Shape Packing with Contours and Segments

Jianbo Shi

Joint work with Praveen Srinivasan, Qihui Zhu

Whole is different from sum of its parts

Shape perception = Many-to-one Packing

Think of an image made of contours, or segments...

Q: Can we pack a set of contours into a recognizable shape?

A: Similar to a jigsaw puzzle.

Same shape

Challenge 1: Fragmentations

No one-to-one correspondences of jigsaws!

Tangram (*Qi Qiao Ban*), a Chinese jigsaw puzzle game originated in 17th century

Challenge: Exponential Search

combinations can be exponential!

7 pcs \rightarrow over 1600 shapes...

How Can We Match Shape As A Whole?

Holistic Shape Matching

Pack all jigsaws within a large neighbourhood at some control points...

Holistic Shape Matching

With more control points: same shape regardless of fragmentation!

Many-to-one Contour Matching

Back to the contour matching problem:

jigsaws = contours

- Holistic shape matching between contour sets centered at control points
- Control point correspondence

Image contours

Context Selective Shape Features

Image contours

Context Selective Shape Features

Shape contexts

Image contours

Shape contexts

Context Selective Shape Features

A compact feature depending on figure/ground contour selection

Image contours

Detection Example

Model

part

Model parts are matched at multiple locations in image

Many-to-one matching at different image locations

Part placement score map

Detection Example

Detection Example

For each detection,

•Estimate bounding box

Object center vote map

•Traceback of part locations, many-to-one contour matchings

Extract local maxima

Contour Packing Score $\sum_{ij} U_{ij}^{cor} D_{ij} (V^I \cdot x^{sel}, V^M \cdot y^{sel})$

Algorithm Overview

Input image

Run edge detection (Pb)

Group contours from edgels might be overlapping)

Single point contour selection

For each control point *i*, find *j* by minimizing D_{ij} (relaxed to an LP):

$$\min_{x^{sel}} D_{ij} = \|V_i^I \cdot x^{sel} - V_j^M \cdot y^{sel}\|_1$$

s.t. $0 \le x^{sel} \le 1$

Voting Voting map Voting map Correspondences Find consistent U^{cor} by consensus on the center

Joint selection

Selected image and model contours

Fixing U^{cor}_{j} , find a subset of image contours match-ing to a subset of model contours, *i.e.* find x^{sel} , y^{sel} optimizing $\sum_{ij} U^{cor}_{jj} D_{ij} (V^{I} \cdot x^{sel}, V^{M} \cdot y^{sel})$. Relaxed to an LP as well.

Results on ETHZ

Used only one hand-drawn model per class

Detection results of our method. Model selection is shown on the top-left corner.

Examples of Region Packing

1) Shape packing with Many-to-one matching

2) Learning this?

Learn to recognize objects by their shape

 Describe positives by commonalities of shape Discriminate negatives by uniqueness of shape

Overview: Describing Shape

Input: images, bounding boxes

Bottom-up

contours

extracted

Positives

Learning a Descriptive Shape Model

Positive training images with bounding boxes and contours

Main idea:

No one lucky giraffe, but All giraffes are lucky in their own way

Learning a Descriptive Shape Model

Learning a Descriptive Shape Model

Examples of Learned Model Shapes from ETHZ Dataset

•Models composed of few, non-overlapping contours

Lee, Grauman: "Shape Discovery from Unlabeled Image Collections" CVPR 2009

How to recognize objects by their shape?

 Describe positives by commonalities of shape Discriminate negatives by uniqueness of shape

Learning **Discriminative** Shape Features

- Some object parts are salient to recognize
- Should not pack all the parts equally

Discriminative Packing

Discriminative Packing

$$\min_{w} C \sum_{j} \max(0, 1 - y_j S(R_j, w)) + \frac{1}{2} w^{\mathsf{T}} w$$

DetScore(D) =
$$\sum_{i=1}^{N} \begin{bmatrix} w_i^{\text{def}} \\ w_i^{\text{app}} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} G(\mathbf{L}_0, \mathbf{L}_i) \\ K(\mathbf{L}_i, \mathbf{x}_i^{\text{sel}}) \end{bmatrix} S(R_j, w) = \max_{D \mid \mathbf{L}_0 = R_j} \text{DetScore}(D)$$

$$w_{i}^{app}$$

$$(v_{i}^{app})$$

$$(v_{i}^{ain})$$

$$w_i^{app}$$

$$w_i^{app}$$

$$w_i^{app}$$

$$w_i^{app}$$

$$w_i^{eqp}$$

$$w_i^$$

Quantitative Evaluation

Srinivasan, Shi: Many-to-one Contour Matching for Describing and Discriminating Object Shape, CVPR 2010

Shape Packing

1) Global Shape

2) Active feature construction

