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“Long contours are nice to look at”, 
K. Koffka. Principles of Gestalt Psychology.
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Gap

Challenges in Real ImagesChallenges in Real Images

Edge linking fails in clutter: ?

?

2D clutter



Group salient 1D structures robust to 2D clutter

Our GoalOur Goal

Edges and Image Image Edges and 
detected contours detected contours 



– V  Duplicate each edgel to

– W  Collinearity
• Elastic energy
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– V  Duplicate each edgel to

– W  Collinearity
• Elastic energy

• Backward connection         

open contour: chain → graph cycle

Directed Graph for Grouping Directed Graph for Grouping G=(V,E,W)G=(V,E,W)
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Directed Random WalkDirected Random Walk

1P D W−= ( )D Diag W= ⋅1
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Directed Random WalkDirected Random Walk

1P D W−= ( )D Diag W= ⋅1

Image contour

Graph cycle

Open contour Closed contour
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detection

Construct G① ②
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Q: What is the appropriate saliency measure for good cycles 

(1D contour) and bad cycles (2D clutter)? 

Contour SaliencyContour Saliency

Shortest cycle? Longest cycle? Shortest average cycle? …



Persistency of a Random Walk CyclePersistency of a Random Walk Cycle

probability of cycling i → i in t steps( | )tP i i

Check how likely a 
random walk cycle back 
to starting points after 
some time t
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Observation: Persistent CyclesObservation: Persistent Cycles

Persistent cycle

Non-persistent cycle
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Persistent Cycle MeasurePersistent Cycle Measure

• ‘Peakiness’ of returning probability:
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Theorem ‘Peakiness’:            can be computed:

: left & right eigenvectors of 

: dominated by complex eigenvalues
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Complex Complex EigenvaluesEigenvalues of Random Walkof Random Walk

TP x⋅ λ ⋅ x↔One step random walk ←
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Complex Eigenvector of Random WalkComplex Eigenvector of Random Walk

TP x⋅ λ ⋅ x↔ → Rotation in complex 
vector:

One step random walk ←

Complex eigenvectors encode both cyclic ordering and likelihood on cycles

Image Complex eigenvector x

Re

Im
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Ideal Cost for Circular EmbeddingIdeal Cost for Circular Embedding

Image Ideal circular embedding

Re

Im
Each complex eigenvector 
gives a circular embedding 
of the original graph 

For a point     in complex 
plane

( , ) θθ = ⋅ ix r r e
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Ideal Cost for Circular EmbeddingIdeal Cost for Circular Embedding

Image Ideal circular embedding

( , ) θθ = ⋅ ix r r e

TP x⋅ λ ⋅ x↔ → Rotation in circular 
embedding:

x xλ→ ⋅

One step random walk ←

in circular embedding:

Tx P x→ ⋅




we want: 

j

Ideal Cost of Circular EmbeddingIdeal Cost of Circular Embedding

i

• Good Contour → large circle according to cyclic ordering

• Bad Clutter → core around the origin
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j

i

In clutter, P(j,:) many immediate 
neighbors for each random walk step

In contour, P(i,: ) few immediate 
neighbors for each random walk step

r
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r * =  constant

θΔ



We conjecture the ideal circular embedding Max.

Circular Embedding ScoreCircular Embedding Score

– Circle indicator with                

– Phase angles on cycles 
specifying an ordering

– Average jumping angle
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Solution: Complex EigenvectorSolution: Complex Eigenvector

,
max Re( )

n

H

u v
u Pv

∈

. . Hs t u v c=

2
0, 0

1( , , ) / | |
i j i

i j

e ij

r r

C r P S
θ θ θ θ

θ θ
θ< ≤ + Δ

> >

Δ = ⋅
Δ∑ Continuous relaxation

c



Theorem: All critical points (local maxima)                
of the above are left and right eigenvectors of 

Maximum values are 

Solution: Complex EigenvectorSolution: Complex Eigenvector
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• Maximal cover area

• Compute shortest paths in the embedding space

DiscretizationDiscretization
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Experiments: BSDSExperiments: BSDS



Experiments: BSDSExperiments: BSDS



Experiments: HorsesExperiments: Horses

TP



Berkeley Segmentation BenchmarkBerkeley Segmentation Benchmark

Compare our method to
– Pb D. Martin et al, PAMI 2004

– CRF X. Ren et al, ICCV 2005

– Min cover P. Felzenszwalb et al, WPOCV 2006

Recall:
/ (     +     )

Human labels Image Contour 

hits
misses
false positives

Precision:
/ (     +     )



Berkeley Segmentation ComparisonBerkeley Segmentation Comparison

P. F. Felzenszwalb and D. McAllester. A min-cover approach for finding salient 
curves. In WPOCV, page 185, 2006.

X. Ren, C. Fowlkes, and J. Malik. Scale-invariant contour completion using 
conditional random fields. In ICCV, pages 1214–1221, 2005.

Pb D. Martin et al, PAMI 2004



ConclusionConclusion

• Utilize topology information for contour grouping

• Persistent cycles: circular/complex embedding

• Untangling cycle cut score: grouping 1D structures



Experiments: HorsesExperiments: Horses



Experiments: Baseball PlayersExperiments: Baseball Players



Experiments: Baseball PlayersExperiments: Baseball Players



Untangling Cycle Cut ScoreUntangling Cycle Cut Score

① External cut (Ecut)

② Internal cut (Icut)

③ Tube size (T)

③ T

① Ecut

② Icut

A discrete graph cut score useful for segmenting persistent 
cycles from continuous embedding space



External CutExternal Cut

– Cut cycle (S) from clutter (V-S)
– Similar to NCut (2D grouping)

Cycle Clutter
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Internal CutInternal Cut

Forward

Backward

Fast-forward  otherwise
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– Thickness: how fat is the cycle?

– Special cases
• k=1 ideal case of a cycle

• k=|S| 2D structures

Tube SizeTube Size

( ) / | |T k k S=

Cycle 

k
Clutter

① Ecut

② Icut

③ T



– S Subset of graph nodes V

– O Cycle ordering on S

– k Cycle thickness

Combining ScoresCombining Scores
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Cut Score InterpretationCut Score Interpretation

Three untangling cycle criteria Circular embedding

① External cut:

② Internal cut: 

③ Tube size:

cutr E⇔

cutIθ ⇔
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