Image Matching via Saliency Region Correspondences

Alexander Toshev
Jianbo Shi
Kostas Daniilidis

GRASP Laboratory

University of Pennsylvania

How to match two pictures with small overlap and repeated patterns?

How to match two pictures with small overlap and repeated patterns?

Most approaches assume large dominant overlaps

RANSAC needs sufficient inlier portion (> 30\%) and assumes a model.
Can we match without a model and still deal with small overlap?

Using Regions in Matching

Interplay Between Region and Feature Matches

Propagation of feature matches to region matches

Restriction of feature matches only to ones relating matching regions

Co-Salient Regions

Goal 1:
Form coherent image segments
\rightarrow Intra-Image Similarity

Goal 2:
Exhibit strong feature similarities between the segments \rightarrow Inter-Image Similarity

Image as a Graph

Correspondence Matrix: $P \circ C$

pointwise multiplication

Segment Indicator Vectors

segment

\sqrt{v}
V_{2}

Inter-Image Similarity

segment indicator $\quad V_{1}$ vector
\square X

Intra-Image Similarity

Co-Salient Region Matching Score

inter-image similarity

$V_{1}^{T}(P \circ C) V_{2}+V_{1}^{T} W_{1} V_{1}+V_{2}^{T} W_{2} V_{2}=$ $\operatorname{tr}\left(V^{T}\left(\begin{array}{cc}W_{1} & (P \circ C) \\ (P \circ C)^{T} & W_{2}\end{array}\right) V\right)$ with $V=\binom{V_{1}}{V_{2}}$

Co-Salient Region Matching Score

$$
\operatorname{Score}(V, P)=\operatorname{tr}\left(V^{T}\left(\begin{array}{cc}
W_{1} & (P \circ C) \\
(P \circ C)^{T} & W_{2}
\end{array}\right) V\right)
$$

Goal 1:
Matching co-salient regions: find optimal \mathbf{V} for given initial selection \mathbf{P} of matches from C.

Goal 2:

Inlier selection for point matches: find optimal selection matrix \mathbf{P} for given co-salient regions V.

Matching Co-Salient Regions I

Maximize $\operatorname{tr}\left(V^{T}\left(\begin{array}{cc}W_{1} & (P \circ C) \\ (P \circ C)^{T} & W_{2}\end{array}\right) V\right)$ w.r.t. V

Naïve attempt - optimization with no restrictions on V fails !

($\mathrm{P} \circ \mathrm{C}$) is much sparser than W_{1} and W_{2}

Intra-image similarities dominate score function

Score $=V_{1}^{T}(P \circ C) V_{2}+V_{1}^{T} W_{1} V_{1}+V_{2}^{T} W_{2} V_{2}$

Matching Co-Salient Regions II

Better: restrict co-salient regions to lie in a space of dominant segmentation modes
input images

spectral basis / dominant segmentation modes

Matching Co-Salient Regions III

Maximize $\operatorname{tr}\left(V^{T}\left(\begin{array}{cc}W_{1} & (P \circ C) \\ (P \circ C)^{T} & W_{2}\end{array}\right) V\right)$ for $V=S A$

Restrict co-salient regions to a space of dominant segmentation modes

The subspace restriction enables

- clear matches of co-salient regions
- propagation of feature matches to region matches

Inlier Selection

Maximize $\operatorname{tr}\left(V^{T}\left(\begin{array}{cc}W_{1} & P_{\text {inlier }} \circ C \\ \left(P_{\text {inlier }} \circ C\right)^{T} & W_{2}\end{array}\right) V\right)$ w.r.t. $P_{\text {inlier }}$

Such that:

- $P_{\text {inlier }} \subset P$
- Consistency with region matches
\downarrow Linear Programming

$P_{\text {inlier }} \circ C \leftarrow(P \circ C) \circ V_{1} V_{2}^{T}$
$\left(\cdot V_{1, L} \cdot V_{2, R} \cdot\right)^{0}$

Inlier Selection

Maximize $\operatorname{tr}\left(V^{T}\left(\begin{array}{cc}W_{1} & P_{\text {inlier }} \circ C \\ \left(P_{\text {inlier }} \circ C\right)^{T} & W_{2}\end{array}\right) V\right)$ w.r.t. $P_{\text {inlier }}$

Such that:
$-P_{\text {inlier }} \subset P$

- Consistency with region matches

$P_{\text {inlier }} \circ C \leftarrow(P \circ C) \circ V_{1} V_{2}^{T}$
$\mathbf{P}_{\text {inlier }}$ is consistent with co-salient region matches \mathbf{V}

Inlier Selection - Dense Set of Matches

How can we obtain a dense set of correspondences?

Inlier Selection - Dense Set of Matches

How can we obtain a dense set of correspondences?
initial sparse set of matches

set of all matches

Inlier Selection - Dense Set of Matches

How can we obtain a dense set of correspondences?
initial sparse set of matches

set of all matches

\Perp
$C \circ V_{1} V_{2}^{T}$

Selection of feature matches
\Longleftrightarrow from C based on co-salient region matches V .

Algorithm

For given input images

- compute segmentation spaces S

Algorithm

For given input images

- compute segmentation spaces S
- compute feature matches C, P

Algorithm

For given input images

- compute segmentation spaces S
- compute feature matches C, P
- detect co-salient region

Algorithm

For given input images

- compute segmentation spaces S
- compute feature matches C, P
- detect co-salient region
- select inliers

Algorithm

For given input images

- compute segmentation spaces S
- compute feature matches C, P
- detect co-salient region
- select inliers
- goto step 3

Results

Results

Results

Results

Where am I?
accuracy rate of point matches

matches ranked among	initial	$P_{\text {dense }}$
$1-30$	19%	75%
$31-60$	12%	52%
$60-90$	15%	44%

query:

[ICCV 2005 CV Contest]
accuracy rate of query results

dataset	accuracy of best match	Acccuracy of top 2 matches
Final 5	95%	95%
Test 4	90%	85%

Thank You!

Questions?

