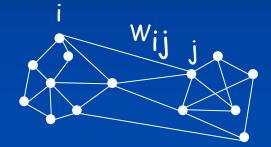
MULTISCALE SEGMENTATION

Florence BENEZIT, Jianbo SHI, 2004

Introduction

Graph Based Object Segmentation



```
G = {V, E}
```

V: graph nodes E: edges connection nodes

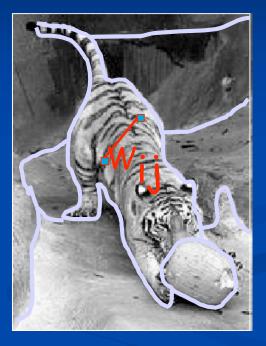
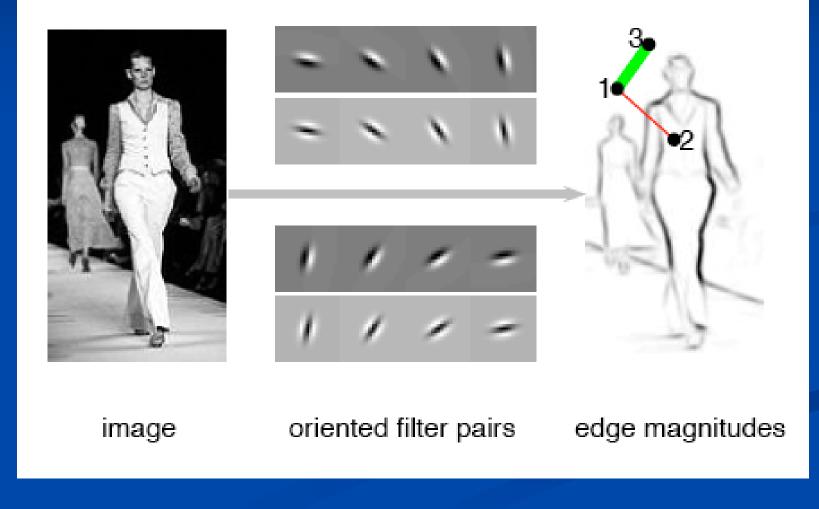


Image = { pixels }
Pixel similarity

Segmentation = Graph partition

Pixel Affinity graph

Pixel Similarity based on Intensity Edges



Normalized Cut As Generalized Eigenvalue problem

$$X = [X_1, \dots X_K]$$

maximize
$$\varepsilon(X) = \frac{1}{K} \sum_{l=1}^{K} \frac{X_l^T W X_l}{X_l^T D X_l}$$

Program PNCX:

subject to
$$X \in \{0, 1\}^{N \times K}, \ X \mathbf{1}_K = \mathbf{1}_N.$$

$$Z = X(X^T DX)$$

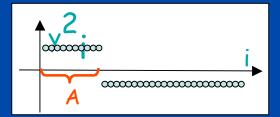
 $\langle \mathbf{T} \mathbf{T} \mathbf{T} \rangle$

Relaxed to program PNCZ:

maximize
$$\varepsilon(Z) = \frac{1}{K} \operatorname{tr}(Z^T W Z)$$

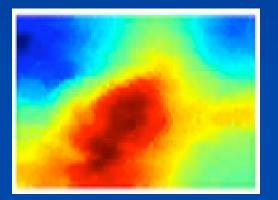
subject to $Z^T D Z = I_K$.

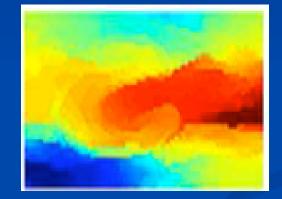
1

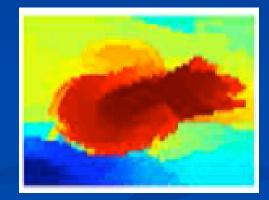


How big connection radius?

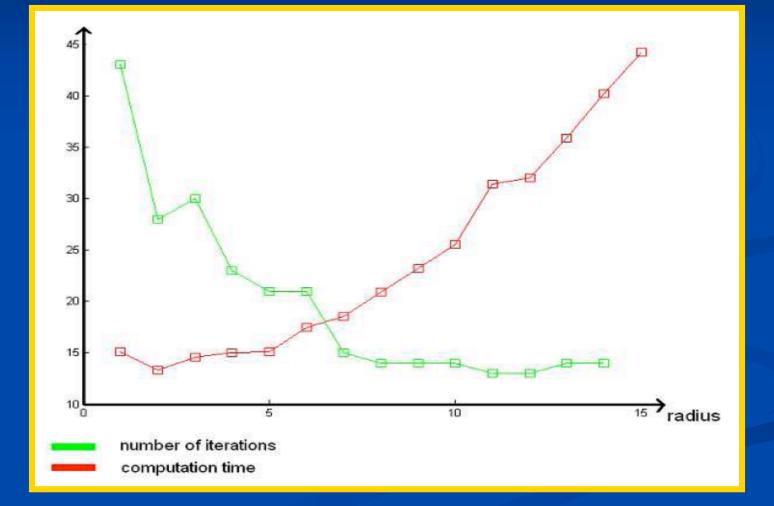
BAD AND GOOD EIGENVECTORS







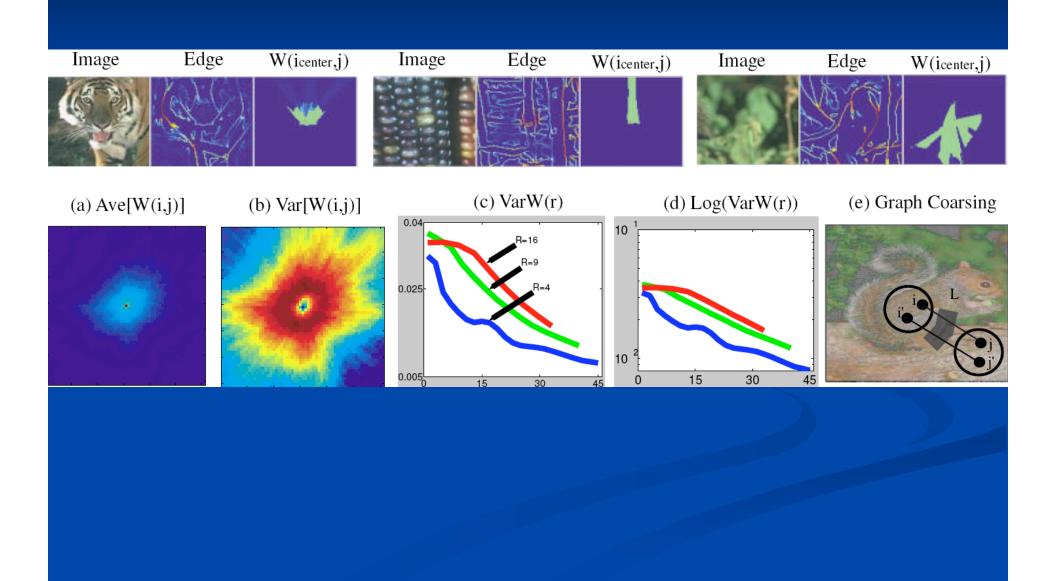
ACCURACY VERSUS COMPUTATION TIME



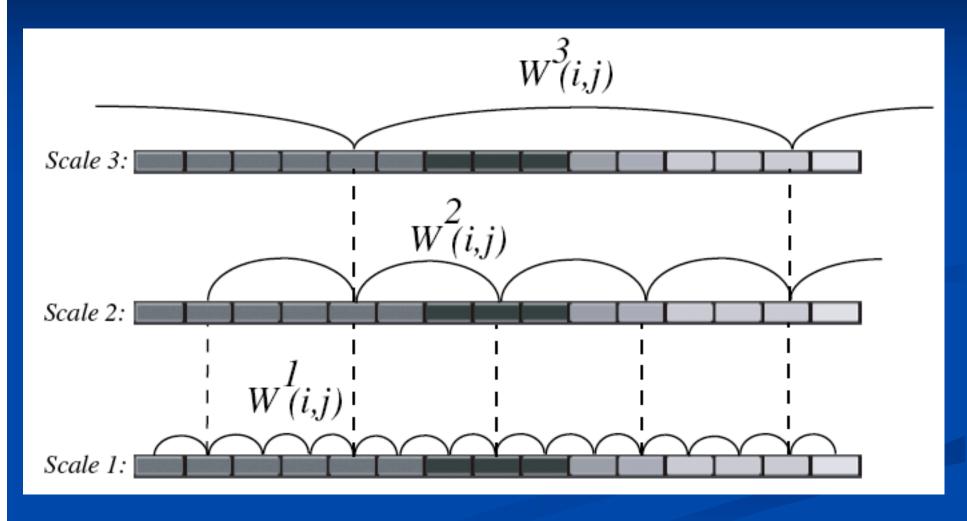
MULTISCALE AFFINITY MATRIX AND LAYER CONSTRAINTS

Long range connections

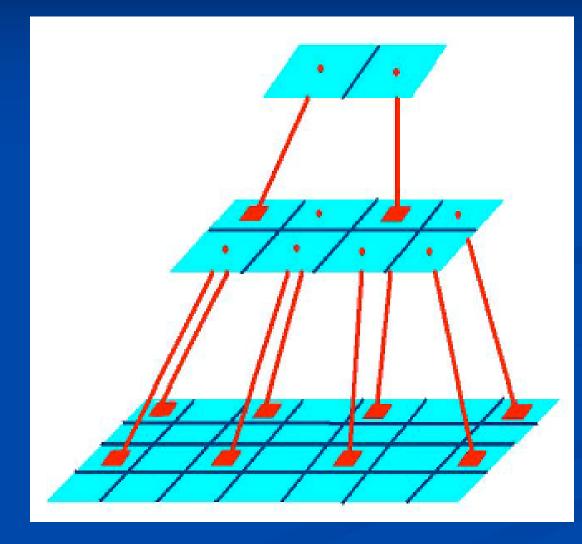
Statistics of W on natural images



Multiscale graph decomposition



Multi-scale graph decomposition

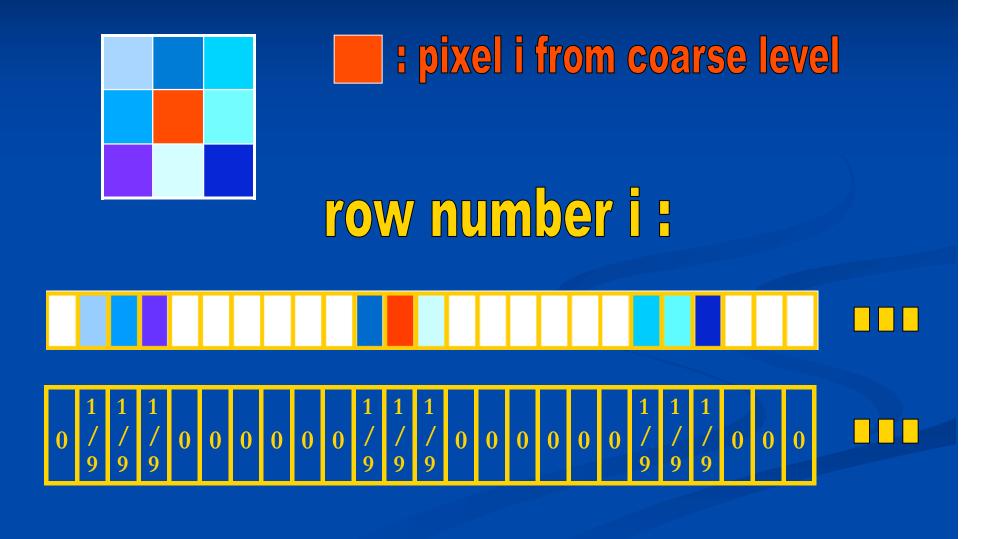


Original graph weight: O(N^2)

Multi-scale graph weights: O(N)

MULTISCALE MATRIX

AVERAGE MATRIX

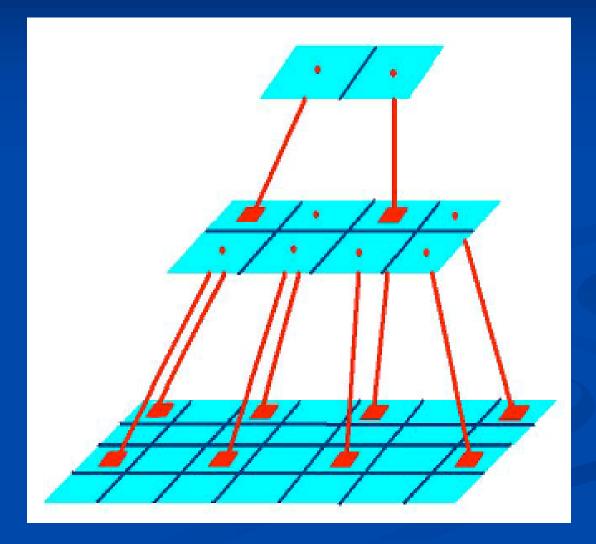


AVERAGE MATRIX

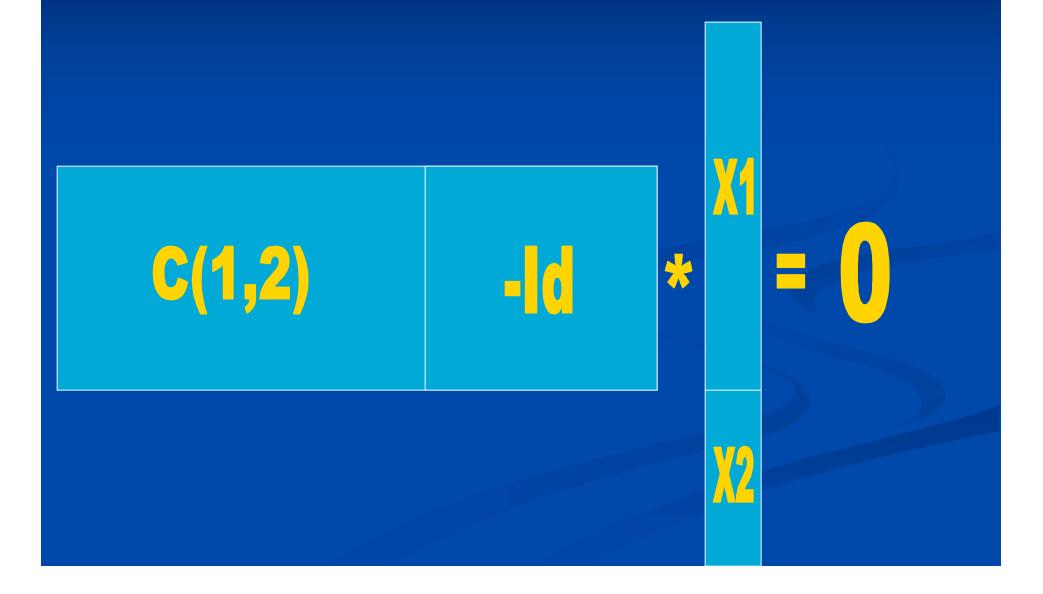
number of pixels in layer s

number of pixels in layer s+k

Con-current partitioning of Multi-scale graph



MULTISCALE REPRESENTATION AND CONSTRAINTS



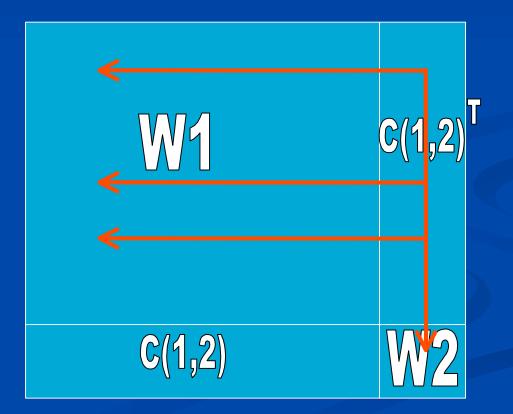
PROBLEM

maximize
$$\varepsilon(X) = \frac{1}{K} \sum_{l=1}^{K} \frac{X_l^T W X_l}{X_l^T D X_l}$$

subject to
$$X \in \{0, 1\}^{N \times K}, X \mathbb{1}_K = \mathbb{1}_N$$

 $CX = 0$

MAXIMIZING ENERGY $e(X)=X_1^TW_1X_1+X_2^TW_2X_2+2X_1^TCX_2$

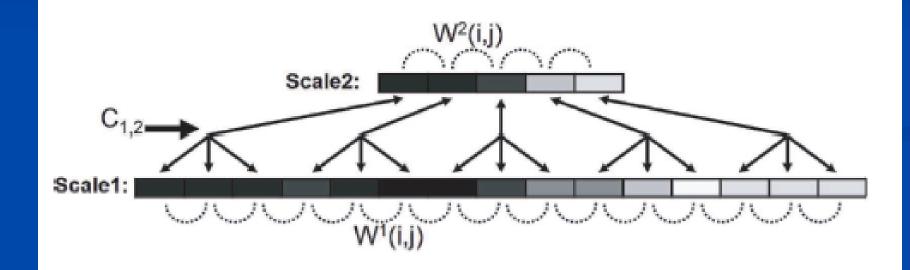


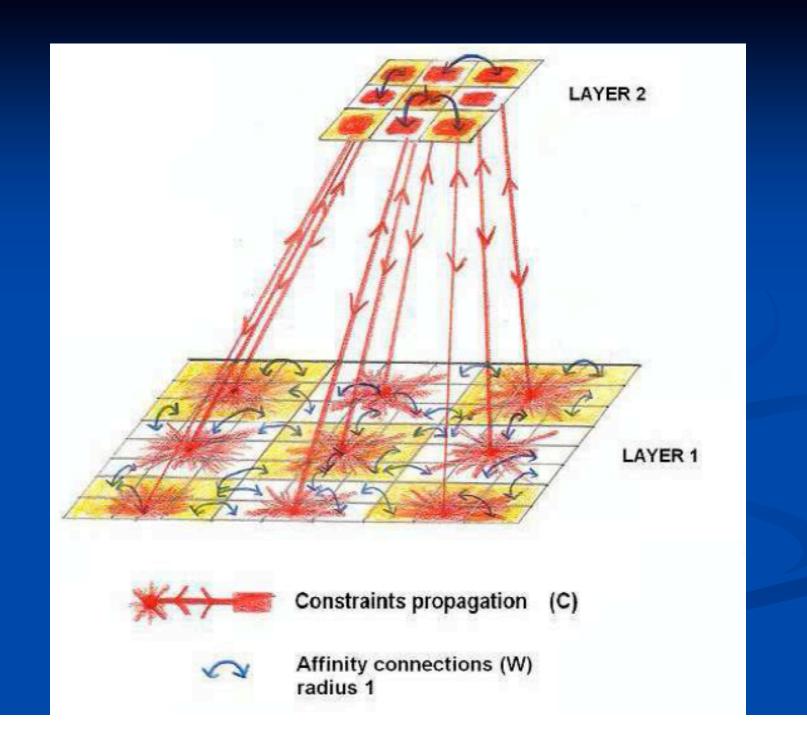
maximize
$$\varepsilon(X) = \frac{1}{K} \sum_{l=1}^{K} \frac{X_l^T W X_l}{X_l^T D X_l}$$

subject to
$$X \in \{0, 1\}^{N \times K}, X \mathbb{1}_K = \mathbb{1}_N$$

 $CX = 0$

Cross scale constraints





RELAXED PROBLEM

maximize $\varepsilon(Z) = \frac{1}{K} \operatorname{tr}(Z^T W Z)$ $Z^T D Z = I$ subject to CZ=0

 $P = D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$ be the normalized affinity matrix, and Q be the projector onto the feasible solution space:

$$Q = I - D^{-\frac{1}{2}} C^T (C D^{-1} C^T)^{-1} C D^{-\frac{1}{2}}.$$
 (17)

Let $V = (V_1, ..., V_K)$ be the first K eigenvectors of matrix QPQ. Then the solutions to Eq. (15) are given by scaling any rotation of the K eigenvectors $V = (V_1, ..., V_K)$:

$$\arg\max_{Z} \varepsilon(Z) = \{ D^{-\frac{1}{2}} VR : R \in O(K) \}.$$
(18)

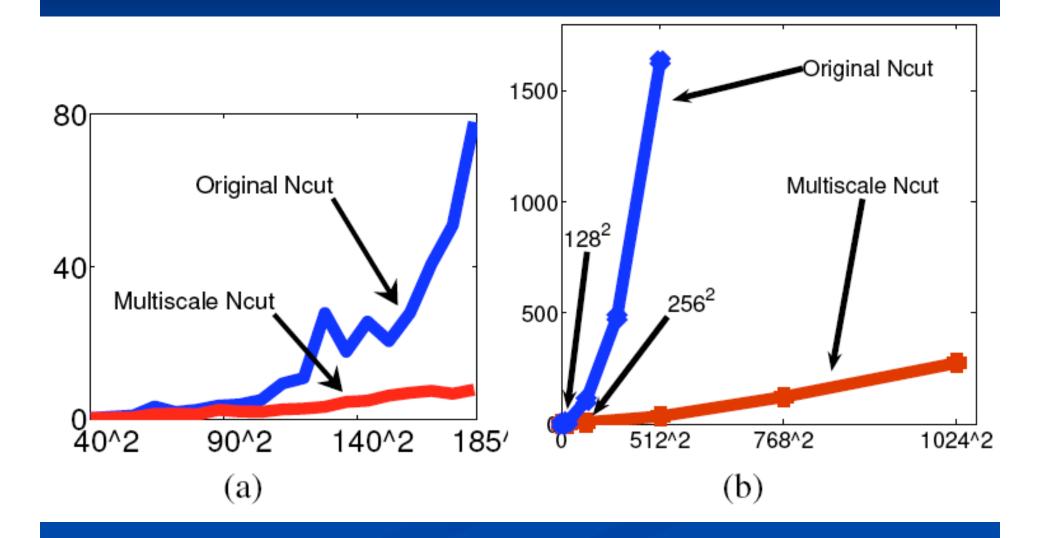
 $P = D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$ be the normalized affinity matrix, and Q be the projector onto the feasible solution space: Can be done in O(N) operations.

$$Q = I - D^{-\frac{1}{2}} C^T (C D^{-1} C^T)^{-1} C D^{-\frac{1}{2}}.$$
 (17)

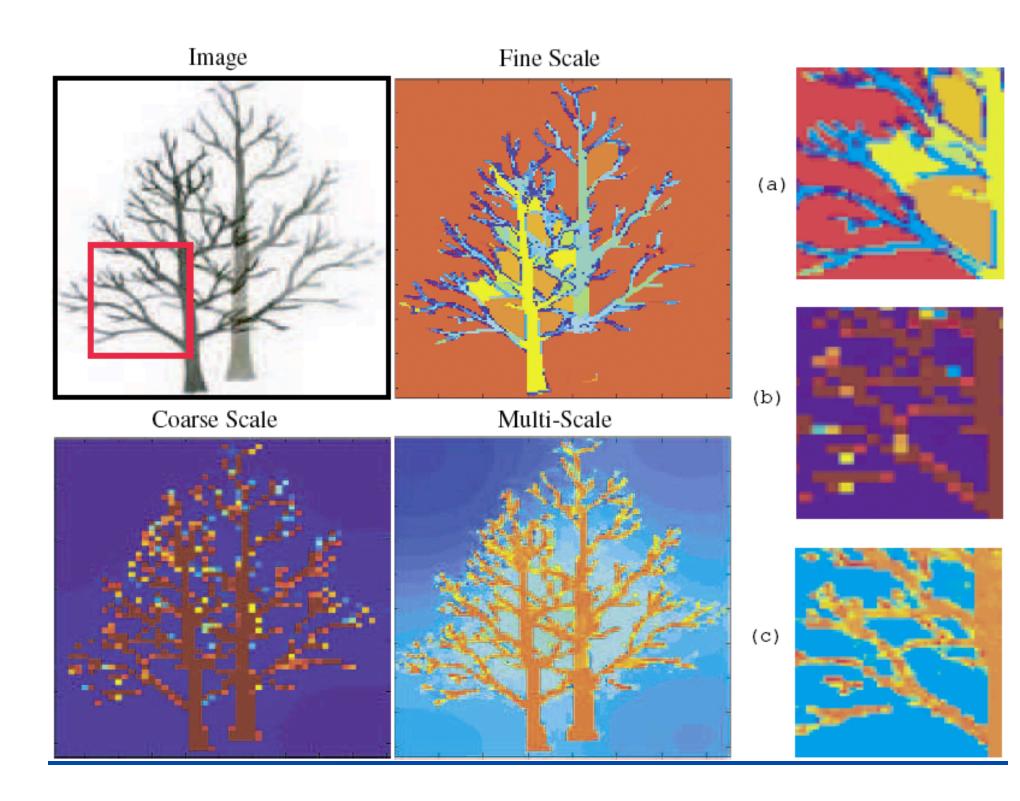
Let $V = (V_1, ..., V_K)$ be the first K eigenvectors of matrix QPQ. Then the solutions to Eq. (15) are given by scaling any rotation of the K eigenvectors $V = (V_1, ..., V_K)$:

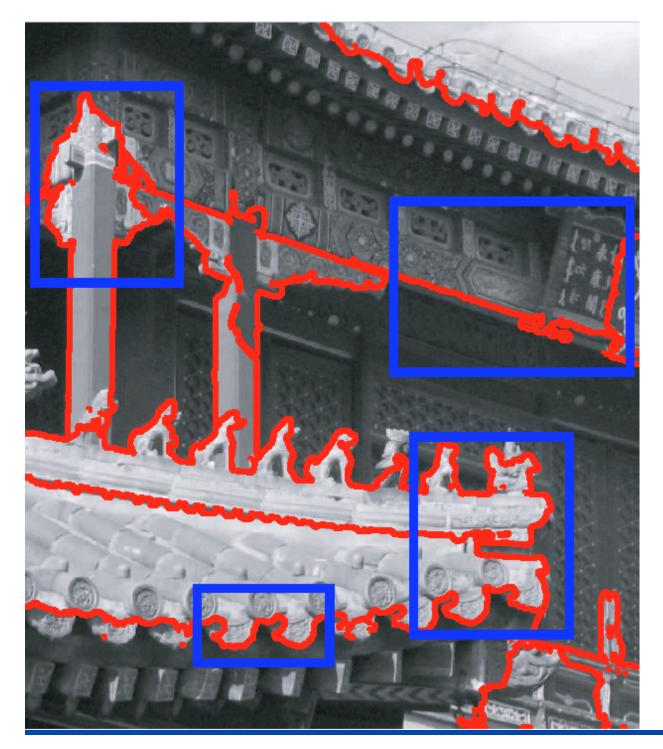
$$\arg\max_{Z} \varepsilon(Z) = \{ D^{-\frac{1}{2}} VR : R \in O(K) \}.$$
(18)

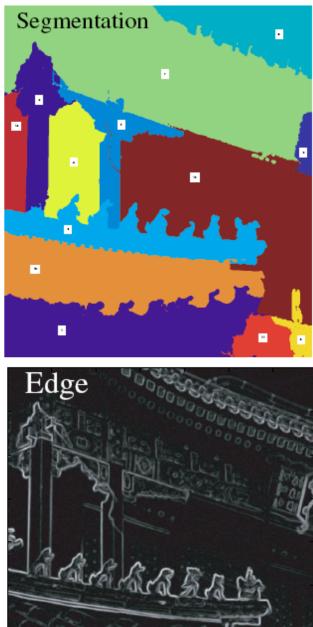
Computational speed up



RESULT'S

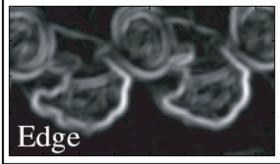


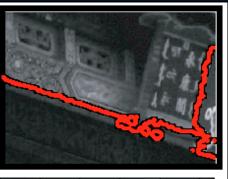


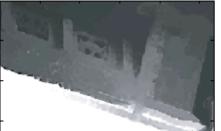


1 1010

0







Ncut Eigenvector

