Untangling Cycles for Contour Grouping

Qihui Zhu, Gang Song and Jianbo Shi

GRASP Laboratory University of Pennsylvania

IEEE ICCV 2007

Finding Salient Contours by Grouping Edges

Edge Detection

Input image

Edgels

Finding Salient Contours by Grouping Edges

edgels

contours

"Long contours are nice to look at", K. Koffka. *Principles of Gestalt Psychology*. S. Ullman and A. Shashua. Structural saliency: The detection of globally salient structures using a locally connected network. In *MIT AI Memo*, 1988.

S. Mahamud, L.Williams, K. Thornber, and K. Xu. Segmentation of multiple salient closed contours from real images. *PAMI*, 2003.

T. D. Alter and R. Basri. Extracting salient curves from images: An analysis of the saliency network. *CVPR*, 1996.

A. Amir and M. Lindenbaum. Grouping-based nonadditive verification. *PAMI*, 20(2):186–192, 1998.

B. Fischer and J. M. Buhmann. Path-based clustering for grouping of smooth curves and texture segmentation. *PAMI*, 25(4):513–518, 2003.

D. W. Jacobs. Robust and efficient detection of salient convex groups. *PAMI*, 18(1):23–37, 1996.

G. G. Medioni and G. Guy. Inferring global perceptual contours from local features. In *IUW*, 1993.

S. Sarkar and P. Soundararajan. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata. *PAMI*, 22(5):504–525, 2000.

J. H. Elder and S. W. Zucker. Computing contour closure. *Lecture Notes in Computer Science*, 1064, 1996.

Challenges in Real Images

Edge linking fails in clutter:

Gap

2D clutter

Group salient 1D structures robust to 2D clutter

Image Edges and detected contours

Image

Edges and detected contours

Directed Graph for Grouping G=(V,E,W)

- V Duplicate each edgel to (i,i)
- W Collinearity
 - Elastic energy

Directed Graph for Grouping G=(V,E,W)

- V Duplicate each edgel to (i,i)
- W Collinearity
 - Elastic energy

$$W_{ij} = e^{-(1 - \cos(|\phi_i| + |\phi_j|))/\sigma^2}$$

Directed Graph for Grouping *G=(V,E,W)*

- V Duplicate each edgel to (i,i)
- W Collinearity
 - Elastic energy

$$W_{ij} = e^{-(1 - \cos(|\phi_i| + |\phi_j|))/\sigma^2}$$

• Backward connection W_{ij}^{back} open contour: chain \rightarrow graph cycle

Directed Random Walk

$$P = D^{-1}W$$

$$D = Diag(W \cdot \mathbf{1})$$

 $P_1(j|i) + P_1(k|i) + P_1(l|i) = 1$

 $P_1(j|i)$ probability of jumping from i to j in one step

Directed Random Walk

 $P = D^{-1}W$

Image contour

Graph cycle

Open contour

Closed contour

Untangling Cycle Algorithm

Find salient graph cycles

Contour Saliency

Q: What is the appropriate saliency measure for good cycles (1D contour) and bad cycles (2D clutter)?

Shortest cycle? Longest cycle? Shortest average cycle? ...

Persistency of a Random Walk Cycle

 $\overline{P_t(i \mid i)}$ probability of cycling $i \rightarrow i$ in t steps

Check how likely a random walk cycle back to starting points after some time t

 $P_{t}(i \mid i)$

Observation: Persistent Cycles

Image contour = Persistent cycles

Persistent Cycle Measure

• 'Peakiness' of returning probability: $P_t(i | i)$

$$R(i,T) = \frac{\sum_{k=1}^{\infty} P_{kT}(i \,|\, i)}{\sum_{k=0}^{\infty} P_{k}(i \,|\, i)}$$

Theorem 'Peakiness': R(i,T) can be computed:

$$R(i,T) = \frac{\sum_{j} \operatorname{Re}(\frac{\lambda_{j}^{T}}{1 - \lambda_{j}^{T}} \cdot U_{ij}V_{ij})}{\sum_{j} \operatorname{Re}(\frac{\lambda_{j}}{1 - \lambda_{j}} \cdot U_{ij}V_{ij})}$$

 $U_{:j} V_{:j}$: left & right eigenvectors of $I\!\!P$

Complex Eigenvalues of Random Walk

Complex Eigenvector of Random Walk

One step random walk $\leftarrow P^T \cdot \chi \leftrightarrow \lambda \downarrow \chi \rightarrow \text{Rotation in complex}$

Complex eigenvectors encode both cyclic ordering and likelihood on cycles

Image

Complex eigenvector x

Untangling Cycle Algorithm

Complex embedding

eigenvectors

Ideal Cost for Circular Embedding

Each complex eigenvector gives a circular embedding of the original graph

For a point *x* in complex plane

$$x(r,\theta) = r \cdot e^{i\theta}$$

Ideal circular embedding

Ideal Cost for Circular Embedding

One step random walk $\leftarrow P^T \cdot \chi \leftrightarrow \lambda \cdot \chi$ in circular embedding:

 $x \rightarrow P^T \cdot x$

→ Rotation in circular embedding:

 $x \rightarrow \lambda \cdot x$

 $\overline{x(r,\theta)} = r \cdot e^{i\theta}$

Image

Ideal circular embedding

Ideal Cost of Circular Embedding

we want:

- Good Contour \rightarrow large circle according to cyclic ordering
- Bad Clutter \rightarrow core around the origin

$$x(r,\theta) = r \cdot e^{i\theta}$$

Ideal Cost of Circular Embedding

 $r \star \Delta \theta$ = constant

In clutter, P(j,:) many immediate neighbors for each random walk step In contour, P(i,:) few immediate neighbors for each random walk step

Circular Embedding Score

We conjecture the ideal circular embedding Max.

$$C_{e}(r,\theta,\Delta\theta) = \sum_{\substack{\theta_{i} < \theta_{j} \le \theta_{i} + 2\Delta\theta \\ r_{i} > 0, r_{j} > 0}} P_{ij} / |S| \cdot \frac{1}{\Delta\theta}$$
$$S = \{(r,\theta) | r = r_{0}\}$$

- r Circle indicator with $r_i \in \{r_0, 0\}$
- θ Phase angles on cycles specifying an ordering
- $\Delta \theta$ Average jumping angle $\Delta \theta = \overline{\theta_j \theta_i}$

Solution: Complex Eigenvector

Solution: Complex Eigenvector

Theorem: All critical points (local maxima) (u_{\max}, v_{\max}) of the above are left and right eigenvectors of P

$$Pv_{\max} = \lambda v_{\max} \qquad P^T u_{\max}^* = \lambda u_{\max}^*$$

Maximum values are $\max_{\lambda} (\operatorname{Re}(\lambda \cdot c))$

Discretization

Find embedding cycles with large radius

• Maximal cover area

$$\max_{s_1,...,s_k} \sum_{j=1}^k A(u_{s_j}, u_{s_{j+1}})$$

$$A(u_{s_{j}}, u_{s_{j+1}}) = \frac{1}{2} \operatorname{Im}(u_{s_{j}}^{*} \cdot u_{s_{j+1}})$$

Section area spanned by $u_{s_{j}}, u_{s_{j+1}}$

Compute shortest paths in the embedding space

Untangling Cycle Algorithm

Complex embedding

Experiments: BSDS

Experiments: BSDS

Experiments: Horses

Berkeley Segmentation Benchmark

Compare our method to

- Pb D. Martin *et al*, PAMI 2004
- **CRF** X. Ren *et al*, ICCV 2005
- Min cover P. Felzenszwalb et al, WPOCV 2006

Berkeley Segmentation Comparison

P. F. Felzenszwalb and D. McAllester. A min-cover approach for finding salient curves. In *WPOCV*, page 185, 2006.

X. Ren, C. Fowlkes, and J. Malik. Scale-invariant contour completion using conditional random fields. In *ICCV*, pages 1214–1221, 2005.

Pb D. Martin *et al*, PAMI 2004

Conclusion

- Utilize topology information for contour grouping
- Persistent cycles: circular/complex embedding
- Untangling cycle cut score: grouping 1D structures

Experiments: Horses

Experiments: Baseball Players

Experiments: Baseball Players

Untangling Cycle Cut Score

- External cut (*E_{cut}*)
 Internal cut (*I_{cut}*)
 Tube size (*T*)
- A discrete graph cut score useful for segmenting persistent cycles from continuous embedding space

External Cut

$$E_{cut}(S) = \frac{1}{|S|} \sum_{i \in S, j \in (V-S)} P_{ij}$$

- Cut cycle (S) from clutter (V-S)
- Similar to NCut (2D grouping)

Internal Cut

$$I_{cut}(S,O,k) = \frac{1}{|S|} \sum_{(O(i) \ge O(j)) \lor (O(j) \ge O(i)+k)} P_{ij}$$

Ordering $O: S \mapsto S = \{1, 2, ..., |S|\}$

 $\begin{cases} Forward & 0 < O(j) - O(i) \le k \\ Backward & -|S|/2 \le O(j) - O(i) \le 0 \\ Fast-forward & otherwise \end{cases}$

$$T(k) = k / |S|$$

- Thickness: how fat is the cycle?
- Special cases
 - *k=1* ideal case of a cycle
 - k = S 2D structures

Combining Scores

Maximize Untangling Cycle Cut Score

$$C_{u}(S,O,k) = \frac{1 - E_{cut}(S) - I_{cut}(S,O,k)}{T(k)}$$

- S Subset of graph nodes V
- O Cycle ordering on S
- k Cycle thickness

Cut Score Interpretation

(1)External cut: $r \Leftrightarrow E_{cut}$ (2)Internal cut: $\theta \Leftrightarrow I_{cut}$ (3)Tube size: $\Delta \theta \Leftrightarrow T$