as discussed in [87]. Beside

that, colors for special parts (like faces) can also be informative for recognizing humans

and cars, and we got the inspiration of using it from [168] and [87]. The widely used SIFT

features [8] are very good at representing rigid objects with view changes, therefore we

use it for representing the license plate, which is the key part of the car.

4.3 Definition

In general, Deep and Layered Recognition (DLR) is properly interpreting the visual data

based on its actual appearance by assigning deep and layered semantics and geometric

label(s) to it. The semantic label space should contain some within-class categorization

labels representing meaningful and case-dependent details, and the interpreted labels

vary in both level and amount, depending on the data.

Mathematically, given data x ∈ X , where X is the input data space, DLR is to

find the labeling y ∈ Y that best interpret the data x. Suppose g : X 7→ Y denotes

the mapping of DLR. The differences between DLR and traditional object recognition

strategies are two-fold:

• Semantic part of y. In traditional recognition, the semantic part of y usually

represents either category or subcategory information of the object, while in DLR

it represents both category and subcategory information, and may also include

semantic information of the object parts.

• Flexibility of y. Unlike traditional recognition strategies which demands all the

information represented by y to be assigned (e.g. a concrete pose of the object),

DLR may assign only some of the desired information, indicating the rest is unsure.

By doing so, it is not forcing the data to fit the outputs, but exploring and inter-

preting the data to assign case-dependent labels. It is trying to bring the model

closer to the data than before. The recognition result may depend on the scale,

view, illumination, pose, spatial occupation and other aspects of the object and its

context.
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Note that in general the input data x can be an object region, an image, or a video

sequence, depending on the visual task. While at the same time, the output label vector

y can be designed accordingly.

Though by definition DLR can be only the recognition of the objects themselves,

we are interested in simultaneously interpreting objects and their parts. Furthermore,

we care about not only the data-dependent semantics of the objects and their parts,

but also the geometry information of them, which can be treated as the category-level

recognition component. Undoubtedly, the gap between the input data and our desired

output interpretation is very large. We are putting efforts on three different aspects that

are considered to be critical for bridging the gap as shown in Figure 4-1, and we will

show concrete ways on realizing them hereinafter. These three aspects are as follows:

• Output space. Compared with traditional object recognition problems, DLR has

richer output states which need to be properly designed so that the learning can be

done efficiently.

• The prior. It represents the structure of the output space, which can be modeled

by the losses of confusing different output states. The prior directly influences the

performance of the classifier.

• Feature representation. Compared with traditional object recognition problems,

DLR has richer output states, so how to make the feature representation both

effective and efficient is rather important. When the output space is structured,

the feature representation has to take into account of the sharing and discrimination

abilities of the features simultaneously, making a good trade-off between them.

Features
Shape & Appearance 

Parts

Geometry & Semantics

Object

Geometry & Semantics

Visual Data

Prior
Structure / Loss

Input

Output

Figure 4-1 A brief framework of solving DLR.
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4.4 Modeling and Learning Framework

4.4.1 Modeling

Suppose for each object, there are at most n parts of it need to be recognized, then we

can define the output vector as y = (yO;yP1 ; . . . ;yPn), where yO,yP1 , . . . ,yPn ∈ Yentity

are the output vectors for the object and its n parts respectively. Since they are all

entities that may have similar recognition demands (e.g. semantic categorization and

geometric localization), their outputs are briefly denoted as belonging to the same type

of output space Yentity for convenience and consistency. However, in practice, their

concrete content and domains may be different. Let yentity ∈ Yentity be an arbitrary

entity (the object itself or one of its parts), we define two types of outputs on it: yentity =

(yC
entity;y

L
entity), where yC

entity = (yC
1 , . . . , yC

m)T denotes the categorization information

and yL
entity = (t, l, b, r)T denotes the localization information (top, left, bottom and

right of the bounding box). Note that m ≥ 1, and each yC
j is a microlabel of yC

entity.

We let yC
1 stand for the presence of the entity (i.e., yC

1 = 1 denotes the presence of the

entity and yC
1 = 0 the absence) and the others as within-class semantic microlabels. In

general, these semantic categorization microlabels can be organized in a structure. An

example of such semantic structures is shown in Figure 4-2.

1

c
y

2

c
y

3

c
y

4

c
y

5

c
y

6

c
y

7

c
y

8

c
y

c

entity
y

Figure 4-2 A typical hierarchical semantic tree for categorization.

For an arbitrary input x ∈ X , the mapping of DLR can be defined as:

g(x) = arg max
y∈Y

f(x,y) (4-1)

where f(x,y) is a compatibility function between the input and the output. A common

definition of the compatibility function is the inner product between the model parameter

vector w and the joint input-output feature Φ (x,y):

f(x,y) = 〈w, Φ(x,y)〉 . (4-2)

And one can also formulate it as a conditional probability function:

p (y|x) =
1

Z (w,x)
exp {〈w, Φ (x,y)〉} , (4-3)
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then the mapping g : X 7→ Y becomes a maximum a posteriori (MAP) estimation. As

argued in [169] and [166], the later one usually requires an extra computation of the nor-

malization term Z (w,x) which might be computationally expensive or even unbounded.

No matter which one is chosen, the joint feature Φ (x,y) is the key.

Since the optimization of the equation 4-1 requires searching the global optima in the

output space Y , the feasibility and efficiency of the learning and prediction algorithm

will depend much on the structure of it. When the output contains both the object

itself and its semantic parts, and each of them has both the structured categorization

and localization information to be predicted, then it will be a big challenge. Note that

this is unlike methods that divide the whole problem into several pieces and optimize

them in a sequential procedure, it is about global optimization taking into account of

the contextual relationships among the semantic entities (the objects and their parts).

To make things easier, we can narrow down the problem a little bit by decoupling

the contextual relationships among object parts and use a star model instead to capture

the pictorial structure of object (i.e., the relationships between the object itself and each

of its parts). This is inspired by [95] and [77]. Formally, we decompose the joint feature

as:

Φ(x,y) = (ΦO(x,yO); ΦP1(x,yP1 ,yO); . . . ; ΦPn(x,yPn ,yO)). (4-4)

In which, the global object-level joint feature is

ΦO(x,yO) = ΦO(x,yC
O,yL

O), (4-5)

which means that it depends on both the semantic categorization structure and the

object’s position in the data. For each of the object part Pi, the joint feature can be

further decomposed into two separate terms:

ΦPi(x,yPi ,yO) = ΦPi(x,yC
Pi

,yL
Pi

,yC
O,yL

O)

= (ΦC
Pi

(x,yC
Pi

,yL
Pi

,yC
O); ΦL

Pi
(yL

Pi
,yC

Pi
,yL

O,yC
O))

(4-6)

where ΦC
Pi

(x,yC
Pi

,yL
Pi

,yC
O) is the categorization feature, while the later ΦL

Pi
(yL

Pi
,yC

Pi
,

yL
O,yC

O) indicates the localization feature for the contextual relationship between the

object and its part Pi, which not only depends on the localizations of these two, but

also depends on their categorization information, saying that different categorization

combinations may have different contextual relationships. This formulation has the same

flavor as the latent model introduced in [170] and [77], in which the model can be viewed

as a simplified instantiation of the above joint feature representation. Their object

categorization is a binary object/non-object label while the parts are forced to appear

without further categorization since they are not semantically meaningful. Nevertheless,

the latent SVM algorithm for simultaneous optimizing object recognition and its parts’

localization is very impressive.
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4.4.2 Learning

The two semantic outputs yC and yL of our model form a complex but usually structured

space for both learning and prediction. Therefore, structured learning algorithms [6]

should be adopted to solve this problem efficiently. As argued in [169], though structured

output prediction starts from multiclass classification problems, they have significant

differences.

In multiclass classification, every possible output state corresponds to one class and

the learning algorithm trains separate parameters for it, while in structured prediction

the joint feature map may take advantage of the output structure by decomposing the

combinatorial space into much fewer substructures, resulting in fewer parameters and

better generalization ability. For example, a tree-like structure can represent a semantic

hierarchy or a taxonomy, which can be decomposed into pair-wise edges for efficient

learning and inference as presented by [171]. There can also be some loose structures

like the partial order of localization coordinates of objects and/or object parts. A clever

branch-and-bound algorithm is introduced in [148] to solve it efficiently when the feature

representation is additive with respect to spatial extension.

Besides efficiency and generalization ability, we would like to argue that structured

prediction may take into account of the intrinsic structure of the data (represented

by the input-output relationships) and therefore result in semantically more plausible

predictions and better recognition performances. This is also one of the main reasons

for choosing structured prediction algorithms for DLR.

The modeling of DLR in 4.4.1 already refers to the two main types of structured pre-

diction methods: discriminative methods based on equation 4-1 and 4-2, and generative

methods induced by equation 4-1 and 4-3. Both of them can solve this problem using

various optimization methods, however, in this paper we focus on the discriminative

ones.

Given the training set {(x1,y1), (x2,y2), · · · , (xn,yn)}, and the definition of joint

features in equation 4-4, we can construct a structured max-margin optimization objec-

tive function constrained by partial ranking:

min
w

{
1
2‖w‖2

2 + C
∑
i

ξi

}

s.t.

{
〈w, ∆Φ (xi,y)〉 ≥ l (yi,y)− ξi , ∀i, y 6= yi

ξi ≥ 0 , ∀i
(4-7)

where ∆Φ (xi,y) stands for Φ (xi,yi)−Φ (xi,y), and l (yi,y) is the overall loss function.

Different values of the loss function (depending on the two outputs) indicate different

demands on the margins of partial ranking. This is a general formulation for max-margin

based structured prediction. The learning is to find a weight vector w that when the

joint features of each training example project on to it, the one with the correct output

is larger than any other output by a margin represented by the mistaking loss defined on
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these two outputs. Specifically, this formulation is called margin-rescaling, and it’s said

to be simpler for optimization than its slightly different alternative the slack rescaling

formulation (see [169]). Their differences are out of the scope of this paper, therefore the

slack rescaling formulation is not presented here.

For our DLR problem, which has specific definitions on the joint feature, the partial

ranking of the above formulation becomes:

〈w, ∆ (ΦO(xi,yO); ΦP1(xi,yP1 ,yO); . . . ; ΦPn(xi,yPn ,yO))〉
≥ l (yi,y)− ξi , ∀i, y 6= yi .

(4-8)

Decompose the weight vector into that of the object and its parts, i.e. w = (wO;wP1 ; . . . ;wPn),

then the above nonequal constraints become a decomposed version:

〈wO, ∆ΦO(xi,yO)〉+
∑n

j=1

〈
wPj , ∆ΦPj(xi,yPj ,yO)

〉

≥ l (yi,y)− ξi , ∀i, y 6= yi .
(4-9)

When the loss can also be decomposed into that of the object and its parts, the con-

straints are:

〈wO, ∆ΦO(xi,yO)〉+
∑n

j=1

〈
wPj , ∆ΦPj(xi,yPj ,yO)

〉

≥ lO (yOi,yO) +
∑n

j=1 lPj

(
yPji,yPj

)− ξi , ∀i, y 6= yi .
(4-10)

Put equation 4-5 and equation 4-6 into the above nonequal constraints, we can get

further decomposed ones by separating categorization and localization. Due to the space

limit, the unfolded expression is omitted.

In general, the above formulation is a latent version of the structured output pre-

diction because of the embedded localization of the object and its parts. In this case,

usually an iterative method is needed to alternate between the optimization of the feature

weights w and that of the locations yL. As presented in [7] and [77], a clever formulate is

needed to make these two optimizations computationally feasible and efficient. [7] and
[148] propose an efficient branch-and-bound searching technique on bag-of-words features,

while [77] made the part localization features quadratic to ensure the semi-convexity of

the optimization objective. Since both our categorization and localization (object and

its parts) are designed to be much more complex than theirs, the overall optimization

will be accordingly much harder. Therefore, in this work we would like to simplify the

localization but emphasize the adaptive categorization to make the idea of DLR start

to be realized. Concretely, we use the traditional sliding window approach to localize

the object and use separate part detectors to localize object parts, details of which is

presented in 4.7.1. However, as the way we formulate the DLR problem, we are very

interested in a direct and efficient global optimization, which is open to the community

and will also be our future work.
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4.5 Evaluation

To evaluate the performance of DLR, the predicted results of test samples need to

be compared to their ground truths. Usually the overall recognition performance is

a function of the individual predictions. From the learning point of view, it is best to

directly optimize the recognition performance during the training process. Therefore, the

evaluation criterion needs to be designed together with model learning. A common choice

is to use a loss function l(yi,y) to guide the learning of training samples {(xi,yi), i =

1, . . . , N}as in structured learning algorithms. Then the performance measurement is

designed accordingly, for example a simple sum of predicted losses.

Since the output y may contain two different semantic information: the categoriza-

tion yC and the localization yL, we discuss different ways of designing the proper loss

functions for them in the followings.

4.5.1 Categorization Loss

As discussed in 4.4.1, the categorization of an object or an object part may be a vector

yC = (yC
1 , . . . , yC

m)T indicating the values of different semantic microlabels. Therefore,

the loss of mistaking two different categorization outputs (e.g. from yC
i to yC) are

usually defined on these microlabels. We also introduce here a new loss function which

goes beyond such a tradition by focusing directly on the probability of semantic mistakes.

Details of the publicly available losses and the new one to be introduced are discussed

in the following.

• Zero-one loss:

lC0/1(y
C
i ,yC) =

[
yC 6= yC

i

]
(4-11)

The square brackets act as a binary function which equals 1 when the condition

within it satisfies and 0 otherwise. This is the simplest loss, which penalizes all

mistakes equally. Despite its simpleness, it is widely used in object detection and

categorization, where other information retrieval statistics, such as precision (P),

recall(R) and F score, can be computed based on it. This binary judgement seems

to be too crucial when the output states have some uneven relationships, i.e., the

mistakes of confusing two outputs are not equal. For example, mistaking all com-

ponents of the vector yC
i might be worse than just having one single component

incorrectly predicted.

• Hamming loss:

lCHam(yC
i ,yC) =

∑

j

[
yC

j 6= yC
ij

]
(4-12)
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It counts the number of mistaken components of the output vector, which is ac-

tually the hamming distance between the predicted output and the ground truth,

so we call it Hamming loss. It may be called something else like the “symmetric

difference loss” in [171]. The loss increases monotonically as the number of mistaken

components increases. It is a good measurement when all the components of yC

are equally important.

• Hierarchical loss:

When the output space is structured, especially a hierarchical tree structure, then

it will be better to let the loss reflect the structure. There are many types of hier-

archical loss in the literature, especially those on hierarchical text classification. A

common way to reflect the output hierarchy is to weight each node in the hierarchy

differently, i.e. the deeper the node lies, the lighter it weights. A general form of

the hierarchical loss is:

lCHier(y
C
i ,yC) =

∑

j

cj

[
yC

j 6= yC
ij

]
(4-13)

where 0 ≤ cj ≤ 1 is the weight of the node j, which is also the jth component of

the vector yC .

There are different ways to set the node weights, such as dividing the upper level

weight by the number of its children or assigning weights propositional to the volume

of the subtree, as in [171]. In their work, they proposed to penalize only the first

mistake along a path from the root to a node, which is arguable.

• Confusion loss:

Even though hierarchical loss reflects the differences of the output components, the

hierarchical structure itself may not well represent the actual relationships among

its nodes. Taxonomies are designed for hierarchical classification, but they do not

guarantee that the concepts associated to all the siblings of a node are equally dis-

tinguishable, or in another word the recognition difficulties may not be distributed

in the same way as we design the hierarchical loss.

Besides of hierarchical structure, there are some other structures or general rela-

tionships that cannot be characterized by trees, like those of the handwritten digits

presented in [166]. Instead of trying hard to find a weird structure that is hard to

explain and optimize, they proposed to use the average confusion matrix reported

in the literature to derive a loss function. The mapping from confusion matrix to

the loss matrix is as follows:

lCConf (yC
i ,yC) = e−ρ·conf(yC

i ,yC) (4-14)
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where conf(yC
i ,yC) is the confusion probability of the pair (yC

i ,yC) in the con-

fusion matrix, and ρ is a parameter controlling the variation of the loss, which is

derived from a simpler ratio parameter

η =
mini,j,i6=j lCConf (yC

i ,yC
j )

maxi,j,i6=j lCConf (yC
i ,yC

j )
. (4-15)

Since this loss function is based on the confusion matrix, we name it “confusion

loss” here.

The confusion loss directly models the recognition difficulty of distinguishing two

outputs, so it is more reasonable and general than the other losses once the confusion

matrix is set properly. Under the circumstance, confusion matrix is the steerer,

controlling the model learning and performance evaluation results. In other words,

confusion matrix is the very result we are trying to make the recognition algorithm

learn to perform. Therefore, it is critical to get it well-designed. For semantical

concepts, since they are generated by our human beings after hundreds of thousands

of years’ living experiences, it is best for ourselves to generate the confusion matrix

for object recognition, but not the way proposed in [166], where it is an averaging

over the results of other recognition algorithms. By setting the human recognition

results as the goal, the computer vision algorithms will try to mimic the recognition

performance of human beings.

Though it’s straightforward that the confusion matrix should represent the ability

of human beings on distinguishing two semantic concepts, it is not an easy task

to concretely measure that ability. For example, it might be easy for us to tell

cats from dogs, but not as easy for distinguishing wolves and dogs. By building

up taxonomies, we are trying to formulate the relationships of concepts into hi-

erarchies, but they are just rough classification rules, not exact measurements of

human recognition abilities. As far as we are aware, existing annotations of object

recognition datasets haven’t gone deep into this problem, leaving it a challenge for

further research.

4.5.2 Localization Loss

When the output contains localization information of objects and/or object parts, there

should be a metric for evaluating the localization performance and guide the learning.

We introduce here two localization losses from the others and a new one proposed by

ourselves as follows.

• Hard loss:

A commonly used performance evaluation metric for object detection (where local-

ization is involved) is that an object is counted as correctly detected if and only if
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the area overlap ratio of predicted object bounding box and its ground truth exceeds

50%, see PASCAL VOC challenges introduced in [71]. This is an empirical thresh-

old for differentiating object and non-object samples, and it is sharp. However, as

mentioned in [7], in standard sliding window based object detection algorithms, the

training set usually only contains examples that either exactly cover the labeled

object or completely uncover it. In the form of loss function, it is just as follows:

lLHard(y
L
i ,yL,yC

i ,yC) =





0, if
Area(yL

i ∩yL)
Area(yL

i ∪yL)
= 1;

1, if
Area(yL

i ∩yL)
Area(yL

i ∪yL)
= 0.

where yL
i ∩y denotes the intersection of the two bounding boxes represented by yL

i

and yL, while yL
i ∪ y is the union. Since there are no partial overlapping training

samples, the loss is unknown. This is undesirable because the evaluation metric

does not coincide with the loss function used for training, and when it comes up

a partial overlapping window in the test image, the output of the algorithm is

unpredictable. If the area overlap ratio is below 50% and the object recognition

algorithm treats it as a positive sample, then it will be a false positive.

• Soft loss:

To overcome this shortage and make better use of the training data, a soft loss

function has been proposed in [7], which scales smoothly with the degree of the

overlap ratio and takes into account all the windows with partial objects in them

for training. The loss is defined as:

lLSoft(y
L
i ,yL,yC

i ,yC) =





1− Area(yL
i ∩yL)

Area(yL
i ∪yL)

, if yC
i1 = yC

1 = 1;

1− (yC
i1 − 1)(yC

1 − 1), if yC
i1y

C
1 = 0.

It works well with the object localization algorithm using structured output re-

gression as presented in [7]. They built up a visual codebook using local features,

and used the bag-of-visual-words histograms with a linear kernel for training. In

their case, the maximization step in either training or testing stage can easily get

optimized using the efficient branch-and-bound optimization strategy introduced

in [148], where the bounding function can be divided into two monotonic additive

functions respect to the bounding box. The additivity and monotonicity coincide

well with the softness of the localization loss on the manner of changing smoothly

with the degree of the overlap ratio. More concretely, the feature representation

(especially the bag-of-words model) in their work changes gradually as the object

bounding box shifts. Therefore, such a soft localization loss is a good choice for

similar settings.
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• Semi-hard loss:

When the features are sensitive to the precision of localization or alignment, this

soft loss will be improper because it may confuse the model learning: the response of

the model may be hard to decrease monotonically as the loss goes up. And the soft

loss function does not directly optimize the evaluation metric which is thresholded.

In this case, we propose to use a modified version of the common localization loss

as follows:

lLSemi−hard(y
L
i ,yL,yC

i ,yC) =





0, if
Area(yL

i ∩yL)
Area(yL

i ∪yL)
= 1;

1, if
Area(yL

i ∩yL)
Area(yL

i ∪yL)
≤ 0.5.

(4-16)

It treats the low overlap ratio bounding boxes (≤ 50%) as non-object samples as

the evaluation metric does, while leaving out the high ratio partially overlapped

ones (> 50%). Since after non-maximum suppression (NMS) only one bounding

box is desired for the final localization result, using only the exactly matched one

as positive object sample is enough. The loss function has the same flavor with the

evaluation metric while at the same time ensures the precision of localization as it

prefers exact localization instead of treating it and those partial detections equally.

Note that for DLR which may demand simultaneous localization and categorization,

the loss function should be a mixture of the semantic loss and the localization loss.

Besides fitness, the feasibility and efficiency of optimization is also a very important

issue when choosing the proper loss function and evaluation method.

4.6 Feature Representation

In former category-level object recognition tasks like classification and detection, the

goal is to make the recognition system discriminative between object classes while at

the same time invariant to instance changes within object classes. Therefore, features are

usually designed to be as invariant as possible to intra-class variations such as changes

of scale, view, pose, illumination, deformation and so on. Methods of eliminating visual

information referring to these properties and facts are mostly adopted. For example, to

train an object detector of a specific category, a common way is aligning training object

examples by rescaling, rotating or even stretching the original ones, as in [77]. This

is reasonable and effective when we want to represent various object instances using a

single model, though the stretching operation distorts the data.

However, even for detection only, trying to unify all the object instances is some-

times very hard due to dramatic appearance changes like those caused by view changes.
[77] propose to use mixture models which are in principle much like mixture of gaussians

for modeling distributions. Though features representing the split data for learning mix-

ture models are more informative and stable than those defined on all the data together,
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the splitting strategy is usually chosen heuristically, and the split subsets are usually

not semantically meaningful subclasses.

In the case of deep and layered recognition, the goal itself is recognizing different

object instances as examples of subclasses with different semantic meanings. Therefore,

the features for a specific object category have to represent the differences among these

subclasses for differentiating them. Instead of splitting the data of the same category

heuristically, meaningful labels can be used to group the examples into semantic sub-

sets. The difficulty is how to make the features discriminative among object classes and

subclasses while at the same time as compact as possible. We need to design feature

descriptors for capturing the subtleties of different object instances while keeping cer-

tain robustness of the same object category to ensure interclass determinativeness. We

discuss two key issues towards solving this problem: one is the so called output-sensitive

features, and the other is the trade-off between discrimination and sharing.

4.6.1 Output-sensitive Features

Features for representing visual objects are designed to be both informative and robust

for recognition. Dealing with the deep and layered recognition, we cannot eliminate

the intra-class variations as we do for category-level recognition. Instead, we have to

keep and enhance those intra-class variations helpful for differentiating subclasses. For

example, if object instances of different scales correspond to different subclasses, we

should let the features represent the information of scale changes, i.e. making the fea-

tures scale-sensitive, but not scale-invariant. Similar demands may be needed for other

aspects such as view, pose, illumination, and so on. Generally, we call these kinds of fea-

tures “output-sensitive features”, which means that they are sensitive to various outputs.

In the case of traditional category-level recognition, features only need to be sensitive

to category labels, where we do not specifically call them output-sensitive. While in

the case of DLR, between-category discrimination is a must, and within-category dis-

crimination really shows the power of adaptation of the features to output variations

(usually multimodal). This is different to traditional feature representation, therefore

we emphasize its capability of output sensitivity.

There can be numerous ways of designing output-sensitive features and the speci-

fication of features depends on the instantiation of deep and layered recognition tasks,

namely, the data itself and its corresponding output space. Figure 4-3 presents one group

of features that can be sensitive to scale changes. In this case, features are histograms

with fixed number of cells while their sizes are adaptive to the actual data. Data is

kept as what it is, and histogram grads are rescaled or even stretched (changing the

aspect ratio) to fit it. It may result in decimal sizes of cells (subpixel level description),

so interpolation is needed to do the binning. Usually, bilinear interpolation is a cheep

and effective way. Since objects at different scales may be perceptually different (larger
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scales tend to show more details), this type of scale-sensitive features implicitly represent

the scale information. Besides that, one can also explicitly include scale as a feature,

which may be useful. Global illumination and image quality measurements can be used

as output-sensitive features as well.

1
2

1

2

(a)Resize template (b)Resize object

Figure 4-3 Scale-sensitive subpixel features. Instead of resizing the object to fit a fixed feature
template like (b), we resize the template to fit the data as shown in (a). The subpixel-level feature
descriptor represents the subtle differences of objects with different scales.

4.6.2 Trade-off Between Discrimination and Sharing

Though features for DLR need to be output-sensitive, we should not design features

for each output state (object classes and subclasses) separately, disregarding possible

relationships among output states and the compactness of features. This is rather critical

when there are exponentially many number of output states induced by the combination

of output components. Sharing of features among object classes and especially subclasses

should be explored. Since both discrimination and sharing need to be considered when

we design features for DLR, there should be a trade-off between them. A simple way

of doing so is to include both effective category-level features and carefully designed

subcategory-level features based on observations or prior knowledge, while at the same

time trying to make the dimension of features as small as possible. Dimension reduction

methods and feature selection methods can be used if they are efficient and effective.

Though it is possible to keep the discrimination and sharing demands in mind when

designing and choosing features by hand, a principle and easy to operate strategy is

usually hard to find. It seems better to just make the features as informative and

compact as possible before learning (i.e. a rough trade-off between discrimination and

sharing), and leave the fine tuning of the trade-off to learning algorithms.

4.7 An Instantiation on Car and Pedestrian Recognition

As discussed in section 4.3, deep and layered recognition is a general problem and it

can have different instantiations in different scenarios. Here we look into the case of

recognizing cars and pedestrians in static images, and use the IAIR-CarPed dataset to
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instantiate the model and do the experiments. Details of the implementation is presented

in the following.

4.7.1 Output Structure and Loss Function

We would like to predict all the outputs provided by the IAIR-CarPed dataset, namely,

the semantic hierarchy which contains a three-level semantic categorization of the object

and a simple presence categorization for the key part as shown in Figure 3-2, along with

the localization of both of them.

Mathematically, for each category (car or pedestrian), the output vector is y =

(yC
O;yL

O; yC
KP ;yL

KP ), where yC
KP is a binary scalar indicating only the clearness of the

key part.

Compact representation of categorization Since the output space of the object

categorization is limited and we only care about the key part’s clearness when the

object is categorized into certain states, we can compress the semantic output space of

the object and its key part to as small as the number of nodes of each semantic tree in

Figure 3-2. By doing so, yC
O and yC

KP can be compressed into one single multi-valued

scalar yC , which indicates the categorization state of the whole object and its key part.

Specifically, yC = {0, 1, 2, . . . , 9} for car, and yC = {0, 1, 2, . . . , 8} for pedestrian, in

which yC = 0 means the object is absent and the other values are the indices of the

semantic concepts on the tree in a depth-first order. Then the whole output vector

becomes y = (yC ;yL
O;yL

KP ).

Categorization loss As the confusion matrix of human recognition can be derived

from the votes of the 20 subjects who have labeled the IAIR-CarPed dataset, we would

like to use the confusion loss lCConf (defined in equation 4-14) as our categorization loss,

and we believe that it is a good loss function and performance evaluation criterion

for DLR. The underlying principle is that the more people confuse on two concepts, the

smaller the loss of mixing them should be. Details about it have been stated in 4.5.1 and

experiments thereafter will prove its reasonableness. In our experiments, the parameter

η for the confusion losses is set to be 0.2.

Intrinsic structural semantics Though the categorization notation we have chosen

doesn’t represent the tree structure of the semantic hierarchy, the loss function represents

the intrinsic relationships among these semantic concepts, and it is proved by human

beings to be more reasonable than a heuristically defined tree structure. Therefore, the

categorization is not a traditional multiclass classification, but a structured prediction

whose structural information is implicitly included in the loss function. The differences

between this specific DLR and traditional multiclass classification will be discussed in

the experiments section.

Localization loss Generally, it’s better to optimize the locations of objects and their

parts together with their semantic categorizations, which need the localization loss to
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be involved in the inequality constraints. In order to do this, an iterative optimization

of the weights w and the locations should be adopted, and the loss function need to

be carefully designed for easy optimization, like the soft localization loss lLSoft proposed

by [7]. However, the soft localization loss together with the branch-and-bound search

algorithm has the demand that the features need to be additive, so it will limit the types

of features for use.

In this paper, we choose to use the sliding window strategy, which is a simple

approximation for localization and it uncouples the localization and the categorization

in a brute-force way. By doing so, the localization loss is usually a simple bi-valued

function like the hard loss lLHard and the semi-hard loss lLSemi−hard defined in 4.5.2. And

it can be combined with the semantic categorization loss to form a joint loss by treating

the unsuccessfully localized hypophyses as belonging to the non-object category (i.e.

yC = 0), and the localization loss acts just like the categorization loss. Actually it is

commonly used in object detection methods. However, we found that most of them use

lLHard in the training while using lLSemi−hard for evaluation without realizing it. A typical

phenomenon is that negative examples (in binary detection) are usually sampled in

separate negative images which can never overlap a little bit with the positive training

examples. In this paper, we would like to make a change, to use lLSemi−hard for both

learning and evaluation.

About the localization of the key part, we used a simple filtering classifier in a sliding

window manner to find the best scoring candidate within a feasible search region relative

to the whole object. This is a trade-off between the performance and the efficiency, as

further discussed in the following subsection. By doing so, we do not need to put the

key part localization loss into the global optimization constraints. Therefore, the final

loss is the joint loss of the confusion loss for categorization and the semi-hard loss for

object localization, which coincides well with the output semantics yC . The loss function

actually used for training is illustrated in Figure 4-7.

4.7.2 Feature Representation for the Specific Instantiation

The general discussion on feature representation for DLR has been given in subsection

4.6, and we present here a concrete example on selecting proper features for the case of

car and pedestrian recognition.

The features we have chosen belong to four different types described in the following.

a. Shape descriptor (two-layer subpixel HOG) HOG feature and its vari-

ations have been widely used after its first introduction by [9], and it has been proved

to be very powerful for representing many objects, for example pedestrians and cars.

The power comes from its proper balance on selective dense gradient representation and

invariant histogram binning with local normalization. [77] found that using a two-layer
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HOG for representing the whole object and its deformable parts respectively can result

in a much better detection performance on the challenging PASCAL dataset. Besides

the benefits of the deformation and alignment of the part templates, the two-layer HOG

(coarse scale and fine scale) should have provided useful complementary shape infor-

mation for recognition. It inspired us to use similar representation for the adaptive

data-dependent recognition of cars and pedestrians, because different categorization re-

sults seem to ask for different precisions of the shape representation (direction ambiguous

subcategories prefer coarse-level HOG while direction specific subcategories tend to rely

more on fine-level HOG). We believe that HOG is a good descriptor for cars and pedes-

trians because instances of them may vary in different appearance (color, texture, etc.)

but the global shape information seems to be the most informative and robust.

We used the same strategies for efficient computation of the two-layer HOG features

as presented in [77]. Specifically, there are three of them: 1) cell-based computation, i.e.,

each cell has four copies normalized within 4 different neighborhoods for convenient

weight template filtering during testing; 2) analytic dimensionality reduction for com-

pactness and computational efficiency; and 3) a feature pyramid for maximizing the

reusability of features during multi-scale sliding window search. Beside of these, we

pre-computed a gradient binning lookup table for fast binning of the pixels since there

are only 511 × 511 different combinations for any pair of two directional gradients (dx

and dy) and the binning results of each of them can be computed in advance. Since this

table is independent of the size and the content of the image, once it is computed, it can

be reused thereafter with only the complexity of indexing, but not that of computing

the anti-trigonometric functions.

As demonstrated in Figure 4-3, we use the scale-sensitive subpixel binning method

to compute the two-layer HOG features, therefore there is no rescaling or stretching of

the data, and the feature can implicitly represent the scale information which is very

important for the DLR strategy. Similar to the original HOG presented in [9], we add a

one-cell margin to the coarse-scale HOG to involve the contextual information around

the object, while letting the fine-scale HOG to just cover the object itself with the

number of cells doubled. Concretely, the two-layer HOG for car has the amount of

14× 6 coarse cells and 24× 8 fine cells respectively, while that for pedestrian is 8× 10

coarse cells and 12× 16 fine cells. An example of the actual HOG features we got for a

pedestrian is illustrated in Figure 4-4.

b. Appearance descriptor (local color histograms) Though the global ap-

pearances of cars and pedestrians are unstable, there are some local regions whose ap-

pearances are statistically stable within certain subcategories while at the same time

sensitive to the semantic output variations. Specifically, the color of the car lights is

usually informative for front or rear views (front: red, and rear: white), and the spatial

distribution of the color of the skin (face and neck) and the hair is helpful for discrimi-
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Figure 4-4 Two-layer HOG features. The coarse scale feature captures big structures of the
objects and takes the close context into account, while the fine scale one focuses more on the details
of object parts and shape subtleties of the objects themselves.

nating the directions of the pedestrians.

As suggested by many other people, we use the HSV color space which is considered

to be intuitive and informative for general purpose and quantize it into a few bins for

building color histograms. For cars, three regions, two for the left and right lights in

front or rear view and the third one for direction unspecific (e.g. oblique views) cases

are chosen for computing the color histograms, as shown in Figure 4-5. We quantized

the whole HSV space into 18 bins, in which “Hue” has 3 bins ([0, 30◦] & [330◦,360◦),
(30◦, 75◦] and (75◦, 330◦)), “Saturation” has 2 ([0, 0.5] and (0.5, 1]), and “Value” has 3

([0, 0.2), [0.2, 0.4), [0.4,1]). The 3 different hues are designed for representing different

car lights, i.e., red, yellow and the others. We noticed that usually the tail lights are

red (lighted or not) and the front lights are yellow/white when lighted and transparent

if not. For pedestrians, according to [172], the “Saturation” of the skin color spreads

too wide and therefore it is not discriminative, while in “Hue” the skin color is well

clustered, mainly ranges in [0, 0.128] or equivalently [0, 45◦]. Therefore, we only used

6 bins to quantize the space for skin color: 2 for “Hue” ([0, 0.128] and (0.128,1]), and

3 for “Value” ([0, 0.2), [0.2, 0.4), [0.4,1]). The three local regions for computing the

color histograms are also shown in Figure 4-5. Note that the binning for “Value” is done

heuristically without further tuning, and it can be improved in the future.

Since the dimensions of the local color histograms are not high (18× 3 for car and

6× 3 for pedestrian), they are efficient complementary features of the high-dimensional

two-layer HOG features. As usual, integral images can be used to make the computation

of the color histograms efficient.

c. Global content-independent features (object scale) As mentioned in

4.6.1, in the scenario of deep and layered recognition, some content-independent features

may also be useful as long as they are output-sensitive. The scale of the object is one
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of them. From the average images shown in Figure 3-2 and the distributions of the

object scale presented in Figure 3-9, we can see that the scale is able to distinguish some

semantic subcategories from the others. Therefore, this one dimensional global feature

was involved in our final features. There might be some other features that are also

helpful, but we haven’t looked into them.

d. Key part features (presence score) Unlike the cropped body parts in [77],

our semantic key parts (face and license plate) are visually very different patterns from

the whole objects they are in, so we couldn’t use the same types of features to describe

the objects and their parts. Though HOG features are considered to be effective for

representing the shape information of many objects, they are not suitable for describing

small objects or object parts with tiny details like faces and license plates. Instead,

some other features have been proved to be effective for handling these specific tasks,

such as the haar-like features for face detection in [47] and the statistics of gradients for

license plate in [173]. Though faces and license plates are relatively rigid and specific

patterns, to build a robust detector for either of them is not an easy task, and usually a

lot of weak features are needed to boost the performance as in [47]. Obviously, putting a

large amount of raw features together with the features of the objects for global model

parameter (i.e. w) learning is undesirable in DLR as it has a relatively large output

space and therefore needs a large number of training examples. To make things easier,

we chose to use these raw features to train a separate key part detector, and use the

classification score as the feature of the key part. By doing so, the dimension of the key

part features is mostly reduced while the power of the raw features for representing the

key part is kept. The disadvantage is that this separate key part detector proposes only

a local minimum of the global optimization problem. Even though, we believe that a

reasonable result can be got, and it can serve as a benchmark for further research.

To build a reliable license plate detector, we used four types of features as below:

1. Statistical gradient features.

Inspired by the two global statistical features (gradient density and density vari-

ance) introduced in [173], we used the following three statistical gradient features

which are more informative and robust than those two:

• Gradient density contrast. As demonstrated in Figure 4-6, instead of just com-

puting the average gradient (i.e. gradient density) in the license plate region,

we compute the contrast of the gradient density between the license plate re-

gion and its surrounding background (i.e. the body of the car). When this

feature is large, it not only means that the gradient density in the license plate

region is large, but also indicates that the gradient density of the surrounding

background is relatively very small. The shape of the license plate is implicitly

taken into account. This is thought to be more robust than the gradient density
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(a) (b)

(c) (d)

Figure 4-5 Spatial occupations of the features. The green and blue bounding boxes in (a) and
(b) show the regions for computing color histograms. Subgraph (c) and (d) illustrate the statistic
distributions of the license plate and the face respectively. The colored spots show the spatial
histogram of the centers of this two key parts, while the green rectangles bound the distributions
of the centers. The red rectangles in (c) and (d) bounds the annotated key part bounding boxes,
while the red ones in (a) and (b) are the search regions actually been used in our implementation.

(a) (b)

Figure 4-6 Features for training the license plate detector: a) regions for extracting statistical
gradient features and b) an example of the extracted SIFT features.

proposed in [173] which may have confusions on other gradient-rich areas like car

lights and the radiator cowling. To make the feature robust to misalignments

caused by sliding window search, we computed the gradient densities of two

candidate regions of the license plate (the upper one in green and the lower

one in red) and chose the one with larger density as the representative of the

license plate. This simple trick can make sure the gradient density is always

computed within the license plate when the step of the sliding window is 1/3

of the height of the license plate.

• Spatial gradient density variance. It is the same as the density variance feature

proposed in [173]. Instead of dividing the license plate region into 12 cells, we

divided representative license plate region (the winner on gradient density) into

2× 7 cells and compute the gradient density variance on it.
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• Orientation entropy of gradients. This new feature is designed to distinguish

the license plate with varying curved characters from other gradient-rich areas

like the radiator cowling whose gradients are more directional. Like the HOG

descriptor, we divided the orientations into 18 bins (20◦each), but we only

computed the orientational histogram of gradients without spatial binning.

The histogram was normalized using L1 norm, Then the orientation entropy is

compute based on the normalized histogram hg = (hg
1,

. . . , hg
nori

):

ILP = − 1

log nori

nori∑

i=1

hg
i log hg

i .

where nori = 18 is the number of orientation bins.

2. Color feature.

Visually it can be easily found that license plates in one country usually have

unified colors, and this characteristic can be used for detection. Statistical analysis

shows that the license plates in the IAIR-CarPed dataset have well-clustered “Hue”

values (mainly range in (0.5, 0.7)), but other channels are not well-clustered due

to diverse illuminations. Therefore, we just computed a two-bin histogram on the

“Hue” value of the license plate region, and normalize it using L1 norm. Due to the

linear correlation of these two bins, using only a single value is enough, we use the

contrast value as the final color feature, i.e., the percentage of pixels whose “Hue”

values are within (0.5, 0.7) minus the percentage of those outside the range. We

linearly mapped this contrast value to be within [0, 1].

3. Content-independent feature (scale). Scale is an important factor that may

influence the presence (or more precisely clearness in our setting) of the license

plate. In most cases, license plates with larger scales tend to be clearer. Therefore,

this simple content-independent feature is adopted.

4. Bag of SIFT features.

The above three types of features are low-dimensional statistical features, which

are informative but not discriminative enough to train a good license plate detec-

tor. The distinctiveness of license plates is not limited to these statistics, but more

importantly the regular characters and digits printed on it. The content of a license

plate happens to be a combination of very few possible characters and digits, and

they are printed in the same font and size at fixed positions. This characteris-

tic makes it possible to compute SIFT features at fixed positions to represent the
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characters and digits, and then use a bag-of-words (BoW) model to make the rep-

resentation spatial invariant, i.e., to coincide with the randomness of the characters

and digits.

Figure 4-6 shows how these SIFT features are arranged. In the IAIR-CarPed

dataset, each license plate has exactly 7 characters and digits, and each of them

has a aspect ratio close to 2 (height vs. width). Therefore, we computed 14 SIFT

features for each license plate as demonstrated in the figure, with each of them

capturing one half of a character or digit. Then these SIFT features were clustered

into a codebook with the size of 200 using k-means. The size of the codebook

was chosen heuristically, considering possible misalignments and the appearances

of negative examples. Once the codebook is built, the 14 SIFT features of each

license plate can be represented as a 200-dimensional histogram on this codebook,

which is our bag of SIFT features.

Using all of these features (totally 205-dimensional), we can train a good license

plate detector using linear SVM with the standard bootstrapping technique. Note that

we only trained the detector on object windows whose semantic categorization labels

are “front with/without clear license plate” or “rear with/without clear license plate”,

because only these windows are possible for the presence of the license plate as desired.

A well-trained detector using this kind of data may generate false positives on cars

with other directions or in non-car regions, there is no need to worry about it because

our DLR classifier makes decisions based on both the object features and the key part

presence feature. A false positive license plate detection is almost impossible to change

the direction of a car or generate a false positive car detection with a very deep semantic

label: front or rear with a clear license plate.

About the face detector, we used the off-the-shelf detector from OpenCV 1.0 which

is a nice implementation of the algorithm proposed by [47]. Unlike the license plate

detector which was trained using our own training data, the face detector we used is the

already trained one as it is in OpenCV 1.0. We did so not just for convenience, but also

for the robustness of the detector. There are very few clear frontal faces (around 100)

in our training dataset , so they are not sufficient to train a good detector. By choosing

the off-the-shelf detector, we just treated it as a feature extraction tool that can extract

a good face presence feature for us.

Once the key part detector was trained or obtained, we used it as a filtering classifier

to convolute with both the training and test images. The filter response map is a score

map for each possible locations of the key part. Together with the pre-computed object

feature maps, we can construct all the features for each object candidate window. Since

the key part is much smaller than the object, and its relative position to the object

may vary a bit, the step of the sliding window for the key part will be much smaller

than that for the object itself. For example, the license plate’s sliding step is 5 times

81



Dissertation of Xi’an Jiaotong University

smaller than that of the car. Therefore, for each object location, there are many location

candidates for the key part which is consistent with the object. To find the exact key part

locations relative to the object location, we did a statistical analysis on the annotations

of the key part locations with respect to the object bounding boxes. The lower part

of Figure 4-5 shows the distributions of the key parts’ localization centers along with

the maximum extensions of their bounding boxes. Using these extension boundaries,

we can define search regions for the key parts as shown by the red rectangles in the

upper part of Figure 4-5. Within the search region of the object key part, we propose

its best location by a non-maximum suppression (NMS) strategy, i.e., the location with

the largest presence score wins.

4.7.3 SOnline: An Efficient Structured Online Learning Algo-

rithm

As mentioned in 4.4.2, in general a discriminative structured output prediction problem

can be formulated as:

min
w

{
1
2‖w‖2

2 + C
∑
i

ξi

}

s.t.

{
〈w, ∆Φ (xi,y)〉 ≥ l (yi,y)− ξi , ∀i, y 6= yi

ξi ≥ 0 , ∀i
(4-17)

where ∆Φ (xi,y) = Φ (xi,yi)− Φ (xi,y).

Though the above formulation looks simple, in practise there might be some com-

putational difficulties which need to be seriously treated: a) the high dimensionality of

x, and b) the existence of large amounts of training patterns. Absolutely batch learning

algorithms cannot be used to solve it directly. A hint from the object detection problem

is to use the data mining (or namely bootstrapping) strategy to iteratively sample an

acceptable number of representative non-object examples for training when the number

of non-object samples is very large. Usually, the mined non-object examples are added

to the training set, resulting in the increasing of its size. [77] proposed a new data-mining

algorithm with the removal of non-supporting patterns which can control the size of the

training set while ensuring its quality. Though the algorithm they proposed is proved to

be optimal, its convergence may be rather slow when the data is hard for the recognition

task.

As far as we are aware, after each iteration of the data-mining in object detection,

most algorithms train a new model from scratch on the new training set. This is unde-

sirable because the formerly trained model which might be close to the optimal is totally

abandoned during the retraining. When each round of the training is time-consuming

(as in many structured output prediction problems) and the number of data-mining iter-

ations is large, it will be a disaster. Therefore, we present here an efficient online learning

algorithm for solving the structured output prediction problem when the training set
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is large or changing over time. It not only trains the model online when the training

examples are given, but also updates the trained model online when new examples are

added in the training set or adopted to replace some of the existing examples.

The dual problem of formula 4-17 can be derived as:

max
α

∑
i,y 6=yi

αi (y) l (yi,y) −
1
2

∑
i,y 6=yi

∑
j,ȳ 6=yj

αi (y) αj (ȳ) 〈∆Φ (xi,y) , ∆Φ (xj, ȳ)〉

s.t.





αi (y) ≥ 0 , ∀i,y 6= yi∑
y 6=yi

αi (y) ≤ C , ∀i

By replacing α with an augmented variable γ

γi (y) =





−αi (y) , y 6= yi∑
y 6=yi

αi (y) , y = yi

and factorizing the joint kernel as

K (xi,y,xj, ȳ) = 〈Φ (xi,y) , Φ (xj , ȳ)〉
= 〈φ (xi) , φ (xj)〉 〈ϕ (y) , ϕ (ȳ)〉 = Kx(xi,xj)Ky (y, ȳ)

with the simplest choice of the output kernel

Ky (y, ȳ) =

{
1, y = ȳ

0, y 6= ȳ
,

the optimization problem can be transformed into such a formula:

max
γ

{
−∑

i,y

γi (y) l (yi,y) −1
2

∑
i,j

∑
y

γi (y) γj (y) Kx (xi,xj)

}

s.t





γi (y) ≤ 0, ∀i,y 6= yi

γi (yi) ≤ C , ∀i∑
y

γi (y) = 0 , ∀i

(4-18)

After learning the optimal γ∗, the output prediction function is as simple as

f (x) = arg max
y

∑

i

γ∗i (y) Kx (xi,x). (4-19)

The proposed SOnline algorithm for solving the dual problem (4-18) is summarized

in algorithm 2 which can handle changeable training examples. When a model has been

trained on the initial training set and there are new updates on the training examples,

the SOnline algorithm can update the model using the new training set along with

the indices of the updated examples. Note that niter train is the number of training
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Algorithm 2 SOnline:
Input:

Training examples {(x1,y1), . . . , (xn,yn)}, where x1, . . . ,xn ∈ X are the training

patterns and y1, . . . ,yn ∈ Y are their corresponding semantic labels;

Loss function l(yi,yj);

Initial model parameters γ0 (Optional);

Update example indices U0 (Optional).

Output:

Learned model parameters γ.

1: if a initial model γ0 exists, then

2: γ = γ0; U = U0;

3: else

4: γ = 0; U = {1, . . . , n};
5: end if

6: for iter = 1 to niter train do

7: if iter > 1 then

8: U = {1, . . . , n};
9: end if

10: for i = 1 to |U| do

11: Let j be the ith member of U ;

12: repeat

13: adaptive-operation-selection(j);

14: Suppose (k,y+,y−) are the outputs of the selected operation, call algorithm

SMO-SOnline(k,y+,y−, γ);

15: until The example xj is processed.

16: end for

17: end for

iterations, and when it is set to 1, the algorithm will be a pure online learning algorithm,

which performs well on relatively easy datasets. When the data is hard for recognition,

taking a few number of iterations (e.g. 3-5) is usually a promising choice.

The function adaptive-operation-selection refers to the adaptive operation se-

lection strategy proposed in [24], which selects one of three different operations on choos-

ing the most promising support pattern and its support vectors (i.e. a triple (i,y+,y−))

for online model learning. The selection strategy maintains a running estimate of the

average ratio of the dual increase over the duration of each operation, and randomly

selects an operation with a probability proportional to its estimate of the ratio. It has

the same spirit as stochastic gradient decent, while the embedded perceptron-based al-

gorithm uses the structural inference to select the two most promising parameters for

optimization. A sequential minimal optimization (SMO) elementary step is adopted to
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do the model updating as presented in algorithm 3.

Algorithm 3 SMO-SOnline:
Input:

The index of the pattern to be processed i;

The class label whose model parameter needs to be increased y+;

The class label whose model parameter needs to be decreased y−;

Existing model parameters γ.

Output:

Updated model parameters γ.

1: Retrieve or compute gradients:

gi (y
+) = −l (yi,y

+)−∑
j

γj (y+)Kx (xi,xj)

gi (y
−) = −l (yi,y

−)−∑
j

γj (y−)Kx (xi,xj)

2: Compute model updating step:

λ∗ =
gi(y+)−gi(y−)

2Kx(xi,xi)

Considering the constraints, set the updating step to be:

λ = max (0, min (λ∗, Cδ (y+,yi)− γi (y
+))) .

3: Update the model:

γi (y
+) = γi (y

+) + λ

γi (y
−) = γi (y

−)− λ;

4: Update the support vector set S by removing zero values in γ;

5: Update gradients for fast retrieval in the future:

gj (y+) = gj (y+)− λKx (xj ,xi) , ∀j, (xj,y
+) ∈ S

gj (y−) = gj (y−) + λKx (xj,xi) , ∀j, (xj ,y
−) ∈ S .

4.7.4 Learning and Inference Using SOnline

As stated in 4.7.1, the localization of objects is transferred into object/non-object la-

beling of the subwindows in the sliding window based recognition, and the semi-hard

localization loss can be represented by the semantic categorization loss between ob-

jects and non-objects. The key part localization is done by a separate non-maximum

suppression in its relative search region to the object hypothesis. In this setting, the

DLR problem can be simplified into a standard structured prediction problem, in which

the input pattern x ∈ X is the feature representation of an arbitrary subwindow, and

yC ∈ Y with Y = {0, 1, . . . , m} is the only desired output of it. The loss function for

this problem is defined on different states of yC . Since the output to be predicted is only

about categorization, we use y instead of yC for simplicity.
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Mathematically, the specific problem becomes as simple as:

min
w

{
1
2‖w‖2

2 + C
∑
i

ξi

}

s.t.

{
〈w, ∆Φ (xi, y)〉 ≥ l (yi, y)− ξi , ∀i, y 6= yi

ξi ≥ 0 , ∀i
(4-20)

where ∆Φ (xi, y) = Φ (xi, yi) − Φ (xi, y) and the joint feature vector has two parts:

Φ (xi, y) = (ΦO (xi, y) ; ΦKP (xi, y)). This is exactly the problem which the proposed

SOnline algorithm can solve efficiently. As the output is a scalar which can take only

a few different values, no special inference technique is needed and a brute-force search

will work.

We present the implementation details for the instantiated DLR problem as follows.

1. Preprocessing

Data splitting All the images were randomly permutated and split into two sub-

sets: training set Itr = {Itr
1 , . . . , Itr

ntr
} and test set Its = {Its

1 , . . . , Its
nts
}, where ntr

and nts are the numbers of images in these two subsets. Usually a fixed training-

test ratio of ntr

nts
is kept during the splitting (e.g. 1.0). If different trials need to be

done for experiments or averaging, this step can be run several times to generate

different splits of the data.

Key part detector training Once the training set is fixed, a license plate detec-

tor can be trained from the object windows whose categorization labels are “front

with/without clear license plate” or “rear with/without clear license plate” as men-

tioned before. When the training set changes, the key part detector needs to be

retrained to keep consistent with the whole model training.

Feature precomputation All the features can be precomputed except that for

the license plate which depends on the training set indices. When the training set

is fixed and the license plate detector is trained, the license plate presence feature

can be computed and put into the whole feature pool. For the sliding window based

applications when the feature depends on the subwindow of the object, this precom-

putation can usually save much time for both training and testing, especially when

the kernel computation can be reused for extracting features at different locations

and scales. In our implementation, the two-layer HOG features are decomposed

into cells which can be computed independently, and as there are plenty of cells in

each dimension of the feature descriptor (see 4.7.2), the stride of the sliding win-

dow can be set to be just one-cell height/width, therefore these precomputed cells

(which naturally forms a pyramid) can be assembled into features of subwindows at

different locations and scales. These raw cell features are stored instead of the HOG

features, and the assembling is done on-the-fly during the usage of the subwindow

features (in training and testing). We represent the precomputed cell features for
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the whole training set as ϕF (Itr) = {ϕF (Itr
1 ), . . . , ϕF (Itr

ntr
)}, in which the function

ϕF denotes the feature extraction process.

Localization map Using the localization loss function of the object (i.e. the semi-

hard loss lLSemi−hard), and the annotated object bounding boxes, we can generate a

object/non-object indication map for all the subwindows in an image extracted by

the sliding window. We call this map “localization map” with the notation mapL.

The localization maps of the training set mapL(Itr) = {mapL(Itr
1 ), . . . , mapL(Itr

ntr
)}

can be used for data mining non-object examples, while those of the test set are

good for performance evaluation.

2. Training

Given the training set with annotations, the chosen loss function and the precom-

puted features and localization maps, the specific DLR problem of recognizing cars

and pedestrians in static images can be solved by the proposed SOnline learning

algorithm along with the data-mining strategy. The procedure of the training pro-

cess is presented below:

Procedure of Training

Input:

Training image set Itr = {Itr
1 , . . . , Itr

ntr
};

Precomputed features:

X obj = {xobj
1 , . . . ,xobj

nobj
} for objects,

ϕF (Itr) = {ϕF (Itr
1 ), . . . , ϕF (Itr

ntr
)} for non-objects;

Object categorization labels Yobj = {yobj
1 , . . . , yobj

nobj
};

Localization maps of the training set

mapL(Itr) = {mapL(Itr
1 ), . . . , mapL(Itr

ntr
)};

Loss function l;

Acceptable number of non-object examples nnon.

Output:

Trained model parameters γ.

1: Initial sampling of non-object examples X non = {xnon
1 , . . . ,xnon

nnon
},

whose categorization labels are Ynon = {ynon
1 , . . . , ynon

nnon
},

∀i ∈ {1, · · · , nnon} , ynon
i = 0.

Set all the training examples to be X = X obj∪X non with labels Y = Yobj∪Ynon.

2: Train a initial model γ and get the non-supporting non-object examples X non
NS :

[γ,X non
NS ] = SOnline(X ,Y , l).

3: Data-mining non-object examples on Itr:

4: for iter = 1 to niter mining do
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5: X non
rep = ∅;

6: for i = 1 to ntr do

7: X non
mine = data-mining(ϕF (Itr),mapL(Itr), γ);

8: X non
rep = X non

rep ∪ X non
mine;

9: if
∣∣X non

rep

∣∣ ≥ |X non
NS | then

10: break;

11: end if

12: end for

13: if
∣∣X non

rep

∣∣ = 0 then

14: break;

15: end if

16: [X non,U ] = replace-example(X non,X non
NS ,X non

rep );

17: X = X obj ∪ X non;

18: Update the model γ and get its non-supporting non-object examples X non
NS :

[γ,X non
NS ] = SOnline(X ,Y , l, γ,U);

19: if fppi < fppi th then

20: break;

21: end if

22: end for

The function data-mining does the data-mining on the training set, while the

function replace-example replaces the non-supporting examples with the newly

mined non-object examples. Some of the details of this procedure are explained in

the following.

Initial sampling of non-object examples Features of object instances were

directly computed in the annotated bounding boxes, while those for non-object

examples were precomputed in a batch manner as mentioned above. The definition

of non-object examples is based on the semi-hard localization loss lLSemi−hard, i.e.,

when the overlap ratio between the subwindow and the bounding box of the object

is lower than 50%, then the data within this subwindow is a non-object example.

To make the initial set of the non-object examples as diverse as possible, they were

sampled randomly from all the non-object candidates in the training images (cross

image, scale and location). The number of initial non-object examples is decided

by a predefined object non-object ratio rtr = nobj/nnon, where nobj is the number

of object instances for training and nnon is that of the non-object instances.

Data mining and model updating Since training with all the examples (ob-

ject and non-object) simultaneously is infeasible, a data-mining (or bootstrapping)

strategy is commonly used to address this problem. The main idea of it is to itera-

tively mine “hard” non-object examples from all the candidates and add them into
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the training set to train a new model. The iteration ends when there is no more

“hard” non-object examples can be found or the training error (e.g. false positives

per image (fppi)) meets a predefined threshold, or even simpler the iteration meets

the predefined maximum number of iterations niter mining.

In practice, usually the “hard” means incorrectly classified, i.e., false alarms. How-

ever, as argued in [77], adding only false alarm examples into the training set is

just an approximation to the problem of training on all the data, and when the

“hard” means supporting patterns for maximum-margin classifiers, then this iter-

ative mining will be sure to converge to the exact solution of the training problem

using all the examples. It can be proved that it is true, not only for the traditional

SVM or the latent SVM, but also for the maximum-margin based structural predic-

tion algorithms. However, in our experiments, we found that the convergence may

be too slow, especially in our proposed SOnline algorithm. Alternatively, using

the false alarms as “hard” examples can make the mining process converge much

faster. This is reasonable since incorrectly classified non-object examples influence

the decision plane more than those in the margin.

When the dimension of the data is very large as in our case it is more than 8000

and the output space is also large which means there are many parameters to

learn, training is usually very slow. Therefore, we adopted two more strategies

to accelerate the data-mining process: a) pre-mining valuable non-object examples

using a subset of features (e.g. excluding the fine-level HOG features) and b) mining

from a subset of training images (e.g. the first 20%) to get a good enough model

and then use it to mine new examples from the whole training set.

3. Testing

The testing is just the inference problem given the model, which is identical to

the data-mining operation in the training process. Equation 4-19 gives the exact

function for testing and data mining. To make both of these two processes as fast

as possible, we chose to use the linear kernel Kx (xi,x) = 〈xi,x〉, which results in

a much simpler prediction function:

f (x) = arg max
y
〈w∗ (y) ,x〉 . (4-21)

where w∗ (y) =
∑
i

γ∗i (y)xi denotes the linear weights for each output state. By

doing so, predictions on subwindows in an image can be done in a batch processing

way by convolution on the feature pyramids. Note that, the bias needs to be taken

into account in the linear case, and it can be done by simply augmenting the feature

vector with a constant “1”.
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4.8 Experiments and Results

Experiments were done on the two most representative subsets of the IAIR-CarPed

dataset: set “S” and set “SD-D2”. The first one is the simplest subset with no visual

difficulties, while the second one is the largest subset with all applicable difficult samples

(excluding the truncated cases). For convenience, we rename them as “set A” and “set

B” respectively.

4.8.1 Superiority of DLR

To show the superiority of the proposed DLR, we would like to benchmark it against

traditional binary categorization (i.e. object detection) and multiclass classification. We

used the same input feature representation for all of them to exclude its influence on

the final performance. Besides that, we adopted the same learning algorithm (SOnline

with data-mining) to train their models, leaving the only difference among them to

be the output structure which is the intrinsic one. For binary categorization (in short

“BC”), all the object instances are treated as belonging to one single category without

differentiation, therefore the output y takes only two values(0 and 1), and the SOnline

algorithm is degraded into a normal binary SVM with online learning ability. For mul-

ticlass classification, we just use the zero-one loss l0/1 for the output space instead of

the confusion loss lConf . By doing so, the structural information of the output space

represented by the loss function is lost and the problem is degraded into a multiclass

classification problem though the possible output states remain unchanged. Note that

it is not identical to the traditional definition of multiclass classification problem since

the output classes are not within a single layer and the feature representation is already

made to be output-sensitive. More precisely, the feature representation and the output

space are designed for DLR, but the learning is the same as that for multiclass classifica-

tion when y is a scalar. A proper view of it might be multiclass classification for solving

DLR. Therefore, we just name it use the loss “l0/1” and have DLR also named after its

structured loss “lConf”. The confusion loss of the training data is shown in Figure 4-7,

in which the losses among different output states of the objects are derived from the

semantic confusions of the human labels and those between the object and non-object

categories are set to 1 which coincides with the semi-hard localization loss lLSemi−hard.

Since the proposed SOnline algorithm roots in the LaRank algorithm introduced

in [24], we implemented it based on the publicly available code of LaRank. Note that

there is a free parameter C in the learning when linear kernel is chosen. We tried several

different values during the learning of the model, and found that C = 1 is a good choice

for all the three recognition strategies and the training results are not very sensitive to

its value.

Figure 4-8 shows some representative testing results of these three different strate-

gies on set A. It can be seen that the multiclass classification simulated by DLR with loss
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Figure 4-7 The joint loss matrices for the class of “pedestrian” and “car” respectively on the
training data. The abbreviation of “N-O” denotes the non-object category.

“l0/1” tends to have higher recall on object detection than binary categorization while at

the same time provides deeper categorization of the detected objects, and our proposed

DLR with loss “lConf” gets even better detection (category-level recognition) perfor-

mance and mostly its detailed categorization of objects looks more reasonable than that

of the multiclass classification. Though statistically it is true, there are some exceptions

as presented in the last two images of Figure 4-8. “BC” sometimes gets higher recall

than the two others while the robustness of them may vary in different images as shown

in the second row (“BC” gets the right most car with little occlusion and “DLR with

lConf” gets the other three). The depth of recognition may not coincide well with the

object scale as closer objects may not necessarily have clearer appearances. In the last

row, “DLR with l0/1” predicts the right label (front with clear face) of the pedestrian

while “DLR with lConf” fails, but the mistake is reasonable as its prediction is closest

to the actual and their different is very small for the specific case.

Besides qualitative demonstration, we also provide quantitative measurements as

follows.

Table 4-1: Statistics on the performance of category-level recognition. The first three measure-
ments are calculated based on the final trained model, and the forth one named F1max denotes
the maximum F1 value over different bias values of the non-object category.

Car Pedestrian

P R F1 F1max P R F1 F1max

Set A

DLR with lConf 0.8088 0.7918 0.8002 0.8086 0.8264 0.7402 0.7809 0.7809

DLR with l0/1 0.7738 0.7404 0.7567 0.7791 0.8236 0.7097 0.7624 0.7624

BC 0.6841 0.6281 0.6549 0.6597 0.7944 0.6918 0.7396 0.7397

DTPM 0.8386 0.5328 0.6516 0.7081 0.4969 0.6724 0.5715 0.6243

Set B

DLR with lConf 0.576 0.6911 0.6283 0.6669 0.1659 0.8876 0.2795 0.6948

DLR with l0/1 0.4929 0.716 0.5839 0.6445 0.09 0.9099 0.1638 0.6679

BC 0.3856 0.6032 0.4705 0.5239 0.2552 0.8161 0.3888 0.6623

DTPM 0.8685 0.4376 0.5820 0.6777 0.6076 0.6164 0.6120 0.6289
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(a)BC (c)DLR with
Confl(b)DLR with

0/1
l

Figure 4-8 Some results of the three different recognition strategies. Green and red bounding
boxes represent car and pedestrian hypotheses respectively, while blue bounding boxes show the
missed ones (either car or pedestrian). The white box within each object bounding box is for
contrasting. Though both the multiclass classification simulated by DLR with l0/1 and our pro-
posed DLR with lConf predict the direction of the objects, they are theoretically different. The
former treats the different output states equally while the later differentiates them according to
the semantic structure among them. We illustrate the predicted semantic outputs by the visual
signs of them. Note that for DLR, the sign not only stands for itself, but also denotes the semantic
level it stays. The first row shows the most common results, while the second and the third ones
are two typical exceptions.

Category-level recognition performance. We calculate the precision, recall and F1

value of each strategy on the category-level recognition (i.e. detection) only, as presented

in Table 4-1. By varying the bias value of the non-object category, we can get the

precision-recall curves as shown in Figure 4-9, which represents more information about

the trained models on the binary object/non-object categorization. Both of them clearly

show that DLR with “lConf” performs superior to the degraded version with “l0/1” (i.e.

the multiclass classification), and the later outperforms the binary categorization. This
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is reasonable because the multiclass classification acts like a multi-component model

which represents the object category better than the simple binary categorization, while

our proposed DLR makes better use of the collaboration among object subcategories

than the flat multiclass classification.

We also run the state-of-the-art object detection algorithm [77] denoted by “DTPM”

on the same test sets for comparison. Note that DTPM is trained on the PASCAL VOC

2008 dataset, so the testing results are not fully comparable. Due to the great variations

of the image contents, the percentage of difficult training examples in the PASCAL

VOC 2008 dataset is larger than that in the IAIR-CarPed dataset. Therefore compared

to DLR, DTPM performs much better on set B than on set A. For cars which has

relatively rigid shape and similar appearance, DTPM performs as well as DLR on set

B which benefits from the good training data. As far as pedestrians and simple cars

are concerned, in which such a benefit doesn’t exist, DTPM performs significantly worse

than the proposed DLR model.
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Figure 4-9 Precision-recall curves on category-level recognition.

Categorization performance. We evaluate the overall categorization performance in

terms of the summed structural loss of “lConf” to compare the multiclass classification

with DLR as this structural loss best represents the recognition confusions of the hu-

mans. Table 4-2 shows both the summed within-class (excluding non-object examples)
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Table 4-2: Summed categorization losses. The within-class values are normalized by the num-
ber of recalled object samples, and the overall values are the original summarizations without
normalization due to the large number of non-object samples.

Within-class Overall

DLR - l0/1 DLR - lConf DLR - l0/1 DLR - lConf

Car
Set A 0.0427 0.0434 434.02 367.37
Set B 0.0461 0.0421 1439.1 1156.8

Ped
Set A 0.0651 0.0634 706.86 668.86
Set B 0.0804 0.0771 23169 11490

categorization confusion losses and the overall categorization confusion losses of them on

the two sets (set A and set B) of cars and pedestrians respectively. It can be seen that

DLR with “lConf” is mostly superior to the multiclass classification simulated by DLR

with loss “l0/1”, especially when the overall confusion is considered. Since relatively we

are putting more efforts on discriminating objects from non-objects as the confusion loss

shows, the number of within-class categorization mistakes is usually greater than that

of the multiclass classification with flat “l0/1”. This contrast shows that the mistakes of

DLR with “lConf” are closer to those of the humans than the other. A concrete example

of their detailed confusion matrices on set B of cars is shown in Figure 4-10. The confu-

sion matrix of DLR with “lConf” is slightly closer to the human confusion matrix than

the other, though they look quite similar. Other results (set A of cars, set A and set B

of pedestrians) expose similar information, so they are not presented here. Such close

results may due to the domination of object/non-object categorization loss in the whole

confusion loss matrix and the margin rescaling strategy does not directly minimizing

the misclassification error. Adding the loss function into the primal objective to directly

optimize the training loss as suggested by [174] may get better results, which can be our

future work.

All the results presented here demonstrate that the structural output modeling by

the loss function is critical for the recognition performance, and our proposed DLR is

superior to the binary categorization and the multiclass classification simulated by DLR

with loss “l0/1” on both category-level recognition (detection) and the overall structured

categorization (including localization implicitly).

4.8.2 Effectiveness of The Chosen Features

Though the comparison is mainly done on different recognition strategies represented

by the methodology of output structure modeling, the joint input-output feature repre-

sentation is also very important to the performance of DLR. A good feature set should

contain features that are both discriminative and representative for differentiating dif-

ferent output states, and the trained model will represent how these features are used
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Figure 4-10 Recognition confusion matrices on set B of “car”. The first three are within-
class object categorization confusions of humans, DLR with zero-one loss (i.e. the multiclass
classification), and DLR with the confusion loss, respectively. The last one is that of DLR with
confusion loss on the whole categorization problem including the non-object category (denoted by
“N-O”). Each row is normalized to sum to 1.

for recognition.

For the linear model we have chosen, the prediction is determined by the response

scores of each possible output state y as shown in equation 4-21, which is just an inner

product of the corresponding weight vector w(y) and the feature vector x of the data.

It can be viewed as projecting the data to the trained weight vectors, and the projected

values (i.e. the response scores) show the discrimination ability of the model on the data.

The discrimination ability is represented by the partial ranking as defined in equation

4-7. We calculate the discrimination ability of each type of features (denoted by DF ) on

ranking examples with the output yi (i.e. ∀xk ∈ Si, yk = yi) against any other output

yj as:

DF
ij =

1

|Si|
∑

k,xk∈Si

〈
wF

(
yi

)−wF
(
yj

)
,xF

k

〉

〈w (yi)−w (yj) ,xk〉

in which wF
(
yi

)
represents the part of the weights for feature F on output yi while

w
(
yi

)
denotes the whole weight vector on yi. This measurement exposes the details of

how each type of features influences the recognition results.

Figure 4-11 illustrates the discrimination ability of features for DLR on set A of

“car” and “pedestrian” respectively. It can be seen that different features have different

abilities and the five groups of features are complementary. To just list a few immediate

observations: coarse HOG features are very discriminative for differentiating the ob-

jects with unspecific direction information from the other output states while fine HOG

features do the opposite; fine HOG features are also good at differentiating between

frontal/back views and profile views; color works well on telling frontal cars from profile

and rear cars and distinguishing frontal pedestrians with clear faces from the back view

pedestrians; key part presence feature prevents from false alarming of license plate and

missed declaration of the presence of clear faces; the cheep geometric scale feature is

very informative for cars and also helpful for differentiating close pedestrians with clear
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Figure 4-11 Discrimination ability of different groups of features. A large positive value in each
matrix mean that the group of features are discriminative for preventing from misclassifying the
examples with the output represented by the row to the wrong output label represented by the
column. The larger the value is, the stronger the prevention is. In contrast, a large negative value
indicates that such a group of features are not suitable for correctly classifying the examples with
the output represented by the row.

face from the two directional ambiguous outputs (front/back and left/right). About

the relative amount of contributions to the final decision, the high-dimensional HOG

features play the most important role, followed by the scale feature. Color and key part

presence feature are relatively less deterministic.

To understand more about the high-dimensional HOG features, we illustrate some

of the weights for them in Figure 4-12. Note that the weights are used for discrimination

(in our case one-against-others partial ranking) but not representation, so higher weights

(brighter in the figure) mean that the corresponding features are more discriminative

for differentiating the examples with the specific output from those with other outputs.

4.8.3 Robustness to Visual Difficulties

All the experiments were done on both set A and set B of the two object categories. As

it can be seen from the category-level recognition results presented in Figure 4-9 and the

summed structural loss for the overall categorization in Table 4-2, the visual difficulties

do influence the performance of DLR. Compared to set A, the maximum F1 value F1max

on set B of “car” decreases 17.6% and that of “pedestrian” decreases 11%, while the

other two strategies have similar results. It seems better to discuss the robustness of

different features against individual difficulties as shown in 3.5.2, which could be our

future work.
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(d)Front with clear face(c)Non-pedestrian (e)Back

(b)Left(a)Rear with licence plate

Figure 4-12 Weights of the two-layer HOG features for some outputs. The first two subgraphs
are the weights of the “car” category and the other three are those for the pedestrians. In each
subgraph, the left part shows the weights for coarse-level HOG features while the part on the right
is for fine-level HOG features. The green bounding boxes show the areas of weights for the objects
themselves without the close context. The upper and lower parts of each subgraph illustrate the
positive values and the magnitude of the negative values of the weights respectively.

Note that the F1 value on set B of “pedestrian” is very small due to the high recall

and very low precision. This is because the training on this dataset is so hard that the

data-mining always terminates on the first few images, resulting in a low-precision model.

The high overall structural losses shown in the last line of Table 4-2 also demonstrate

such a case. However, it can be adjusted by changing the bias of model.

4.8.4 Computational Complexity

All the experiments were done on a 2.5Ghz 8-core Intel Xeon IBM server. We ran

different experiments in parallel using a single thread for each of them. As presented

before, we precomputed all the features (except the key part feature of license plate

which depends on the training-testing split of the data) for all the images (512 × 384)

in the dataset in advance, and a single thread takes about 25 seconds per image. The

computation of the two-layer HOG and the color histograms takes most of the time

though we wrote them in C. It dues to the fact that we have a very small lower bound of
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the object scale (car 30-pixel width and pedestrian 45-pixel high) and those small scales

take most of the time.

For “car”, the training of DLR (with lConf or l0/1) takes 1-2 days for set A and 4-5

days for set B, while for “pedestrian” it takes 4-5 days for set A and 9-10 days for set

B. The binary categorization is usually 2-4 times faster. The testing or data mining on

one image lasts about 20 seconds. If the multiple-core architecture of the machine was

used to compute the filter response in parallel as in [77] and [175], the time for testing or

data mining would be around 3s per image (plus another 3s for feature precomputation),

and the training time will also be much shortened. Further improvements on the speed

may be possible using Graphics Processing Unit (GPU) for parallel computation of the

sliding-window based recognition as presented in [176].

Note that for both “car” and “pedestrian”, set B has nearly twice as many examples

as set A and the examples within it are harder for recognition, but the training time

scales almost linearly with respect to the number of training examples. It is an advantage

of our proposed perceptron-based online learning algorithm.

A group of our deep and layered recognition results are shown in Figure 4-13,

which demonstrate that our proposed problem is solvable. Most of the results look

good, correctly indicating the right semantic information and localization information

of the objects, while some of the others make reasonable mistakes. Results on set B

show the generalization and precision tradeoff of the model, on one side it recognizes

difficult examples, while on the other side it decreases the precision.

4.9 Discussion

Recall the brief framework presented in 4.3 and the efforts we have made to solve a

concrete deep and layered recognition problem, two issues are really critical: a) the

structural loss function, and b) output-sensitive feature representation.

The top-down guidance represented by the loss function explores the structural

information of the output space and leads the learning in generating a model which can

predict desired deep and layered outputs. Therefore, designing a proper loss function is

critical. We have mainly focused on semantic structures of the output, but geometric

structures like the flexible object bounding box and geometric contextual relationships

can be further explored.

Feature representation is important for all recognition problems, but especially

critical for deep and layered object recognition. As mentioned before, it dues to the fact

that DLR usually has richer output states than the others, and both the differentiation

and the sharing relationships among them need to be represented. Our proposed output-

sensitive features are good examples for designing proper features. Usually the more

complex the output space is, the more designing work needs to be done on the bottom-

up feature representation. A good feature set may not only ensure the performance
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of recognition but also the efficiency of learning and testing. For the specific DLR

instantiation on car and pedestrian recognition, there might be better features than the

ones explored by us.

Due to the rich output structure and the high demands on feature representation,

usually a large amount of data needs to be provided for training, therefore the efficiency

and effectiveness of the learning algorithm becomes rather important. The proposed

structured online learning algorithm is a valuable attempt on advancing the tools for

solving practical deep and layered object recognition problems.

Compared to other object recognition problems, deep and layered object recognition

has several advantages: a) its results are more colorful, more appropriate, and more

flexible, b) it has higher category-level recognition performance, and c) it is closer to

the way humans recognize objects. The limitations of DLR are two-fold: a) it is only

applicable to object categories that have layered within-category properties, and b)

currently the annotation for training is more expensive than that of the other recognition

problems.

Generally speaking, deep and layered object recognition is harder than traditional

object recognition problems, therefore it demands more on both modeling and learn-

ing. We hope it can drive the research on object recognition towards deeper and more

intelligent stages.

4.10 Conclusion

We have posed a generic model for deep and layered object recognition, followed by de-

tailed discussions on the evaluation and feature representation strategies. The proposed

structured online learning algorithm SOnline efficiently solves the concrete deep and

layered object recognition problem in the IAIR-CarPed dataset. Comparative results

show the superiority of the proposed model on both deep and layered object classifi-

cation and object detection compared to traditional multiclass recognition and binary

recognition models. The experimental results demonstrate that DLR not only gener-

ates rich and adaptive outputs, but also improves the performance on traditional object

categorization.
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Figure 4-13 Some representative results of our DLR algorithm on the IAIR-CarPed dataset.
The first 4 rows (a-l) are generated by the model trained on set A, while the results in the last
row (m-o) are from the model trained on set B. Green and red bounding boxes represent car and
pedestrian hypotheses respectively, while blue bounding boxes show the missed ones. The white
box within each object bounding box is for contrasting. Semantic signs are attached close to the
hypotheses.
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CHAPTER 5

Saliency Based Opportunistic Search for Object Parsing

In this chapter we study the problem of object parsing, which seeks to understand

objects in the scene beyond simply identifying their bounding boxes. Unlike the existing

approaches which either treat it as a top-down matching problem or perform bottom-

up grouping and top-down matching separately and sequentially, we propose a novel

strategy called saliency based opportunistic search which systematically fuses these two.

We tested our approach on a challenging statue face dataset and 3 real human face

datasets. Results show that our approach significantly outperforms the predominant

Active Shape Models (ASM) using far fewer exemplars. This framework can be applied

to other object categories as well.

5.1 Motivation and Contribution

A better understanding of the scene sometimes requires knowing more about the details

of the objects within it. For example, recognizing the facial expressions is important for

understanding the atmosphere while knowing the poses of humans helps inferencing the

ongoing activities and events. For these purposes, we need to going inside the object’s

bounding box to extract object parts and reason about their configurations, which is

usually referred to as object parsing.

One common approach to solve the object parsing problem is to learn specific fea-

tures for each object part and do top-down template matching with geometric constraints
[177][178] [95]. A major disadvantage is that it ignores image grouping cues and therefore

cannot tell accidental alignment in the background from nonaccidental object segments.

Another widely used strategy is to start with bottom-up segmentation of images

and then search for correspondences between object parts in a few shape models and

segments in images, i.e. perform bottom-up grouping and top-down matching sequen-

tially [180]. However, segments comprising different object parts in the image are usually

not equally salient due to uneven contrast, illumination conditions, clutter, occlusion

and pose changes. Moreover, object parts themselves may have different scales. There-

fore, depending on the data, segments belonging to different object parts may pop out

at different grouping levels (with different numbers of segments) and they may not be

predictable, as shown in Figure 5-1. One may choose to do over-segmentation to make

sure all segments belonging to the object are covered, but then the saliency will be lost,

and fake segmentation boundaries will cause many false positives of accidentally aligned

object parts.
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Figure 5-1 Saliency of contours and segments. The second image is a group of salient contours
from contour grouping [179] by setting a lower threshold to the average edge strength, while the third
one contains all the contours from contour grouping. It shows that by thresholding the saliency of
contour segments, we either get some foreground contours missing (under-segmented) or have a lot
of clutter come in (over-segmented). The same thing happens to image segmentation. Segments
comprising object parts pop out in different grouping levels, representing different saliencies (cut
costs). The last three images show such a case.

However, it is not easy to incorporate saliency. A naive way of using saliency is

to find salient parts first, and then search for less salient ones condition on them. The

drawback is that a hard decision has to be made in the first step of labeling salient parts,

and mistakes arising from this step cannot be recovered later.

To make the best use of segment saliency for efficient object parsing while at the

same time ensure its correctness and robustness, we propose a novel approach called

Saliency Based Opportunistic Search with the following key contributions:

1. We novelly formulate the object parsing problem as a fused grouping and matching

problem so that bottom-up image saliency is naturally incorporated. The overall

cost function biases on matching salient segments which are more likely to be those

of the objects while it also allows local editings to get the less salient ones guided

by the previously matched ones.

2. Two levels of contextual information (figural object-level context and semantic part-

level context) are used to ensure the correctness of matching results. The figural

context is a global representation captures the overall shape of the object while

semantic context serves as a global constraint for local part representations.

3. An opportunistic search strategy is proposed to well bridge the bottom-up segment

grouping and top-down shape matching for object parsing. In the search process,

bottom-up grouping is only adopted locally which ensures efficiency and precision,

and the newly proposed part hypotheses based on these locally generated segments

are matched together with all the formerly generated part hypotheses therefore it

avoids falling into local minimums.
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5.2 Related Work

It has been shown that humans recognize objects by their components [181] or parts
[182]. The main idea is that object parts should be extracted and represented together

with the relationships among them for matching to a model. This idea has been widely

used for the task of recognize objects and their parts [95, 183, 184]. Figural and semantic

contextual information play an important role in solving this problem. Approaches that

take advantage of figural context include PCA and some template matching algorithms

such as Active Shape Models (ASM) [185] and Active Appearance Models (AAM) [186].

Template matching methods like ASM usually use local features (points or key points) as

searching cues, and constrain the search by local smoothness or acceptable variations of

the whole shape. However, these methods require good initialization. They are sensitive

to clutter and can be trapped in local minima. Another group of approaches are part-

based models, which focus on semantic context. A typical case is pictorial structure
[95]. Its cost function combines both the individual part matching cost and pair-wise

inconsistency penalties. The drawback of this approach is that it has no figural context

measured by the whole object. It may end up with many “OK” part matches without a

global verification, especially when there are many faint object edges and occlusions in

the image. Recently, a multiscale deformable part model was proposed to detect objects

based on deformable parts [177], which is an example that uses both types of contextual

information. However, the part-based model is just for improving the detection results

by pursuing better data alignment, and the parts have no semantic meanings.

5.3 Parsing by Fusing Grouping with Matching

5.3.1 Problem Definition and Modeling

We perform object parsing via a fusion of two operations: object segment (contour

or region boundary) extraction and segment labeling, therefore it naturally combines

the bottom-up image-based grouping and top-down model-based matching. To handle

intra-class variations of the object, multiple models may be needed (Figure 5-2 shows the

models used by us for face parsing). Therefore, finding the best model is also involved

in the object parsing problem. Concretely, the problem can be formulated as follows:

Input:

• Model: M = {M1,M2, . . . , Mm}; each model Mk has a set of labeled parts {pk
1, p

k
2,

. . . , pk
n}. They are all shape models made of contours and line segments.

• Image: I containing at lease one object instance.

Output:

• The best matched model Mk for each object instance.
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• Extracted candidate segments S = {s1, s2, . . . , sl}, which are region boundaries and

contours extracted at different grouping levels from the image (see Figure 5-1 for

an example).

• Object part labels L(S). If there exists a part pk
j and si belongs to part pk

j , then

L(si) = j, or else L(si) = 0.

Figure 5-2 Different models for faces. They are hand designed models obtained from 7 real
images, each of them representing one pose. Facial features are labeled in different colors.

Such a problem contains two highly correlated subproblems: bottom-up segment

grouping and top-down shape matching. Therefore, we formulate the problem as mini-

mizing the following cost function:

Cparsing = Cmatching + Cgrouping (5-1)

where Cmatching measures the shape matching cost between shape models and labeled

segments in the image, which relies much on the correspondence and the context, and

Cgrouping is the grouping cost, which can be measured in different ways and in this paper

it is mainly about the bottom-up saliency based editing cost.

The cost function above is based on the following three key issues.

1. Correspondence (u). A way to measure the dissimilarity between a shape model

and a test image. The correspondence is defined on control points. Features com-

puted on these control points represent the shape information and then the cor-

respondences are used to measure the dissimilarity. Let UM = {a1, a2, . . . , aNa}
be a set of control points on the model, and UI = {b1, b2, . . . , bNb

} be the set on

the image. We use uij to denote the correspondence between control points ai and

bj where uij = 1 indicates they are matched, otherwise uij = 0. Note that this

correspondence is different from the one between object parts and image segments.

2. Context (x and y). The idea of using the context is to choose the correct

context on both model and test image sides for shape matching invariant to clutter

and occlusion. x and y are used here to denote the context selection of either

segments or parts on the model and the image, respectively.

3. Saliency. A property of bottom-up segments which represents how difficult it is

to separate the segment from the background. Coarse-level segmentation tends to

produce salient segments, while finer-level segmentation extracts less salient ones,
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but at the same time introduces background clutter. Local editing on the salient gap

between two salient segments can help to get good segments out without bringing

in clutter, but it needs contextual guidance.

Saliency based editing. Image segmentation may be hard to generate the right object

segments when they have different saliency values. Under-segmentation could end up

with unexpected leakages, while over-segmentation may introduce clutter. A solution

for this problem is to do some local editings. For example, adding a small virtual edge

at the leakage place can make the segmentation much better without increasing the

number of segments. Zoom-in in a small area is also a type of editing that can be

effective and efficient, as presented in Figure 5-1. Small costs for editing can result

in big improvement on shape matching cost. This is based the shape integrity

and the non-additive distance between shapes. However, editings need the contextual

information from the model.

Suppose there are a set of possible editing operations z which might lead to better

segmentation. zk = 1 means that editing k is chosen, otherwise zk = 0. Note that usually

it is very hard to discover and precompute all the editings beforehand. Therefore, this

editing index vector z is dynamic, and it appends on the fly. After doing some editings,

some new segments/(part hypotheses) will come out, meanwhile we can still keep the

original segments/parts. Therefore, a new variable yedit = yedit(y, z) is used to denote

all the available elements which includes both the original ones in y and the new ones

induced by editing z. Let Cedit
k be the edit cost for editing k.

Our cost function (5-1) of object parsing can be written as follows:

min
x,y,z,u

Cparsing(x,y, z,u) = Cmatching(x,y, z,u) + Cgrouping(z) =

Na∑

i=1

[ β ·
Nb∑

j=1

uijC
M↔I
ij (x,yedit) + CF↔M

i (x,u)] +
∑

k

Cedit
k zk (5-2)

s.t.
∑

j uij ≤ 1, i = 1, ..., Na

x: selection indicator of model segments/parts.

y: selection indicator of image segments/parts.

z: selection vector of editing operations.

u: correspondence of control points between the image and model.

yedit(y, z): selection indicator of image segments/parts edited by z.

The three summations in equation (5-2) correspond to three different types of cost:

mismatch cost CM↔I(x,yedit,u), miss cost CF↔M(x,u) and edit cost Cedit(z). The

mismatch cost, CM↔I
ij (x,yedit) = ‖fi(x) − fj(y

edit)‖ denotes the feature dissimilarity

between two corresponding control points. To prevent the cost function from biasing

to fewer matches, we add the miss cost CF↔M
i (x) = ‖ffull

i − (
∑

j uij)fi(x)‖ to denote

how much of the model has not been matched. It encourages more parts to be matched

105



Dissertation of Xi’an Jiaotong University

on the model side. There is a trade-off between CM↔I
ij and CF↔M

i , where β ≥ 0 is a

controlling factor. Note that ‖ ·‖ can be any norm function 1©. The following subsections

focus on the two parts of our cost function. Shape matching is performed on two levels

of contexts and saliency based editing results in the opportunistic search approach.

5.3.2 Two-level Context Based Shape Matching

We extend the shape matching method called contour context selection in [180] to two

different contextual levels: “figural context selection” and “semantic context selection”.

Figural context selection. Figural context selection matches a segment-based holistic

shape model to an object hypothesis represented by segments, which may have clutter

and missing segments. We optimize the following cost function:

min
x,y,u

Cfigural(x,y,u) =

Na∑

i=1

[ β ·
Nb∑

j=1

uij‖SCM
i (x)− SCI

j (y)‖︸ ︷︷ ︸+‖SCF
i − (

∑
j uij) · SCM

i (x)‖)︸ ︷︷ ︸]

CM↔I
ij (x,yedit) CF↔Mi (x,u)

s.t.
∑

i,j,i′,j′
uijui′j′C

geo
i,j,i′,j′ ≤ Ctol (5-3)

where SCM
i (x) and SCI

j (y) is defined as the Shape Context centered at model control

point ai and image control point bj . Cgeo
i,j,i′,j′ is the geometric inconsistent cost of corre-

spondences u. Ctol is the maximum tolerance of the geometric inconsistency. We use

Shape Context [10] as our feature descriptor. Note that the size of Shape Context his-

togram is large enough to cover the whole object model, and this is a set-to-set matching

problem. Details for this algorithm can be found in [180].

Semantic context selection. Similarly we explore semantic context to select consis-

tent object part hypotheses. We first generate part hypotheses using almost the same

context selection algorithm as the one presented above. The selection operates on parts

instead of the whole object. Figure 5-3 shows an example of generating a part hypothesis.

In semantic context selection, we reason about semantic object parts. Hence we

abstract each part (on either model or test image) as a point located at its center with

its part label. We place control points on each one of the part centers.

Suppose Cpart
j is the matching cost of part hypothesis j. We use wP

j = e
γC

part
j

eγ ∈
[ 1
eγ , 1], γ ∈ [0, 1] as its weight. Then the cost function for semantic context selection is:

min
x,y,u

Csemantic(x,y,u) =

Na∑

i=1

[ β ·
Nb∑

j=1

uijw
P
j ‖SCM

i (x)− SCI
j (y)‖︸ ︷︷ ︸+‖SCF

i − (
∑

j uij) · SCM
i (x)‖)︸ ︷︷ ︸]

CM↔I
ij (x,yedit) CF↔Mi (x,u) (5-4)

1©In our shape matching we used L1 norm.
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The variable definitions are similar to figural context selection, except for two differences:

1) selection variables depend on the correspondences and 2) Shape Context no longer

counts edge points, but object part labels.

The desired output of L(S) is implicitly given in the optimization variables. During

part hypothesis generation, we put labels of candidate parts onto the segments. Then

after semantic context selection, we confirm some labels and discard the others using

the correspondence uij between part candidates and object part models.

5.3.3 Saliency Based Opportunistic Search

Object parsing using saliency based editing potentially requires searching over a very

large state space. Matching object shape and its part configuration requires computing

correspondences based on non-local context. Both of them have exponentially many

choices. On top of that, we need to find a sequence of editings, such that the resulting

segments and parts produced by these editings are good enough for matching.

The key intuition of our saliency based opportunistic search is that we start from

coarse segmentations which produce salient segments and parts to guarantee low saliency

cost. We iteratively match configuration of salient parts to give a sequence of bounds

to the search zone of the space which needs to be explored. The possible spatial extent

of the missing parts is bounded by their shape matching cost and the edit cost (equally,

saliency cost). Once the search space has been narrowed down, we “zoom-in” to the

finer scale segmentation to rediscover missing parts (hence with lower saliency). Then

we “zoom-out” to do semantic context selection on all the part hypotheses. The new

selection result improves the bound on the possible spatial extent and might suggest new

search zones. This opportunistic search allows both high efficiency and high accuracy

of object part labeling. We avoid extensive computation by narrowing down the search

zone. Furthermore, we only explore less salient parts if there exist salient ones supporting

them, which avoids producing many false positives from non-salient parts.

Search Zone. In each step t of the search, given (x(t−1),y(t−1), z(t−1),u(t−1)), we use

Figure 5-3 Semantic context selection. Left: Part hypothesizing. a) A local part region around
the eye in the image, with segments and control points. c) A model template of the eye with
control points. Selection result on the image is shown in b). Right: Consistent part grouping.
Semantic-level shape context centered on the left eye captures semantic contextual information
of the image. A subset of those parts form a mutually consistent context and we group them by
matching with the semantic-level shape context on the model shown in the middle.
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∆CM↔I(x,yedit) to denote the increment of CM↔I(x,yedit) (the first summation in

equation (5-2)). ∆CF↔M(x,u) and ∆Cedit(z) are similarly defined. By finding missing

parts, we seek to decrease the cost (5-2). Therefore, we introduce the following criterion

for finding missing parts:

β∆CM↔I(x,y, z) + ∆CF↔M(x,u) + ∆Cedit(z) ≤ 0 (5-5)

We write CM↔I(x,y, z)=CM↔I(x,yedit) since yedit depends on editing vector z.

The estimation of bounds is based on the intuition that if all the missing parts can

be found, then no miss cost is needed. Therefore, according to equation (5-4):

∆CF↔M(x) ≥ −
∑

i

CF↔M
i (x,u). (5-6)

This is the upper bound for the increment of either one of the other two items in equation

(5-5) when any new object part is matched.

Suppose a new editing z
(t)
α = 1|

z
(t−1)
α =0

matches a new object part ak to a part

hypothesis in the image b`. Let k ↔ ` indicate u
(t)
k` = 1 and

∑
j u

(t−1)
kj = 0. Then this

editing at least has to pay the cost of matching ak to b` (we do not know whether others

will also match or not):

C|k↔` = β∆CM↔I(x,y, z)|k↔` + Cedit
α . (5-7)

The first item on the right of equation (5-7) is the increment of mismatch ∆CM↔I

(x,yedit) when a new object part ak get matched to b`. It can be computed based on the

last state of the variables (x(t−1),y(t−1), z(t−1),u(t−1)). According to above equations,

β∆CM↔I(x,y, z)|k↔` + Cedit
α −

∑

i

CF↔M
i (x(t−1),u(t−1)) ≤ 0. (5-8)

Since we use Shape Context for representation and matching, the mismatch is

nondecreasing. And also the editing cost is nonnegative, so we abtain the bounds for

the new editing z
(t)
α = 1|

z
(t−1)
α =0

. Let Z(k) denote the search zone for object part k.

Then we can compute two bounds for Z(k):

(Supremum) Zsup(k) = {zα|∆CM↔I(x,y, z)|k↔` ≤ 1

β

∑

i

CF↔M
i (x(t−1),u(t−1))}

(5-9)

(Infimum) Z inf (k) = {zα|Cedit
α ≤

∑

i

CF↔M
i (x(t−1),u(t−1))} (5-10)

where Zsup gives the supremum of the search zone, i.e. upper bound of zoom-in window

size, and Z inf gives the infimum of the search zone, i.e. lower bound of zoom-in window

size. When the number of segments is fixed, the saliency of the segments decreases as

the window size becomes smaller. Zsup depends on mismatch and Z inf depends on the

edit cost (i.e. saliency). In practice, one can sample the space of the search zone, and

check which ones fall into these two bounds.

Our opportunistic search is summarized in Algorithm 4.
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Algorithm 4 Saliency Based Opportunistic Search

1: Initialize using figural context selection. For each part k, compute Z(k) based on u

from figural context selection. Set (x(0),y(0), z(0),u(0)) to zeros. Set t = 1.

2: Compute search zones for all the missing parts. Find all missing parts by thresholding

the solution x(t−1).

for each missing part pk

If Z(k) = ∅, compute search zone set Z(k) by equation (5-9) and (5-10).

end

3: Zoom-in search zone. Update editing set z.

for each x
(t−1)
k where Z(k) 6= ∅

Perform Ncut segmentation for each zoom-in window indexed by elements

in Z(k).

Generate part hypotheses. Set Z(k) = ∅.
If no candidates can be found, go to the next missing part.

Update z from part hypotheses.

end

4: Evaluate configurations with re-discovered parts.

Terminate if z does not change.

Update (x(t),y(t), z(t),u(t)) with the rediscovered parts using equation (5-4).

Terminate if Csemantic(x,y,u) does not improve.

t = t + 1. Go to step 2.

5.4 A Case Study: Face Parsing

5.4.1 Instantiation of Framework

We present more details on the opportunistic search using faces as an example in Figure

5-4. We found that usually the whole shape of the face is more salient than individual

facial parts. Therefore, the procedure starts with figural context and then switches to

semantic context. We concretize our algorithm for this problem in the following steps.

The same procedure can be applied to similar objects.

1. Initialization: Object Detection. Any object detection method can be used,

but it is not a necessary step (figural context selection can also be used to do that
[180]). We used shape context voting [187] to do this task, which can handle different

poses using a small set of positive training examples.

2. Context-based Alignment. First, use Cfigural in equation (5-3) to select the

best matched model Mk and generate the correspondences ufigural for rough align-

ment 1©. When the loop comes back again, update the alignment based on usemantic.

Estimate locations for other still missing parts.
1©In practice, we kept the best two model hypotheses and finally chose the one with lower overall cost.
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Figure 5-4 Saliency based opportunistic search, using faces as an example. Top: the flowchart.
Bottom: results of each step for 3 different examples. Typically the iteration converges after only
one or two rounds. Rectangles with different colors indicate the zoom-in search zones for different
parts. Note that when zoom-in is performed for the first time, two adjacent parts can be searched
together for efficiency. This figure is best viewed in color.

3. Part Hypotheses Generation. Zoom in on these potential part locations by

cropping the regions and do Ncut segmentation to get finer scale segmentation.

Then match them to some predefined part models. The resulting matching score

is used to prune out unlikely part hypotheses, according to the bound of the cost

function.

4. Part Hypotheses Grouping. Optimize Csemantic in equation (5-4). Note that

the best scoring group may consist of only a subset of the actual object parts.

5. Termination Checking. If no better results can be obtained, then we go to the

next step. Or else we update semantic context and go back to step 2.

6. Extracting Facial Contours. This is a special step for faces only. With the

final set of facial parts, we optimize Cfigural again to extract the segments that

correspond to the face silhouette, which can be viewed as a special part of the face.
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5.4.2 Implementing Two-level Context Selection

For simplification, we do not consider any editing in figural context selection. Then

equation (5-3) is an integer programming problem, we relaxed the variables to solve it

with LP. Details of this context selection algorithm can be found in the paper of Zhu et

al.[180].

For semantic context selection, we need to search for correspondences and part se-

lection variables simultaneously because they are highly dependent, unlike the situation

in figural context selection. Therefore, we introduce a correspondence context vector

PM
ij = uijx to expand the selection space for model parts:

PM
ij ∈ {0, 1}|UM| : PM

ij (i′) ⇔ uij = 1 ∧ x(i′) = 1 (5-11)

Similarly, we define the correspondence context vector for image parts,

P I
ij ∈ {0, 1}|U

I | : P I
ij(j

′) ⇔ uij = 1 ∧ y(j′) = 1 (5-12)

In addition to the cost in equation (5-4), constraints on context correspondence

vector PM, P I are enforced such that the semantic context viewed by different parts

are consistent with each other. These constraints are summarized by the table 5-1. The

cost function and constraints are linear. We relaxed the variables and solved it with LP.

Table 5-1: Constraints on context correspondence vector PM, P I . For example, Context com-
pleteness requires that contexts must include all the matched parts. If both i and i′ are matched
parts, the context viewed from i must include i′, i.e. (y(i) = 1) ∧ (y(i′) = 1) ⇒ ∑

j PMij (i′) = 1,
which is relaxed as the constraint in row 4. Other constraints are constructed in a similar way.

Constraint Name Formulation

Self consistency
∑

j PMij (i) = y(i),
∑

i PIij(j) = x(j)

One-to-one matching

∑
i PMij (i′) ≤ y(i′),

∑
j PMij (i′) ≤ y(i′)∑

i PIij(j
′) ≤ x(j′),

∑
j PIij(j

′) ≤ x(j′)

Context reflexitivity PMij (i′) ≤ PMij (i), PIij(j
′) ≤ PIij(j)

Context completeness y(i)−∑
j PMij (i′) ≤ 1− y(i′), x(j)−∑

i PIij(j
′) ≤ 1− x(j′)

Mutual context support
∑

j PMij (i′) =
∑

j′ P
M
i′j′(i),

∑
i PIij(j

′) =
∑

i′ P
I
i′j′(j)

5.5 Experiments and Results

Datasets. We tested our approach on both statue faces from the Emperor-I dataset
[188] and real faces from various widely used face databases (UMIST, Yale, and Caltech

Faces). Quantitative comparison was done on the Emperor-I dataset and we also show

some qualitative results on a sample set of all these datasets. The statue face dataset
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has some difficulties that normal faces do not have: lack of color cue, low contrast, inner

clutter, and great intra-subject variation.

Comparison measurement. The comparison is between Active Shape Models [185]

and our approach. Since we extract facial parts by selecting contours, our desired result

is that the extracted contours are all in the right places and correctly labeled. However,

ASM generates point-wise alignment between the image and a holistic model. Due to the

differences, we chose to use “normalized average point alignment error” measurement

for alignment comparison.

Since our results are just labeled contours, we do not have point correspondences

for computing the point alignment error. Therefore, we relaxed the measurement to the

distance between each ground truth key point and its closest point on the contours belong

to the same part. To make the comparison fair, we have exactly the same measurement

for ASM by using spline interpolation to generate “contours” for its facial parts. We use

0.35 times the maximum height of the ground truth key points as an approximation of

the distance between two eyes invariant to pose changes as the our normalizing factor.

Experiments. There are two aspects of our Emperor-I dataset that may introduce

difficulties for ASM: few training examples with various poses and dramatic face silhou-

ette changes. Therefore, we designed three variants of ASM to compensate for these

challenges, denoted in our plots as “ASM1”,“ASM2”,“ASM3”. Table 5-2 shows the dif-

ferences. Basically, ASM2 and ASM3 disregard face silhouette and work on fewer poses

that may have relatively more exemplars. Note that ASM3 even combined the training

data of the three near-frontal poses as a whole. We used “leave-one-out” cross-validation

for ASM. For our method, we picked up 7 images for different poses (one for each pose),

labeled them and extracted the contours out to work as our holistic models. Moreover,

we chose facial part models (usually combined by 2 or 3 contours) from a total of 23

images which also contained these 7 images. Our holistic models are shown in Figure

5-2 and Figure 5-5 shows those averaged ones for ASM.

Table 5-2: Comparison of experimental details on Emperor-I dataset

Method No. of Poses Silhouette No. of Training No. of Test Average point error

ASM1 7 w 138 86 0.2814
ASM2 5 w/o 127 81 0.2906
ASM3 3 w/o 102 70 0.3208
Ours 7 w 7+16 86 0.1503

Figure 5-5 Left: averaged models for ASM1. Right: averaged model for ASM3.

In Figure 5-6, we show the alignment errors for all the facial parts together and
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Figure 5-6 Average point error vs. image number. All the values are normalized by the estimated
distance of two eyes in each image. The vertical dot-dash lines separate images of different poses.

Table 5-3: Average error, normalized by distance between eyes for ASM vs. our method

Method Global Eyebrows Eyes Nose Mouth Silhouette

ASM1 0.3042 0.2923 0.2951 0.2715 0.2524 0.3126
Ours 0.1547 0.2015 0.1142 0.1546 0.1243 0.1353

also those only for the eyes. Other facial parts have similar results so we leave them

out. Instead, we provide a summary in Table 5-3 and a comparison in the last column

of Table 5-2, where each entry is the mean error across the test set or test set fold,

as applicable. We can see that our method performs significantly better than ASM

on all facial parts with significantly fewer training examples. We provide a qualitative

evaluation of the results in Figure 5-7, where we compare the result of ASM and our

method on a variety of images containing both statue faces and real faces. These images

show great variations, especially of those statue faces. Note that the models are only

trained on statue faces.

5.6 Conclusion

We proposed a heuristic object parsing framework which incorporates two-level contexts

and a saliency based opportunistic search strategy. The combination of figural context

defined on the whole object shape and semantic context defined on object parts ensures

the correctness of the chosen model and the object parsing results. Saliency based

opportunistic search provides an efficient and effective way to combine the bottom-up

segment grouping and the top-down shape matching for parsing the objects with great

intra-class variations and inner clutters. Experimental results on several challenging face

datasets demonstrate that our approach can accurately label object parts such as facial

features and resist to accidental alignment.
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Figure 5-7 A subset of the results. Upper group is on the Emperor-I dataset and the lower is
for real faces from various face databases (1-2 from UMIST, 3-4 from Yale, and 5-7 from Caltech).
Matched models, control points and labeled segments are superimposed on the images.
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CHAPTER 6

Conclusion and Future Directions

6.1 Conclusion

This thesis focuses on promoting the research on two key components of scene under-

standing: object recognition and object parsing. Based on a systematic overview of

the 50 years’ research on object recognition and parsing, four core and unsolved issues

have been summarized, which have motivated the research in this thesis. For object

recognition, a novel problem of deep and layered recognition inspired by human vision is

proposed along with a benchmark dataset annotated via a strict psychophysical experi-

ment, then a generic strategy for solving this problem has been presented with outper-

forming experimental results on the benchmark dataset compared to other recognition

strategies. The realization of the proposal is ensured by a new efficient structured online

learning algorithm with great scalability as stated in this thesis. For object parsing, a

novel approach utilizing both local and global representations by fusing the bottom-up

segment grouping and top-down shape matching is proposed, which has great robustness

against heavy clutters and partial occlusions. The key idea of it is also applicable to

other tasks like scene parsing.

More concretely, this thesis advances the research in the following aspects.

1. Proposing a novel problem called deep and layered object recognition

for adaptively interpreting the objects, and building a new benchmark

dataset (IAIR-CarPed) for it. The annotated results of IAIR-CarPed show that

human rapid recognition of objects without specific visual difficulties is obviously

layered, which reveals the fact that in their daily lives the object recognition results

of humans depend on the input stimuli. This dataset and the human recognition

results can serve as a new benchmark for deep and layered object recognition, and

the evaluation criterion based on the human confusions between different semantics

can well represent the performance of a computer vision algorithm compared to the

human recognition results. Unlike other datasets, we annotated the visual difficul-

ties separately so that it can be used to analyze the robustness of the recognition

system in details and compare different vision systems.

2. A generic model has been proposed for solving the deep and layered

object recognition problem, with a novel structured online learning al-

gorithm (SOnline) for efficient computation. Based on the latest progress in

machine learning on structured prediction, a generic structured prediction model
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has been built for DLR, along with the analysis of several possible loss functions

and feature representation strategies. The efficient SOnline algorithm makes it pos-

sible to apply DLR on the concrete deep and layered object recognition task in the

IAIR-CarPed dataset. Comparative results show the superiority of the model on

both deep and layered object classification and object detection compared to tra-

ditional multiclass recognition and binary recognition models. The experimental

results demonstrate that DLR not only generates rich and adaptive outputs, but

also improves the performance on traditional object categorization. Therefore, it

provides a new idea for the research on object recognition. Potentially, the SOnline

algorithm can be used for many other structured prediction problems with large

amounts of training data, especially those online learning and prediction applica-

tions.

3. A new approach named saliency based opportunistic search is proposed

for robust object parsing, which can effectively fuse bottom-up group-

ing and top-down matching. Such a heuristic search approach optimizes the

grouping loss and the matching loss simultaneously. It encourages more and bet-

ter object part matching results while at the same time constrains their positions

and saliency; therefore it can avoid false matching and explore bottom-up grouping

gradually. Experiments on challenging statue faces demonstrate the robustness of

the approach to partial occlusions, inner clutters and data defacement, and show

that it can generate significantly better results than the currently dominant ap-

proach using much fewer exemplars.

6.2 Future Work

The research work presented in this thesis opens the door to a broad space of deep

interpretation of objects and the scene behind them. We tried to make the IAIR-CarPed

dataset, the DLR recognition strategy and the opportunistic search approach as generic

and extensible as possible, and we have only presented some typical instantiations to

demonstrate the ideas, therefore much more work can be done to further explore these

ideas.

Specifically, the following four aspects could be our future research work.

1. A unified model for tightly-coupled object recognition and parsing, which

may also be extended to layered scene understanding. Currently object

recognition and object parsing are loosely coupled. In the current solution of DLR,

parts are modeled together with the object, but in the learning process the parts

(currently only the key part) are treated separately for simplicity which may be in-

sufficient in a parsing perspective. In object parsing, the object recognition (model

selection) is also done separately. However, recognition seems to be necessary to
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parsing while parsing may be beneficial to recognition. A desired unified model will

seek to optimize both of them together, either simultaneously or iteratively. An

even more ambitious goal is to go further up to integrate the object and scene rela-

tionship for a whole framework modeling scene, objects and object parts together.

However, it’s hard to model the relationship between scene and object parts and

such a relationship must be very weak. So it is better to model it as a layered

scene understanding problem: at the first level, scene is recognized by itself and

also the objects within it, then the parsing of some interested objects (down to the

parts of them) may result in a deeper understanding of the scene. For example,

face expressions represented by the facial features can reveal the atmosphere of the

scene, e.g. happy. This is exactly what has been shown in Figure 1-2 for scene

understanding.

2. Different types of supervision for reducing annotation expense. For a

unified object recognition and parsing, or even scene understanding, a thorough

annotation of the object and parts will be a very expensive work. Therefore ways

to reduce the expense should be considered. Weak supervision and semi-supervision

are two plausible choice. There are many learning algorithms for these two types

of learning problems, which can be introduced for solving the desired problem.

3. Different learning methods: discriminative? generative? or hybrid? As

the problem and model become bigger and bigger with more layers, a uniform

discriminative learning method will be more and more hard to design. Instead,

generative methods have the advantage of being able to represent complex and

layered relationships, but they usually have weaker discriminability than discrim-

inative ones. Maybe a hybrid method can have a better trade-off between them.

Therefore how to choose the learning method is a problem worth researching.

4. Deep and layered object recognition and parsing in videos. We would like

to extend the ideas to videos by making use of the temporal relationships between

frames. The recognition and parsing results in nearby frames should be similar

while the evolution of them along the time axis should obey some rules, which may

be referred to as semantic timeline. A global optimization along such a timeline

will be very promising, which can also go up to a higher level understanding of the

activities when the interested objects are humans.
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