Seeing Through Water...

A. Efros & J. Shi

Problem Setting

Easy!

...and this?

Not really

The physics

Observation 1: time is of the essence!

Snell's Iaw

A case for patches

Time slice

Time

mean

<u>Observation 2</u>: down with pixels – long live patches!

50x50 patches

Sorting

Sorted time slice

y

Х

Clustering

Clustered time slice

The impostor cluster problem

Algorithm v.0

- For each patch column through time:
 - Cluster using SVD, sorting by 1st eig.v.
 - Drop it if 1st eig.v. is not prominent
 - Decide which cluster to take by:
 - Tightness of cluster
 - coherence (spatial and eigenvector)
 - "Splat" cluster mean into accumulator image
 - Hope for the best!

Input video

mean

median

Our result

Input video

Mean image

Our result

Questions

- Is it possible to recover the true cluster?
- Is it possible to track by sorting?
- Is there enough information in the video?
- If this works:
 - Other motion textures: flag, trees, clothing?
 - Shift-invariant features for recognition?
 - Non-tracking trackers