Image Matching via Saliency Region Correspondences

Alexander Toshev Jianbo Shi Kostas Daniilidis

GRASP Laboratory University of Pennsylvania

How to match two pictures with small overlap and repeated patterns?

How to match two pictures with small overlap and repeated patterns?

Most approaches assume large dominant overlaps

RANSAC needs **sufficient inlier portion** (> 30%) and assumes a **model**.

Can we match without a model and still deal with small overlap?

Using Regions in Matching

Interplay Between Region and Feature Matches

Propagation of feature matches to region matches

Restriction of feature matches only to ones relating matching regions

Co-Salient Regions

<u>Goal 1:</u> Form **coherent image segments** \rightarrow Intra-Image Similarity

<u>Goal 2:</u>

Exhibit strong feature **similarities between the segments** → Inter-Image Similarity

Image as a Graph

Correspondence Matrix: $P \circ C$

INE MORIES

pointwise multiplication

Segment Indicator Vectors

segment

Inter-Image Similarity

Intra-Image Similarity

Co-Salient Region Matching Score

inter-image similarity

intra-image similarities

 $V_1^T (P \circ C) V_2 + V_1^T W_1 V_1 + V_2^T W_2 V_2 =$ $tr \left(V^T \begin{pmatrix} W_1 & (P \circ C) \\ (P \circ C)^T & W_2 \end{pmatrix} V \right) \text{ with } V = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$

Co-Salient Region Matching Score

$$\operatorname{Score}(V, P) = tr\left(V^T \left(\begin{array}{cc} W_1 & (P \circ C) \\ (P \circ C)^T & W_2 \end{array}\right)V\right)$$

Goal 1:

Matching co-salient regions: find optimal V for given initial selection P of matches from C.

<u>Goal 2:</u> Inlier selection for point matches: find optimal selection matrix **P** for given co-salient regions **V**.

Naïve attempt – optimization with no restrictions on V fails !

Matching Co-Salient Regions II

Better: restrict co-salient regions to lie in a **space of dominant segmentation modes**

input images

spectral basis / dominant segmentation modes

$\begin{array}{ll} \mbox{Matching Co-Salient Regions III} \\ \mbox{Maximize } tr \left(V^T \left(\begin{array}{cc} W_1 & (P \circ C) \\ (P \circ C)^T & W_2 \end{array} \right) V \right) \mbox{for } V = SA \end{array}$

Restrict co-salient regions to a space of dominant segmentation modes

The subspace restriction enables

- clear matches of co-salient regions
- **propagation** of feature matches to region matches

Inlier Selection

$$\begin{array}{ll} \text{Maximize} & tr \left(V^T \left(\begin{array}{cc} W_1 & P_{inlier} \circ C \\ (P_{inlier} \circ C)^T & W_2 \end{array} \right) V \right) \text{w.r.t.} & P_{inlier} \end{array}$$

- Such that: $P_{inlier} \subset P$
- Consistency with region matches

Linear Programming

 $\left(\begin{array}{cc} \cdot & \\ \cdot & V_{1,L} \cdot V_{2,R} & \cdot \\ \cdot & \end{array}\right)$

Inlier Selection

$$\begin{array}{ll} \text{Maximize} & tr \left(V^T \left(\begin{array}{cc} W_1 & P_{inlier} \circ C \\ (P_{inlier} \circ C)^T & W_2 \end{array} \right) V \right) \text{w.r.t.} & P_{inlier} \end{array}$$

- Such that: $P_{inlier} \subset P$
- Consistency with region matches

Linear Programming

$$P_{inlier} \circ C \leftarrow (P \circ C) \circ V_1 V_2^T$$

P_{inlier} is consistent with co-salient region matches V

Inlier Selection – Dense Set of Matches

How can we obtain a dense set of correspondences?

set of all matches

Inlier Selection – Dense Set of Matches

How can we obtain a dense set of correspondences?

initial sparse set of matches

Inlier Selection – Dense Set of Matches

How can we obtain a dense set of correspondences?

initial sparse set of matches

$C \circ V_1 V_2^T$

Selection of feature matches
from C based on co-salient region matches V.

For given input images

 compute segmentation spaces S

select P

For given input images

- compute segmentation spaces S
- compute feature matches C, P

select P

For given input images

- compute segmentation spaces S
- compute feature matches C, P
- detect co-salient region

solve for $\,V\,$

solve for $\,V\,$

select P

For given input images

- compute segmentation spaces S
- compute feature matches C, P
- detect co-salient region
- select inliers

solve for $P \circ C$

solve for $\,V\,$

select P

For given input images

- compute segmentation spaces S
- compute feature matches C, P
- detect co-salient region
- select inliers
- goto step 3

solve for $P \circ C$

Where am I?

query:

[ICCV 2005 CV Contest]

accuracy rate of query results

dataset	accuracy of best match	Acccuracy of top 2 matches
Final 5	95%	95%
Test 4	90%	85%

accuracy rate of point matches

matches ranked among	initial P	P _{dense}
1 – 30	19%	75%
31 - 60	12%	52%
60 - 90	15%	44%

Thank You!

Questions?

