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Abstract

We present an algorithm that recognizes objects of a
given category using a small number of hand segmented
images as references. Our method first over segments an
input image into superpixels, and then finds a shortlist of
optimal combinations of superpixels that best fit one of tem-
plate parts, under affine transformations. Second, we de-
velop a contextual interpretation of the parts, gluing im-
age segments using top-down fiducial points, and checking
overall shape similarity. In contrast to previous work, the
search for candidate superpixel combinations is not expo-
nential in the number of segments, and in fact leads to a
very efficient detection scheme. Both the storage and the
detection of templates only require space and time propor-
tional to the length of the template boundary, allowing us to
store potentially millions of templates, and to detect a tem-
plate anywhere in a large image in roughly 0.01 seconds.
We apply our algorithm on the Weizmann horse database,
and show our method is comparable to the state of the art
while offering a simpler and more efficient alternative com-
pared to previous work.

1. Introduction
We consider the task of recognizing a class of objects in

a cluttered environment. By recognizing a class of objects,
we mean 1) we can provide a precise and complete object
mask (so we can evaluate its shape), and 2) we can provide
a labeling of the object parts. We not only seek to clas-
sify an object, but also to know its detailed shape and parts.
In this work, we will use the horse recognition task of the
Weizmann Institute database as our example.

The fundamental difficulty of this mid-level recognition
task lies in the fact that the objects (even within a class),
can be highly variable in appearance and shape. While gen-
erative top-down model approaches can be used in prin-
ciple, it requires infeasible amount of hypothesis in prac-
tice. A blindly generated object hypothesis has few chances
of being correct. An alternative approach is to start from

the image itself, and construct an object hypothesis using a
bottom-up approach, such as image segmentation. How-
ever, image segmentation faces its own difficulties with
faint or missing contours, which results in either over or
under segmentation (with respect to correct object mask).

The main challenge is how to combine bottom-up seg-
mentation and top-down object model to efficiently gener-
ate a (small) set of feasible object hypothesis. In this work,
we assume there is a fixed over-segmentation of the image,
and a set of object models broken down to its parts. Our
approach has two main components. First, we developed an
extremely fast indexing mechanism for object parts, that ef-
fectively searches over the space of all combinations of im-
age segments and affine part transformations for the optimal
part alignment. This is crucial since we assume our object
has been over segmented into smaller pieces. Second, we
designed a contextual interpretation of the parts, gluing im-
age segments using top-down fiducial points, and checking
the overall shape similarity. This is important since object
shape similarity is a highly non-metric, non-Markov func-
tion. Measuring the whole shape can be very different from
measuring the sum of its parts in isolation. Without this
ability to put together parts correctly, and registering that
with a model, we run the risk of not being able to evaluate
the hypothesis correctly.

2. Previous work
The problem of class-specific segmentation has been the

focus of a large number of recent papers, including the fol-
lowing [8, 13, 12, 2, 5, 15, 11, 15]. The main challenge
arises from integrating bottom-up and top-down cues in a
coherent and efficient manner. In [8], this challenge was
addressed by a greedy split-and-merge scheme that groups
oversegmented patches of an image guided by fitness to a
deformable template. In [11], the low-level (soft) segmenta-
tion cues are tuned in an iterative manner along with the es-
timated pose using a pictorial structure. In [10, 9], baseball
player images are segmented into regions, from which body
parts are detected using a heuristic combinatorial search
procedure. For example, the head is searched among all



groups of 1 or 2 regions, and half limbs are detected among
salient groups of a single region. In [12], a spectral relax-
ation is used to jointly optimize a top-down and bottom-up
grouping process. By contrast, the key component of our
approach for shape detection avoids the intractable search
posed by the grouping problem through a decomposition of
the objective, while achieving similar performance.

Several approaches based on Markov Random Fields
(MRFs) or Conditional Random Fields (CRFs) were re-
cently proposed, most involving difficult inference prob-
lems that must be addressed via sampling or approximate
inference based on message passing or graph cuts. In the
image parsing framework of Tu et al. [13], Monte-Carlo
sampling over possible segmentations is used, with a pro-
posal distribution driven by object-specific detectors. In the
OBJ-CUT algorithm [5], a layered pictorial structure is used
to define an energy term for a graph-cuts energy minimiza-
tion algorithm that favors boundaries at image discontinu-
ities. Recently the authors of [6] have proposed an CRF
based segmentation, where the smoothness term uses low-
level segmentation cues, and the data term is derived from
the top-down detection of a few templates, found via nor-
malized cross-correlation. They report good results on the
Weizmann horse database; however, their method requires
the object to be roughly centered in the image, and seems to
suffer when the object is composed of multiple colors. Our
approach does not have such restrictions.

Borenstein et al. [2] use a library of image fragments
in combination with bottom-up criteria [3] to cover a new
image by using regions that are close based on intensity.
Dependence on intensity however requires a large frag-
ment library to capture the diversity of appearance across
a class of objects. In [1], the authors integrate in a Bayesian
framework a bottom-up segmentation prior with a top-down
shape detection using stored shape fragment templates in an
approximate, non-iterative scheme. Their approach is the
most similar to ours, yet our objective is simpler and more
efficient to compute, requiring no approximations.

An important component of our approach is an efficient
method for shape detection. There is a rich literature on de-
tecting parameterized shapes under different affine transfor-
mations. Perhaps the most popular is an elegant technique
of Hough [4] and its generalizations. The Hough method
transforms points in the image space into a parameter space,
where the maxima correspond to shape detections. The
Hough transform is relatively insensitive to noise and oc-
clusion but is computationally and memory-wise intensive
as the number of shape parameters increases.

For non-parametric shapes, gray-level template detection
using normalized cross-correlation (NCC) is a commonly
used technique, often as a basic component of a more com-
plicated scheme. It has the advantage of being invariant to
the mean and variance of intensity in a given image win-

Figure 1. Efficient object/part indexing by matching a combina-
tion of segments with a template mask. Left: input image and
its bottom-up segmentation into 60 superpixels. We seek the best
hamming-distance matching between affine transformations of a
training template (top-right) and a combination of superpixels.
Middle: two particular translations of the template are shown,
along with the best corresponding combination of superpixels.
Bottom: corresponding hamming-distance scores for each possi-
ble translation, using matlab colormap (blue is low). We extract
the top few local minima as candidates for reranking and display
the best one, bottom right. On typical images, our efficient ex-
haustive search across combinations of segments and translations
can be done in 0.01 second, orders of magnitude faster than naive
brute-force search.

dow, and can be computed relatively efficiently [7]. How-
ever, there are fundamental limitations, as we will illustrate
later in the paper when comparing it to our approach.

3. Our Approach
Given an input image and a set of training templates, we

first compute an oversegmentation of the image into k su-
perpixels. Our goal is to find a combination of superpix-
els that is as close as possible to one of the traning tem-
plates, using Hamming distance modulo affine transforma-
tions. This provides both a segmentation of the image and
an affine registration to the template. Our search space is
very large (exponential in k), but we will see how the ob-
jective decomposes, leading to a very efficient segmenta-
tion/detection scheme. Our approach is summarized in fig-
ure 1.

The core template detection algorithm uses three opti-
mization components: 1) the exponential search over super-
pixel combinations can be decoupled, leading to a correla-
tion score at every location, between each superpixel and
each template. 2) a discrete version of Green’s theorem can
be used to compute the correlation score, which is much
faster than using naive correlation or even convolution with
Fast Fourier Transform (FFT). 3) this is coupled with a hi-



Figure 2. The 20 training images used as templates for shape de-
tection. We hand segmented each image into 12 body parts, but
only 4 coarser parts were used in our experiments (see text).

erarchical scheme, that detects all the local maxima of the
detection score at a coarser resolution of the image and the
template, and then uses gradient descent starting at every lo-
cal optimum to precisely locate the detection at the original
image resolution.

3.1. Templates for shape detection

We hand labeled the first 20 images in the Weizmann
database, see figure 2. We used the ground-truth figure
ground segmentation as a starting point, and a simple draw-
ing tool to further delineate 12 body parts: torso, head, neck,
tail,upper and lower limbs (×4). In our experiments, we
only used either the whole object as a template, or 4 of its
constituent parts: torso, head + neck, front pair of legs, rear
pair of legs, and we dropped the tail, which is not always
visible.

4. Cost Function for Segmentation and Shape
Detection

We will define here the cost function used to compare a
template to a combination of superpixels.

Definitions and notations We represent a shape X as a
subset of the image plane R2, composed of 2D coordinates
(u, v) (or pixels i in the discretized case). If T : R2 → R2

denotes a transformation of the plane, T (X) def= {T (u, v) :
(u, v) ∈ X}.

Shape distance function We define an error measure be-
tween two shapes X, Y that has certain invariance proper-

ties as we explain below:

d(X, Y ) = min
T∈T

1
|T (Y )|

dH(X, T (Y )), (1)

where |Y | is the area of Y , dH(·, ·) is the Hamming distance
between two sets, and T is a set of transformations. When
T is the set of similarity transforms, d(·, Y ) is invariant to
similarity transforms as is easily checked. In practice how-
ever, it is sufficient to restrict ourselves to combinations of
all translations and 100 subsampled affine deformations us-
ing multiple scales, rotations and aspect ratios, as we do in
our experiments.

Detecting a template shape in a segmented image We
use the superpixels as shape building blocks and search for
the combination(s) that best fits the template. We represent
a segmentation of an image as a set of k regions or super-
pixels (Rj)j=1..k. We seek a subset of superpixels (Rj)j∈S

that minimizes the shape distance to a given template Y :

ε(Y ) = min
S⊂[1,..,k]

d(RS , Y ), (2)

where RS = ∪j∈SRj . As this equation implies, we are
searching simultaneously for the best combination of su-
perpixels together with the best registration of the template.

4.1. Computational Solution

This is a combinatorial problem, and appears to be in-
tractable in this form. We will show that this problem can
in fact be solved efficiently, by factoring out the contribu-
tion of each region to the shape distance. Let us represent
a set X as an indicator vector x = I(X) ∈ {0, 1}n, where
n is the number of pixels in the image: xi = 1 if i is a
foreground pixel, xi = 0 otherwise. We also rewrite the
segmentation as a n × k indicator matrix r with columns
rj = I(Rj). Likewise, define s = I(S) ∈ {0, 1}k.
We extend all notations from sets to indicators: when
x = I(X), y = I(Y ), we define d(x, y) def= d(X, Y ),
T (x) def= I(T (X)), ε(y) def= ε(Y ). We will show that ε(y)
decomposes as a sum of truncated dot products, and can be
computed by truncated convolutions.

Proposition 4.1 (ε(y) is decomposable)

ε(y) = 1 + min
T∈T

1
||T (y)||2

∑
j

σj(T (y)) (3)

where || · || is the L2 norm in Rn and

σj(y) def= min
sj∈{0,1}

sj(|Rj |−2rj
Ty) = min(0, |Rj |−2rj

Ty)

(4)



The intuitive explanation is that we want to include a super-
pixel Rj in the foreground (sj = 1) whenever its overlap
with the transformed template rj

TT (y) is greater than half
of the area |Rj | of that superpixel.
The optimization problem is not only tractable, but it can
be computed efficiently by computing convolutions, as we
explain here: decompose T = Ttranslation × Tdeform, distin-
guishing the pure translation part from the deformation part
(rotation, scale, sheer). Representing rj , y as functions de-
fined over the discretized image plane, we have:

ε(y) = 1+ min
T∈Tdeform

1
||T (y)||2

min
i∈{1...n}

∑
j

min(0, gj(T (y))i)

(5)
with gj(y) = |Rj | − 2rj ∗ y̌. This gives a total complexity
O(Tdeform|kn log n|) with FFT. Although this would give a
reasonable running time given the search space size, we will
show next that we can do much better.

Proof of proposition 4.1 We can rewrite the shape dis-
tance as

d(x, y) = min
T∈T

1
||T (y)||2

||x− T (y)||2, (6)

Since the Rj have disjoint support, we have I(∪jRj) =∑
j rj , and we simplify the cost function (2):

ε(y) = min
s∈{0,1}k

min
T∈T

1
||T (y)||2

||rs− T (y)||2

= 1 + min
T∈T

1
||T (y)||2

min
s∈{0,1}k

||rs||2 − 2T (y)Trs

Next, notice ||rs||2 =
∑

j sj |Rj | since the rj are orthog-

onal and s2
j = sj , and also T (y)Trs =

∑
j sjrj

TT (y),
which shows the cost function decomposes as promised.�

4.2. Efficient computation using Green’s theorem

We show here that the particular form of equation (4)
leads to an efficient random access computation of σj . This
is particularly important, as it allows one to do a coarse to
fine search as we will see in the next section. That would
not be possible with the method based on convolution we
just described, as it cannot avoid the n log n Fast Fourier
Transform step. The idea we are using is the following:

rj
Ty =

∫∫
Rj

y =
∫∫

Rj

∂Iuy

∂u
=

∫
∂Rj

Iuy, (7)

where Iuy(u, v) def=
∑

u′=1:u y(u′, v) integrates y over
its first dimension (vertical axis in figure 3) and ∂Rj

denotes the signed region boundary or opposite gradi-
ent in the first dimension, with signed indicator vector
I(∂Rj)(u, v) = rj(u, v) − rj(u + 1, v). Once again

Figure 3. Illustration of efficient dot product computation rj
Ty be-

tween a binary region mask (top left) rj = I(Rj) and a template
y (top right) using a discrete version of Green’s theorem. The
equation is rj

Ty =
RR

Rj

∂Iuy
∂u

=
R

∂Rj
Iuy =

P
i∈∂R+

j
Iuyi −P

i∈∂R−
j

Iuyi, where Iuy is the integral of the template over the

downward vertical axis (bottom right) and ∂Rj is the signed re-
gion boundary, see text for details.

we assimilate vectors with functions defined over the
discretized image plane. Note, this discrete version of
Green’s theorem does not make any assumption on the
domain Rj , in particular the regions could have holes and
be disconnected. Figure 3 illustrates this equation.

Each σj(y) can therefore be computed in O(|∂Rj |),
since computing rj

Ty is the bottleneck. Note, we do not
need to compute all the σj(y) for each region Rj , but only
the ones for which Rj intersects the template y. This can
be done efficiently by computing offline the bounding box
of the template and the integral image transform (c.f . [14])
of each region. This determines in constant time whether
a given region intersects the rectangle hull of the template.
Assuming the regions boundaries are not too circumvoluted
(say with a fractal dimension of 1), we can assume there are
approximately O( |Y |

n k) such regions. When y is binary val-
ued (which is our case here), we can also switch the roles
between y and Rj , giving a O(|∂Y |) computation time for
each intersecting region. Finally the running time across
all regions is O(k + |Y |

n |∂Y |k) per spatial location and per
template deformation, or O(|Tdeform|(n+ |Y | · |∂Y |) ·k) for
the total running time. Note, when |Y | · |∂Y | < n log n, this
approach is already guaranteed to be more efficient than the
approach we described above based on convolution. But we
can further improve the running time.



4.3. Sublinear time template detection using a
coarse to fine approach

Our final optimization idea is the following: we com-
pute the objective at a coarse image resolution, and then for
each template deformation we extract the set of local min-
ima across spatial locations. We interpolate the position of
each coarse local minimum on the original image resolution
and follow a greedy descent of the cost function starting
from each of those seeds. Since we have a fast random ac-
cess computation of the objective (i.e. not requiring a global
computation such as FFT), this is done easily by evaluating
ε(y) at 4 nearest neighbors at each time step. Under cer-
tain smoothness conditions of the template and the region
shapes, this approach guarantees that we will not miss any
good local minimum at the fine level. If we take a coarse
to fine scale factor approximately equal to k, we obtain a
sublinear running time. For k = 16 regions, that represents
scaling the image dimensions by 1

4 . In practice we scale the
image by a factor 1

3 .

Contrast with gray-level template matching Template
detection using normalized cross-correlation (NCC) is a
commonly used technique for shape detection. It has the
advantage of being invariant to the mean and variance of
intensity in a given image window. However, it is very sen-
sitive to clutter and faint edges, and a high contrast spurious
edge will likely eclipse a faint figure ground edge. Our ap-
proach is much more robust to this phenomenon, so long
the oversegmentation is detailed enough, see figure 4,

5. Segmentation Templates for Part Based
Models

We extend our approach to deal with articulated segmen-
tation templates. The underlying motivation is that parts are
usually harder to detect in isolation than inside the context
of other parts. Image region boundaries rarely correspond
to the boundaries between different body parts, even when
they do correspond to the whole object boundary. Unless
we are oversegmenting the image (which increases clutter
and the false detection rate), it is likely some parts will be
merged together. This affects negatively any part based
detection scheme.

We follow a different approach, with a non-additive cost
function to detect an articulated object, such as a horse. In-
stead of summing the detection scores for a torso hypothesis
and for a head hypothesis, we directly search for deformable
segmentation templates and score those hypothesis. Such a
deformable template is composed of a fixed part (for ex-
ample a template already hypothesized in the image), and
a variable part, see figure 5. The variable part is deformed
by searching through a range of feasible rotations, scaling,

Figure 4. Comparison of image (gray level) correlation (NCC),
and segmentation (multiple segments) correlation

P
j σj(y), used

in this paper. Middle row: the horse head (left) is correlated with 2
opposite templates y, 1− y of a horse nose (top row), showing the
noisy correlation score and its spurious local optima (many false
detections). The problem is that the high-contrasting edge between
the sky and the fence eclipses the faint edge between the head and
the fence. Bottom row: in both cases, the segmentation correla-
tion produces 2 clear local optima: 1 for the nose of the horse,
and one for the right part of the fence, despite drastic illumination
change. There is a good combination of superpixels that matches
the template at those 2 locations.

Figure 5. Articulated segmentation template. The junction points
from head to torso and from torso to head (backprojected from
their location in original unwarped template) are within a radius
30 pixels. Any feasible affine deformation is applied to the head,
fixing the torso.

and translations, just as in the previous section for our sin-
gle segmentation templates, but we require that the junc-
tion points between the two parts are within a small radius
(30 pixels). The junction points are automatically computed
from the hand labeled training images used to compute the
templates in figure 2, and then backprojected to the image
coordinate system under the current template deformation
(rotation, translation, etc). We found this procedure to be
quite effective to capture enougth articulation.

As before, we search over all possible feasible transfor-



mations of the variable template given the fixed template.
This can still be done efficiently and exactly with a slight
adaptation of our approach from the previous section. Let
Y1 be the fixed template and Y2 the variable template. The
combined template is therefore Y12 = Y1 ∪ Y2 and, letting
y1 = I(Y1),y2 = I(Y2),y12 = I(Y12), we have:∫∫

Rj

y12 =
∫∫

Rj

y1 +
∫∫

Rj

y2 −
∫∫

Rj

y1y2 (8)

The problematic term is
∫∫

Rj
y1y2. Fortunately there is a

trick we can use:
∫∫

Rj
y1y2 =

∫∫
Y1∩Rj

y2. Therefore,
given a fixed template Y1, we can recompute on an outer
loop the signed boundary functions of the new sets Y1 ∩Rj

for each j, and proceed as in the previous section. The run-
ning time is multiplied by a factor≤ 4, as one can show and
as we verified in practice.

6. Reranking the detection hypothesis
What we described so far is an efficient mechanism to

propose figure ground detection hypothesis of a whole ob-
ject or of its constituent parts. The final step is to rerank
those hypothesis using more elaborate methods. Since our
detection returns a shortlist of local minima of the objec-
tive, we only need to evaluate a small number of reason-
able hypothesis (typically less than 40), and computation
time is less of an issue in that case. The cues we are using
are: 1) the original objective function already computed,
2) the edge response at the detected figure ground bound-
ary, 3) color uniformity (standard deviation) inside the fig-
ure ground mask. We normalized each cue by its variance
across the detections and just added the scores (subtracted
for the edge cue) without further optimization. In future
work we plan on improving this step, but the focus of this
paper was on the generation of figure ground hypothesis us-
ing segmentation templates.

7. Results
We experimented on the entire Weizmann horse

database, splitting the data into 20 training templates
(among the first 23 images) and 308 testing images. We
generated offline 100 affine transformations for each tem-
plate: 5 rotations from −π/10 to π/10, 5 scales from 0.5
to 1 (where 1 represents an object that would fit the en-
tire image), and 4 aspect ratios from 0.7 to 1.3. Multi-
plying this by the number of parts we are detecting (head,
torso, front pair of legs, back pair of legs), we get a total
of 20 × 100 × 4 = 8, 000 templates. The images were re-
sized to have a maximal side equal to 250 pixels. The initial
bottom-up segmentation was computed using the publicly
available code for Multiscale Normalized Cuts1.

1http://www.seas.upenn.edu/˜timothee/

Detection using a template for the whole object, see fig-
ure 6. To evaluate our method, and since we advertise our
methodology as a hypothesis generation scheme, we used
our final scoring function to come up with a shortlist of 10
detections. Out of those, we extracted the one with the high-
est agreement compared to the ground truth. The average
pixel consistency (average percentage of correctly classified
pixels) across all 308 images was 94.2%. In comparison,
[1] obtained 93%. They used 60 training images instead
of 20, and their method is significantly more complex than
ours. However, they didn’t use the oracle strategy. Note, the
best performance possible given the base set of segments we
used (60 superpixels) is 96.9%.

Detection using articulated templates Figure 7 shows
an example of articulated detections, sorted by the rerank-
ing function. Adequate zooming shows the junction points
backprojected from the original templates to the image (we
displayed junction points for the 12 part decomposition, al-
though we use only 4 coarser parts). We report once again
results using the oracle - best out of 10 methodology, for
each of the 4 body parts. Figure 8 shows segmentation and
detection results for 26 consecutive test images (much more
are provided in the supplementary material). We noticed
that while the pixel accuracy improves only by about 1%
(20% error reduction), the visual appearance of the object
segmentation is significantly better across the entire test set,
for example in terms of segmentation precision for the legs
and the head. This points to the fact that the error measure
is biased towards the large torso. A better error measure
would be pixel accuracy on each body part separately, nor-
malized by their size, which would require hand labeling
the entire dataset.

Efficient storage of segmentation templates The tem-
plates we use are piecewise constant. This allows for an effi-
cient lossless compressed storage based on Run Length En-
coding (RLE), which scales roughly as O(

√
n) in our case

for a template over n pixels. In our implementation, 8,000
large templates fit in only 2 MB, which is orders of mag-
nitude smaller than a naive storage implementation. This
is especially important when scaling up the system requires
storing millions of templates, for example in a multiclass
detection framework.

8. Conclusion
We have presented a simple and effective method for

combining top-down shape cues with low-level segmenta-
tion. By using only shape information for the class-specific
component of the approach, the algorithm remains robust to
diversity in appearance of the object and the background, as
well as situations with low contrast and illumination. The



Figure 8. Alignment and segmentation using articulated templates (4 parts). Columns 1/5 and 2/6: image and over-segmentation into 60
superpixels. Columns 3/7: closest mask to the ground truth label among the top 10 hypothesis computed for each part. Columns 4/8:
corresponding foreground.



Figure 6. Alignment and segmentation of horse images to whole
object templates. Column 2 shows the recovered segmentation in
cyan, together with the outline of the corresponding affinely regis-
tered template. An oracle best out of 10 strategy was used here.

Figure 7. Top 6 detections of back pair of legs (red) given the torso
(blue), sorted by our scoring function, with articulated segmenta-
tion templates

key contribution of our approach is a time- and memory-
efficient method for grouping superpixels and matching
them to a large library of shape templates. This shape de-
tection scheme could also be useful for other applications,
such as fast shape-based image retrieval and classification.

There are several limitations and challenges to the over-
all segmentation method we outlined. One of the most im-
portant problems is appearance of an object in a vastly dif-
ferent pose from the training data or major occlusions. An-
other possible detractor is excessive clutter and very faint
figure-ground edges that would mislead the initial segmen-
tation into superpixels.

The main purpose of this work is to provide an efficient
method for generating a short and high-quality list of com-
plete object segmentation hypotheses. The candidates on
this list can then be evaluated using a more elaborate and ex-
pensive method, possibly depending on learned global fig-
ure ground features (color, texture, symmetries, etc.). We
plan to address this in future work.
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