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Abstract

We propose a method of image segmentation by inte-
grating pairwise attraction and directional repulsion de-
rived from local grouping and figure-ground cues. These
two kinds of pairwise relationships are encoded in the real
and imaginary parts of an Hermitian graph weight matrix,
through which we can directly generalize the normalized
cuts criterion. With bi-graph constructions, this method
can be readily extended to handle nondirectional repulsion
that captures dissimilarity. We demonstrate the use of repul-
sion in image segmentation with relative depth cues, which
allows segmentation and figure-ground segregation to be
computed simultaneously. As a general mechanism to rep-
resent the dual measures of attraction and repulsion, this
method can also be employed to solve other constraint sat-
isfaction and optimization problems.

1. Introduction

Perceptual organization [11], the structuring of percep-
tual information into groups, objects and concepts, is an
important problem in vision and cognition. It was first stud-
ied by Gestaltlists, who proposed three parts of grouping:
grouping factors [19], figure-ground organization [15], and
Pragnanz, the last of which, in sharp contrast with atom-
istic view of visual perception by structuralists, refers to the
goodness of overall structure arisen from global interactions
from visual stimuli and within visual systems [11].

This view of grouping has led to a computational mech-
anism of image segmentation as the process of extract-
ing global information from local comparisons between
image features(pixels). Gestalt grouping factors, such as
proximity, similarity, continuity and symmetry, are en-
coded and combined in pairwise feature similarity measures
[21, 17, 13, 4, 18, 16]. It has been demonstrated on real im-

ages that complex grouping phenomena can emerge from
simple computation on these local cues [5, 7].

However, the purpose of grouping is not isolated from
figure-ground discrimination. The goodness of figure is
evaluated based on both goodness of groups and segrega-
tion cues for figure-ground. Grouping and figure-ground are
two aspects of one process. They evaluate on the same set
of feature dimensions, such as luminance, motion, continu-
ation and symmetry. Closure in grouping is closely related
to convexity, occlusion, and surroundness in figure-ground.
When a pair of symmetrical lines are grouped together, for
example, it essentially implies that the region between con-
tours is the figure and the surrounding area is the ground.

This strong connection between grouping and figure-
ground discrimination is not well studied in computer vi-
sion. In general, segmentation and depth segregation are
often dealt with at separate processing stages [2, 20]. From
a computational point of view, this two-step approach is not
capable of fully integrating these two types of cues and is
prone to errors made in each step. [1] provides a Bayesian
approach to binocular stereopsis where local quantities in
the scene geometry, which include depth, surface orien-
tation, object boundaries and surface creases, are recov-
ered simultaneously. However, like most formulations in
Markov random fields, it suffers from poor computation
techniques.

The difficulty of integrating figure-ground cues in the
general grouping framework lies in different natures of fac-
tors. While grouping factors look at the association by fea-
ture similarity, figure-ground emphasizes the segregation
by feature dissimilarity, and this dissimilarity can be direc-
tional. In fact, figure-ground is closely related to depth seg-
regation [6, 9], since regions in front tend to be smaller,
surrounded, occluding and complete, which in turn makes
them more likely to exhibit symmetry, parallelism, convex-
ity etc., as our visual world is made of such objects. That a
significant number of V1, V2 and V4 cells were found sen-
sitive to distance even in monocular viewing conditions [3]



suggests that depth cues might be intertwined with many
early visual processes [10, 14]. The existence of depth-
polarity sensitive cells has also been found recently in V1,
V2 and V4 [22]. The representation of direction is crucial
in discriminating figure from ground.

In this paper, we present a computational grouping
method which naturally incorporates both grouping and
figure-ground discrimination. We formulate the problem in
a directed graph partitioning framework. We represent at-
traction and directional repulsion in the real and imaginary
parts of an Hermitian weight matrix, which we call gener-
alized affinity. Segmentation and figure-ground segregation
can be encoded together by a complex labeling vector in
its phase plane. We generalize the normalized cut criterion
to this problem and an analogous eigensystem is used to
achieve segmentation and figure-ground in one step.

These results can be extended to nondirectional repul-
sion with the help of bigraphs. A bigraph is constructed by
making two copies of the graph with attraction edges, and
representing nondirectional repulsion as directional repul-
sion in both ways between the two copies of the graph.

The rest of the paper is organized as follows. Section 2
expands our grouping method in detail. Section 3 illustrates
our ideas and methods on synthetic data as well as real im-
ages. In particular, we will see how repulsion and attraction
work together leading to a better segmentation and how we
can discover figure-ground information from labeling vec-
tors. Section 4 concludes the paper.

2. Computational algorithms

Image segmentation based on pairwise relationships can
be formulated in a graph theoretic framework. In this
approach, an image is described by a weighted graph���������
	��

, where a vertex �� � corresponds to a pixel
in image, and an edge ��� 	

between vertex � and � is
associated with a weight which measures both similarity of
grouping cues and directional dissimilarity of figure-ground
cues. A vertex partitioning
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on graph
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,

which has
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and
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, leads to a
figure-ground partitioning of the image.

2.1. Representing directional repulsion

We first extend the definition of conventional graph
weight matrices to include directional repulsion. Consider
the case illustrated in Fig.1a. We have pairwise attraction
between

��()�+*)�
,
�,*-�/.0�

and
�213�+4)�

, and repulsion between��(5�/10�
,
�6*��+4)�

and
�7.8�+45�

. The attraction can be represented by
a symmetrical weight matrix 9�:<; (Fig.1c), while the repul-
sion can be represented by a skew symmetrical weight ma-
trix 9 :>= (Fig.1d). In the image domain, directional repul-
sion can arise from relative depth cues such as T-junctions.

We can unify these two types of graph weights nicely in the
domain of complex numbers as

9 : � 9 :<;�?A@>B 9 :>=5C
We call 9�: the generalized affinity. We define the degree
matrix D : to be the sum of E�F norm of 9 : entries,

DG: � � � � �H�JI5KMLNL 9�: � � � � �OLNL F �QP � C
Note that the weight matrix for directed edges is differ-
ent from the conventional nonnegative matrix representa-
tion (Fig.1b). With our choice, the generalized affinity 9R:
becomes Hermitian, which allows us to generalize graph
partitioning criteria on real symmetrical matrices.
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Figure 1: Represent attraction and repulsion in graph weight
matrices. a. A graph with mixed mutual attraction (undirected
edges) and directional repulsion (directed edges). b. Conventional
nonnegative weight matrix for directed edges. c. Represent attrac-
tion in a nonnegative and symmetrical matrix _�`�a . d. Represent
repulsion in a skew symmetrical weight matrix _�`�b . This repre-
sentation is natural for relative depth cues that we can say c is in
front of d if _�`8bfe[c
ghd)ikjml , c is behind d if _�`8bfe[c
g�d)ionml , c
and d are on the same depth layer (or as in affinity, information
not available) if _ `�b e�p�g2cqisrtl .

2.2. Normalized generalized association criterion

While figure-ground discrimination has a natural asym-
metry favoring the figure in the grouping process [12], the
goodness of figure is evaluated based on both goodness of
groups and segregation cues for figure-ground. Due to the
direction nature of figure-ground repulsion, we need po-
larized subdivisions to balance figure and ground. Fig. 2
shows an example where subdivisions in the ground layer
help to establish the perception of figure.

In general, we have further partitions in both fig-
ure

� � �u� �<v  "� �xw
and ground

� � ��� �yv  z� �{w
. Let
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Figure 2: Figure-ground segregation by polarized subdivisions.
a. Figure _ occludes � but is occluded by � . b. A directed graph
representation of example a. In this case, � and � are subdivisions
in the ground, they both contribute but with opposite polarities to
the perception of figure _ .

� �������k� �
	 �������o� �� �������o�
denote the total attraction, re-

pulsion and degree of connections from
�

to
�

, i.e.� �������k� � ��������� K ��� 9�:s; � � � � � �	 �������k� � � ������� K ��� 9 :>= � � � � � �� �������k� � � ������� K ��� LNL 9 : � � � � �OLNL F C
Let � ��� denote either figure or ground. We define good-
ness of grouping as � ; , goodness of directional segregation
as � = and degree of connections as ��� :� ; � � � � � � ��� "!$#�% � � �  � �  � ^ � � �  � �'& �  �)( �� = � � ���o� � ��� "!$# % 	 � �  ��� & �  � ^ 	 � �  ���  �)( �� � � � � �  *� � � � � � � �  +� � C
We use the following normalized generalized association
measure ,�- as our criterion:,�- �2�#�������<� � (* . � ; �2� � ��� � ��/� ��� � �h��� ? � ; ��� � ��� � ���� �2� � �����10

? (*32 �8= ���#���h��� � ^ �8= �������h�#�H�4 � � ���#� ����� B � � �����������65 C
Maximizing ,7- is to maximize simultaneously the attraction
within both figure and ground, the repulsion from figure to
ground, each normalized by involved total connections.

Let 8 be a vertex membership vector, which assumes
values from 9 ^ (5��(5� ^ @ � @�: , where 9 (5� ^ ( : label

� �
and9 @ � ^ @�: label

���
. Let ; , < and = denote conjugate, trans-

pose and conjugate transpose respectively. With > �? ( ^ � � 8 ? 8@; � ^ ? � � 8 ^ 8�; � , where � �BADCFEHG � EJIADCFE � EHI , , -
can be written as a Rayleigh quotient:

,�- � > �#� >H=�9�:K>> = D : > � P � � > � �L9NM * ? ( ^ � � M * @ ? � :)C
A good segmentation seeks: >JOQF  �QPNR�SKT'PVUXW , - � > � .

2.3. Computational solution

As > is relaxed to take any complex values, accord-
ing to the Rayleigh’s principle, the above combinatorial
optimization problem has an approximate solution by the
generalized eigenvectors of

� 9 : � D : � . For eigensystemY # > �[Z Y � > of a matrix pair
� Y # � Y � � , let

Zs� Y # � Y � �
be the set of distinct eigenvalues and \ � Y # � Y � ��Z � be the
eigenspace for a particular eigenvalue

Z
. We use subscript� to denote the � -th largest eigenvalue, i.e.,

Z K � Y # � Y � �
or
Z K

when the context is clear, refers to the � -th largest
eigenvalue. Let ] K � Y # � Y � � �^\ � Y # � Y � ��Z K � . The opti-
mal solution > OQF  � ] # � 9�: � D : � . In general, ,7- � > �o�_Z
for

P`Z � Zs� 9�: � DG: � , > �a\ � 9�: � DG: ��Z � . It is well
known that all eigenvalues of an Hermitian matrix are real,
which ensures us that any vertex valuation by eigenvec-
tors has a real partitioning energy , - . We discard those > ’s
with

Zcb V
, as an equivalent partitioning but with reversed

figure-ground can be obtained by >�; and , - � >d; �De V .
2.4. Phase encoding of a segmentation

With slight abuse of notation, let 9 : � D �gfh: 9�:#D �ifh: .
The eigenvectors of this new 9 : are equivalent to those
of
� 9�: � DG: � . We show here that segmentation and figure-

ground segregation can be encoded simultaneously in the
phase plane of labeling vectors. Let jDk be the angle of
complex number k , and we take jDk �ml

to mean that they
are congruent: jDk �nl[Tporq �7.ts VJu �

. It can be shown that, � 8 ��� #� 8�=R9 : 8 � #� � � 9 :s; � � � � � ? , ; � � 8 � ^ , ; � � 8 � ?, = � � 8 � ^ , = � � 8 � , where, ; ��� 8 � � ����v K � wdxzy � wdx|{ !@}�~ 9�:s; � � � � � �, ; � � 8 � � � ��v K � wdx y � wdx { !$#
��} ~ 9 :s; � � � � � �, = � � 8 � � � ��v K � wdx y � wdx|{ !`��} ~ 9 :>= � � � � � �, = � � 8 � � ����v K � wdxzy � wdx|{ ! � �
}�~ 9 :>= � � � � � C
This decomposition is illustrated in Fig.3. There are a few
points of interest in this derivation. First, the complemen-
tary pairings in attraction and repulsion terms confirm that 8
being real and imaginary is the criterion to partition vertices
into two classes, i.e., 9 ()� ^ ( : for one class and 9 @ � ^ @�: for
the other class. , ; � ^ , ; � measures within class attraction
( � ; ) and , = � ^ , = � measures between class repulsion ( � = ),
both of which should be maximized for a good segmenta-
tion. Second, as , � 8 ���� , � 8@; � and they only differ in the re-
pulsion terms, the relative phases of 8 components encode
the direction of between class repulsion. For our choice in
Fig.1, � is in front of � if 8 � has an advance ( ��� VHu ) in
phase than 8 K . The phase-plane embedding remains valid
in the relaxed solution space since the relative phases of >
components are invariant to any constant scaling on > .
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Figure 3: Phase plane embedding of vertex valuation function � .
The partitioning energy function � e��-i can be decomposed into four
� -dependent terms, �Qa�� , �Qa	� , ��b
� and ��b�� . a. � e���i contribution
chart. Attraction and repulsion play complementary roles in sum-
ming up pairwise contributions from components of � . b. � e���i
contribution diagram. The undirected and directed edges show
attraction and repulsion terms respectively. The shading shows
how the phase plane should be divided in order to represent fig-
ure and ground clusters. Solid(dotted) undirected lines represent
positive(negative) contribution �Qa�� ( ��a�� ). Directed lines represent
pairwise repulsion � b
� and � b� , and the directions indicate that
their contribution to � e���i is modulated by a particular sign. They
form a directed cycle, which suggests relative phases can encode
the direction of between class repulsion. For our definition of _�`�b
in Fig.1d, phase advance means figural. For continuous values of
� components, the larger the magnitudes in the phase plane, the
more certainty we have about this direction information.

2.5. Representing nondirectional repulsion

For nondirectional repulsion, we transform its undirected
graph into a directed graph. One way to achieve this is to
duplicate graph

�
with its nondirectional attraction only and

set directional repulsion in both ways between two identical
copies of vertices(Fig 4). We call such graphs bigraphs and
their corresponding vertices twin nodes.

Algebraically, for nonnegative and symmetric nondirec-
tional repulsion 9 :>= , we construct bigraph

�
, with gener-

alized affinity 9 : and normalization matrix D : ,

9 : � . 9 :<; @ 9 :>=^ @ 9 <:s= 9 :<; 0 � D : � . D : D : 0 C
The eigen-structure of a bigraph is revealed in Theorem 1.
Let � � Y # � Y � � be the multiplicities of

Zs� Y # � Y � � , and the

spectrum be � � Y # � Y � �#� . Zs� Y # � Y � �
� � Y # � Y � � 0 .

�
1 2 3 4 5 6

� 1 2 3 4 5 6

� ( �* �. �1 �4 �s
Figure 4: Bigraph to encode nondirectional repulsion. The solid
and dashed lines are attraction and repulsion edges respectively. �
is a single graph with attraction and nondirectional repulsion. � is
a bigraph where vertices are cloned together with attraction edges
and nondirectional repulsion is represented by directed edges in
both ways between two copies of the vertices. The repulsion direc-
tions consistently point from one graph to its cloned counterpart.

Theorem 1 Let 9�: � � 9�:<; ? 9�:>= , 9�: ��� 9�:<; ^ 9�:>= .
1. � � 9 : � D : �#� % � � 9�: ��� DG: � � � � 9�: �#� DG: � ( .
2.
P@Z � Zs� 9 : � � D : � , > � \ � 9 : � � D : ��Z3� iff. >^ @ > 0 � \ � 9 : � D : ��Z � . P@Z � Zs� 9 : � � D : � ,>"� \ � 9�: �#� DG: ��Z � iff

. >@ > 0 � \ � 9 : � D : ��Z3� .
3. � � \ � 9 : � � D : �O(f� , . (^ @ 0 � \ � 9 : � D : �O(f� iff

trace
� 9 :s; 9 <:>= �#� V .

Theorem 1 shows that: 1) the spectrum of a bigraph
is the combined spectrums of two derived graphs

� ? and� ^ ; 2) the eigenvectors of a bigraph can be obtained from
those of

� ? and
� ^ , such that the two copies of

�
make

up figure and ground layers respectively and twin nodes are
guaranteed to have either the same or opposite valuation;
here we see an example where antiphase components of la-
beling vectors indicate further segmentation within figure
and ground layers; 3) the trivial solution of one graph be-
ing figural and the other being ground is a counterpart of] # � 9�:s; � D :<; � when and only when attraction and repul-
sion work at different pairings of vertices so that they are
completely orthogonal.

To deal with nondirectional repulsion in the framework
of directional repulsion, we need to enforce that twin nodes
in
�

, which is of the same identity in
�

, be polarized dif-
ferently so that within-group repulsion can be counted neg-
atively and between-group repulsion counted positively in,�- . This consideration rules out solutions from 9R: � . We
have proven that the solution for the original nondirectional
repulsion problem is equivalent to that for 9 : � in a rigor-
ous sense.



3. Results

The example in Fig. 5 demonstrates that our represen-
tation of nondirectional repulsion works in the way that we
expect it to be. Indeed, the partitioning gets shifted with
where we add repulsion. For example, if we put repulsion
between points located at

104 u
and ^ (
.)4 u of the circle, we

have a partition boundary along
(�.)4 u

. On the other hand,
dots forming a perfect circle have no preference to a cut at a
particular angle if only proximity is considered, thus when
the points are generated with a different random seed, the
partitioning given by attraction alone varies subject to small
random changes in the point distribution.
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Figure 5: Repulsion can break the transitivity of attraction. a.
Random point set. Attraction measures proximity. Now hypothet-
ical nondirectional repulsion is added between two solid-line con-
nected points and their 6 neighbours (with linear fall-off in the re-
pulsion strength). These points are numbered counterclockwisely
as marked in the figure. The points are classified as circles and
crosses by thresholding �
	 e2_ ` g�� ` i with zero. b. The triangles
and dots are � 	 e2_�`<g��R`>i and ���e2_�`-a)g�� `�aqi respectively. When
the point set is generated with a different random seed, the former
remains the same cut at �
l�� while the latter changes.

Fig.6 shows that how attraction and repulsion comple-
ment each other and their interaction through normaliza-
tion gives a better segmentation. We use spatial proximity
for attraction. Since the intensity similarity is not consid-
ered, we cannot possibly segment this image with this at-
traction alone. Repulsion is determined by relative depths
suggested by the T-junction at the center. The repulsion
strength falls off exponentially along the direction perpen-
dicular to the T-arms. Compare the first eigenvectors of@ 9 :>= , � @ 9 :s= � D :s= � , 9 : and

� 9 : � D : � . We can see that
repulsion pushes two regions apart at the boundary, while
attraction carries this force further to the interior of each
region thanks to its transitivity, so that the repelled bound-
ary does not stand out as a separate group as with repulsion
alone case. For this directional repulsion case, we can tell
figure vs. ground by examining the relative phases of the
labeling vector components (Fig.7).
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Figure 6: Interaction of attraction and repulsion. The first row
shows the image, _ `-a , _ `8b and the solution �  e2_ `�a g�� `-a i on
attraction alone. The 2nd and 3rd rows are the attraction and repul-
sion fields at the four locations indicated by the markers in the im-
age. The attraction is determined by proximity, so it is the same for
all four locations. The repulsion is determined by the T-junction at
the center. Most repulsion is zero, while pixels of lighter(darker)
values are in front of (behind) the pixel under scrutiny. The fourth
and fifth rows are the real and imaginary parts of the first eigenvec-
tors of repulsion, normalized repulsion, generalized affinity, nor-
malized generalized affinity respectively. Their eigenvalues are
given at the bottom. The normalization equalizes both attraction
and repulsion, while the interaction of the two forces leads to a
harmonic segmentation at both the boundary and interiors.

For single real images, we consider depth cues arisen
from occlusion, e.g., T-junctions. We fit each T-junction
by three straight lines and determine the area bound by the
smoothest contour (maximum angle between two lines) to
be figural. The imprecision of the T-junction localization is
accommodated to certain extent by setting up repulsion in a
zone out of certain radius of T-junctions(Fig.8). This way of
setting up repulsion not only is more robust, but also reflects
its spatially complementary role to attraction in grouping.
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Figure 7: Figure-ground segregation upon directional repulsion.
Left figure is the phase plot of � 	 e2_�`<g��R`>i shown in Fig.6. It is
readily separable into two groups by thresholding its angle withl � (the dashed line). Since phase advance means figural (Fig.3),
the upper group is the figure. On the right we show the results by
mapping this classification in the phase plane back to image pixels.
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Figure 8: Active repulsion zone. Repulsion is set up within a
banded zone aligned with the two arms of the T-junction. The
repulsion strength between one pixel in figure and the other in
ground falls off exponentially from the maximum of

�
at those

pairs adjacent to inner lines to the minimum around l at those
pairs adjacent to outer lines.

One problem with such depth cues is that they are very
sparse. It has been shown that with a few cues at stereo-
scopic depth boundary, we are able to perceive a surface
from random dot displays [8]. This cue sparsity suggests
that there is probably some kind of grouping happened be-
fore depth cues are actively incorporated. We follow the ap-
proach in [7] and find an oversegmentation by using region
growing on the first few eigenvectors of

� 9 :<; � DG:s; � . We
derive 9�: on these supernodes through the standard proce-
dure of summation. This lumping procedure not only saves
tremendous amount of computation, but also plays a con-
structive role in propagating sparse depth cues (Fig. 9).
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Figure 9: Figure-ground segregation. This image has two clear
T-junctions at the places where one orange occludes the other. We
add repulsion based on these two cues and its distribution at the
five locations marked on the image is given in the second row. The
first row also shows the eigenvectors and clustering from normal-
ized cuts on attraction alone. The last three rows shows the first
three eigenvectors of e2_�`<g�� `si . Their third columns are the an-
gles of eigenvectors. By thresholding these angles, in the phase
plane(row

� g � g �
, column

�
), we can clearly isolate three parts as

figural portions successively (row
� g � g �

, column 4). The circles
in column

�
corresponds to the white region in column

�
.

4. Conclusions

In this paper, we propose the necessity of repulsion
in characterizing pairwise relationships and generalize the
normalized cuts criterion to work on the dual mechanism of
attraction and repulsion. Through examples on point sets,
synthetic data and real images, we demonstrate that: 1) re-
pulsion complements attraction at different spatial ranges
and feature dimensions; 2) repulsion can encode dislikeness
to stop the transitivity of similarity cues; 3) sparse repulsion
cues can take place of massive and longer attraction; 4) with
directional repulsion, we get figure-ground segregation and
segmentation at the same time by partitioning generalized



eigenvectors in the phase plane.
As a representation of repulsion, the theoretical benefits

are far more than what enables us to segment images with
relative depth cues. By likening attraction and repulsion to
excitation and inhibition in biological vision systems, we
can draw much inspiration on how to use attraction and re-
pulsion for contrast enhancement and competition in group-
ing. By expanding the graph weight space from nonnegative
symmetrical matrices to Hermitian matrices, we can repre-
sent a larger class of constraint satisfaction problems, thus
many vision problems formulated as such might be solved
in this new framework.
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