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ABSTRACT

FINDING DOTS IN MICROSCOPIC IMAGES

Elena Bernardis

Stella Y. Xu and Jianbo Shi

Extracting and counting numerous ‘dots’, i.e. small round regions, in large micro-

scopic images is encountered in a wide range of medical and scientific research, from

studying human cells for cancer prognosis to counting silicon wafer defects for solar cells

improvement. Extracting dots is a challenging segmentation problem: faint boundaries

and low contrast between regions, large intensity variations within the regions and con-

joined clusters of dots make some dots hard to tease apart even upon close inspection.

Background clutter or a variety of different shapes in the background can increase the

challenge even further.

This thesis presents a constrained spectral graph partitioning framework to deal with

the fine granularity of these small structures together with the ongoing challenge of dealing

with the complexity associated with increasing image sizes. The segmentation of the entire

image is obtained from a set of patch segmentations which are independently derived but

subject to stitching constraints between neighboring patches. The constraints come from

mutual agreement analysis on patch segmentations from a previous round.

For each individual segmentation, we introduce our ‘Finding Dots’ model to popout

dots simultaneously as many disconnected components of one common foreground. We

note that may applications do not require precise segmentation and model this by viewing

dot boundaries as flexible regions of their own. By distancing ourselves from all tradi-

tional image segmentation methods that emphasize precision of boundary locations and

shapes, we obtain a solution that is paradoxically closer to the desired segmentation. The

features we use are a pixel-centric relational representation that encode local geometry.

We introduce two types of grouping cues: short-range attraction based on feature similar-

ity and long-range repulsion based on feature dissimilarity. Repulsion is at the basis of the

dots popout: it plays an active and complementary role to local attraction as it operates
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at a different (larger) spatial range. Our work is in fact the first successful application of

attraction and repulsion to real segmentation problems.

Finally, we exploit the complementary information given by region segmentation and

contour grouping to present another way to incorporate local shape information to seg-

ment objects with faint boundaries along regions of low contrast. The information of the

most salient region segments is combined together with the edge map obtained from the

responses of an oriented filter bank. This enables us to define a new contour flow on the

graph nodes, which captures region membership and enhances the flow in the low con-

trast or cluttered regions. The graph setup and our proposed region based normalization

give rise to a random walk that allows bifurcations at junctions arising between region

boundaries and favors long closed contours. Junctions become key routing points and the

resulting contours enclose globally significant regions.
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Chapter 1

Introduction

1.1 Motivation: Dots are Everywhere

Counting, measuring, and comparing numerous small structures in a large image is an of-

ten encountered task in many research fields based on the analysis of microscopic images,

from cancer to hearing research, from materials science to neuroscience, just to name a

few. Images can be very different in nature and visual appearance.

In Fig. 5.1, we illustrate a fluorescent image of a frog’s inner ear. Hair cells of the inner

ear transduce mechanical signals into electrical signals [VKC07] and their localization is

vital for medical research on hearing. Each hair bundle is composed of tens of stereocilia

organized in an organ-pipe-like formation. When extracting the larger bundles or the

15 pixels cilia from the frog’s hairbundles, one has to address complexity issues associate

with a 1600×1600 pixels image. Different structures can be seen in Fig. 1.2, a 1800×1800

pixels image of a drosophila’s fly brain region from electron microscopy (EM) data. While

some researchers are interested in the thin membranes to automatically reconstruct the

synaptic circuits in different brain regions of drosophila [TLM08], others, for example,

study the bloods vessels traversing the slices perpendicularly. Salient regions assume a

wider range of shapes in this image, and small round regions (e.g. vesicles) appear densely

packed together with thin and elongated structures (e.g. neurons and membranes).
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Figure 1.1: Many small structures in a large image. Stereocilia bundles of the frog’s inner
ear, displayed in a 1600×1600 pixels fluorescent image. Cells, or cilia, are approximately
15 pixels in diameter (Image Courtesy: Medha Pathak and David Corey at Harvard).
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Figure 1.2: Electron microscopy (EM) data from the medulla brain region of the
drosophila fly, 1800× 1800 pixels, depicting small and thin structures of different shapes
densely packed together (Image courtesy: Mitya Chklovskii, C Zhiyuan Lu, Rick Fetter,
Shinya Takemura and Ian Meinertzhagen at Janelia Farm Research Institute).
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Figure 1.3: Etch pit dislocations in silicon wafer in materials research. Defects are clus-
tered together and hard to tease apart even for humans (Image courtesy: Bertoni at MIT).

Very different in nature and visual appearance is Fig. 1.3: etch pit dislocations in a

1200×1600 pixels silicon wafer. Studying the density of these structural defects is crucial

for example in determining the efficiency of solar cells that are manufactured on silicon

wafer substrates [HBSB08, BPV+11]. Dislocations can be encountered isolated but are

usually conjoined and clustered together in what could resemble very compact strings of

beads. Separating them out, even for a human eye, requires very close inspection.

In all these images, the challenge of segmenting the numerous small structures is there-

fore two-fold: fine segmentation granularity when dealing with the size of the small seg-

ment and segmentation complexity when dealing with the size of the large image.
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Figure 1.4: An ideal isolated dot scenario. Even in the ideal case, an isolated dot presents
a blurry boundary. Delineating its boundary involves deciding where the intensity profile
should be broken: a higher threshold yields a tight boundary enclosing only the highest
intensity dot center and a lower threshold yields a region enclosing the entire dot.

1.2 Challenges: Segmenting Dots

In this thesis, we focus on extracting the small convex regions, which, given their visual

appearance, will be henceforth referred to as ‘dots’. While intuitively very simple, dots can

be complex from a segmentation point of view. In microscopic images, they usually appear

with blurry boundaries as shown in Fig. 1.4. Even in the simplest isolated case, precise

boundary location is subject to human interpretation. While simple intensity thresholding

could be sufficient for counting isolated dots in this ideal scenario, in practice, and as

illustrated in the figures of the previous section, this rarely occurs.

More common is the case of seeking a blurry dot embedded within a noisy back-

ground, as depicted in Fig. 1.5. In order to delineate a contour around the dot, one needs

to have some notion of the dot’s shape. Otherwise, with the lack of external guidance,

the segmentation easily results in leakages. The same effect results when dots are within

proximity of other dots, where the leakage could result in a segmentation clustering mul-

tiple dots together. While similar intensity adjacent faint dots are indeed a challenge from

the segmentation point of view, it is interesting to note that the presence of other dots can

actually be exploited as cues to define the boundaries between the dots. The intuition is

depicted in Fig. 1.6: the existence of the second dot prevents the region of the first one to
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Figure 1.5: A common dot scenario. In practice, intensity fluctuations are usually present,
a dot is often encountered embedded within a noisy background. In the absence of dot
shape information, the segmentation easily results in leakages.

Figure 1.6: Advantage of more dots. The presence of a second dot prevents the region
segment of the first dot from leaking into the possible ‘dot’ space of the second one,
showing that the occurrence of more dots can be actually beneficial.

leak into the possible ‘dot’ space of its neighbor.

Both the presence of local intensity fluctuations and the clustering of dots have been

the underlying reasons of failure of many segmentation approaches. The underlying chal-

lenges of typical adjacent dot pair scenarios are illustrated in Fig. 1.7: (1) isolated dots; (2)

salient adjacent dots; (3) faint adjacent dots; and (4) one faint dot adjacent to a salient one.

Although the watershed transform [Mey94] was initially developed as a non-parametric

method for contour extraction of bubbles in a radiologic plate [BL79], similar to the dots

in our images, its dependency on local intensity fluctuations oversegments the image in

the absence of seeds or markers (Fig. 1.7f). On the other hand, a global approach such as

k-means clustering (Fig. 1.7g) fails in the presence of adjacent dots of similar intensities,

6



a: separated dots b: salient dots c: faint dots d: faint & salient dots
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Figure 1.7: Dot scenarios. a) separated dots with faint boundaries ; b) a pair of salient
dots; c) a pair of faint dots; and d) a faint adjacent to a salient dot. e) Our method is able
to pick the contours of the dots independently of their size, intensity and geometry, while
f) watershed tends to oversegment and g) k-means clustering is unable to deal with the
intensity variation between adjacent dots.
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a: image b: normalized cuts c: our results

Figure 1.8: a) Robustness and efficiency for segmenting many small structures in large
images. a) Epithelial cells image. b) Normalized cuts (N-cuts) for 2, 10, 32, 64 regions is
meant to segment large regions in natural images. While robust in general, it fails for these
structures. c) Our method combines the robustness of normalized cuts while improving its
efficiency and is able to find all dots simultaneously in a two-way segmentation (gold).

even when, in case Fig. 1.7d, the two dots peak at different intensities.

Many methods have been proposed to overcome local noise fluctuation dependency.

Energy-driven methods involve the minimization of an energy function, and can be for-

mulated either on regions [MS89, GG90, ZY96] or contours, such as level set methods

[MS97] and active contours or snakes [XP98]. Despite a number of advances [ZSXZ10,

LXGF05], their main limitation remains a high sensitivity to initial seed selection and the

inability to tease clustered regions apart. Graph cuts methods [BVZ01] produce a label-

ing via a maximum flow computation between foreground and background seeds. Their

main drawback is a bias towards a ‘small cut’, hence resulting in boundaries that would

cut through thin protruded regions. Despite advances to address this issue (e.g. random

walker algorithm [Gra06b]), all these methods remain highly dependent of initial seeds

selection.

Independent of initial seeds, spectral-graph methods [SM00, Yu05] are prized for their

ability to grasp the large structural organization of an image from the global integration

of local cues. While this property is desired for understanding a real-scene image, it

unnecessarily handles a huge number of pixels in a large image, since segmenting cells
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in one region really should not be influenced by cells far from them. It also prevents

small structures from being segmented all at once, since a larger image size leads to larger

regions instead of numerous small ones given a fixed number of segments.

In this framework, pixels in the image become nodes of a weighted graph and parti-

tioning the image becomes dissecting the graph based on weighted connections between

nodes. Attraction cues are commonly used to encode affinity between pixels, but they are

not sufficient to extract the many small dots (as shown in Fig. 1.8b); they are based on

absolute intensity differences and do not encode geometrical information. Nevertheless, it

has the ability in general of cleaning up spurious edges and bridging gaps among missing

or faint contours. However, in order to find all the salient segments, oversegmentation

is needed. While in extracting larger shapes this leads to fragmentation along the salient

shape boundary, in the case of many small dots, it leads to an exceedingly large number

of segments.

Our goal is to segment all the dots within a spectral-graph partitioning framework.

With a new representation of the pairwise local cues, we encode local shape information

in the cues, and exploit the presence of other dots via the crucial role of repulsion, thus

allowing all dots to simultaneously popout from a common background (Fig. 1.8c).

1.3 Contributions and Outline

The main focus of this thesis is to extract dots in images by studying pairwise local cues

within a spectral-graph partitioning framework (Fig. 1.9). We maintain the robustness of

the spectral-graph approach while we successfully extract the numerous small structures

by encoding local image geometry in local pairwise cues and using repulsion cues to first

repel dots from each other and later to popout dots from their common background.

• Chapter 2 gives a historical overview of morphological segmentation approaches,

which deserve special mention given their computational efficiency and widespread

use for medical image analysis. We start with the original watershed formulation,
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Chap. 3: 
Finding Dots 

Separately 

Chap. 4: Finding Dots 
Popping Out Regions from 

Boundaries

Chap. 7: 
3D Dots

Chap. 6: 
Extracting 

Large Objects 
Region-Contour 

Stitching

Chap. 8: 
3D Texture Synthesis

Chap. 5: Pop Out Many 
Small and Thin Structures in a 

Very Large Image

Chap. 8: 
Finding Textons

Figure 1.9: Thesis contributions. This thesis focuses on extracting many small regions
from an image. Chap. 3 is preamble for dot segmentation, where dots are segmented one
by one in a traditional approach. Our main result are presented in the ‘Finding Dots’ model
(Chap. 4) and its extension to very large images (Chap. 5), where dots are extracted simul-
taneously as many disconnected components of one foreground segment. Applications to
textons and 3D texture synthesis are given in Chap. 8. While our work concentrates on
region segmentation, we also present region extraction from a contour grouping perspec-
tive: Chap. 6 focuses on extracting larger objects and Chap. 7 presents a contour grouping
approach for solving structural correspondence between dots in 3D space.

and conclude with a recent generalization of watersheds on graphs.

• Chapter 3 presents a spectral-graph partitioning approach to segment dots that is ro-

bust to local intensity fluctuation. We perform the segmentation on a stack of gamma

transformed versions of the original image and define local pairwise grouping cues

that encourage dots to stay together and background regions to divide apart. In our

first approach for segmenting dots, we follow the standard segmentation mindset:

the goal of the segmentation is to extract one segment for each dot present.

• Chapter 4 presents our core result for finding dots. By taking a new viewpoint for

segmenting these dot-like regions with faint boundaries, we simultaneously popout
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all dots in a two-way segmentation, as many disconnected components against one

common background. Our approach consists of a constrained spectral-graph formu-

lation featuring two types of grouping cues: short-range attraction based on feature

similarity and long-range repulsion based on feature dissimilarity. Traditionally

overlooked, repulsion cues play a significant role for segmenting this type of image.

To construct the local cues, we go beyond local intensity differences and instead

use a pixel-centric relational representation to encode local geometry. Our finding

dots approach is robust to local intensity fluctuations and automatically extracts all

regions of interest simultaneously.

• Chapter 5 addresses the challenges of finding many dots, as well as other small and

thin structures in a large image. Extracting these regions poses a dilemma in terms

of segmentation granularity due to fine structures and segmentation complexity due

to large image sizes. Our key observation is that for images of small repeated struc-

tures, only a certain amount of global information is needed; contrary to real-scene

images, these small structures in different parts of the image are independent of

each other. We propose a extension of our previous constrained spectral graph parti-

tioning framework to obtain a final segmentation from a set of patch segmentations,

each independently derived but subject to stitching constraints between neighbor-

ing patches. The final segmentation not only stitches solutions seamlessly along

overlapping patch borders, but also refines the segmentation in the interiors.

• Chapter 6 goes beyond extracting small dots. The goal is to extract region bound-

aries of larger objects with faint boundary problems from a contour grouping point

of view. Again within a spectral-graph framework, we exploit the complementary

information given by region segmentation and contour grouping to present another

way to incorporate local shape information to segment objects with faint boundaries

along regions of low contrast. Local cues for contour grouping now carry region
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information which allows bridging of gaps due to faint boundaries between con-

tours. Contour flows stitch oversegmented regions into large and salient ones which

become, therefore, less fragmented.

• Chapter 7 discusses a novel viewpoint to approach structural correspondence across

an image stack of dots in 3D space as solving a contour grouping problem. Finding

3D cellular tubes becomes finding closed contours. We derive grouping cues be-

tween cells in adjacent slices based on their ability to relate in the 3D space. Those

that form long 3D tubes become the most salient contours, while those of shorter

lengths become less salient. In a spectral graph-theoretical framework for contour

grouping, such a separation by the contour length is reflected in complex eigenvec-

tors of different magnitudes, from which these 3D tubes of varying lengths can thus

be extracted, obviating the need for identifying missing correspondences.

• Chapter 8 applies the dot model to extract real-scene textons, i.e. repeated textural

elements. By using the segmentation subject to stitching approach, we adaptively

estimate parameters in different parts of the image to account for viewing perspec-

tive and scale changes. We then present a very simple but effective approach for

synthesizing novel views of a given textured surface from a single photograph that

could benefit from prior textons extraction.

• Chapter 9 concludes with a summary of the work in this thesis as well as a discussion

on directions for future work.
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Chapter 2

A Watershed Moment in the Watershed

Transform: Review of Recent

Reformulations

The watershed transform has been extensively used in image segmentation and lies within

the theory of mathematical morphology. The image itself is considered a topographic

surface, i.e. as a relief function, and dividing lines, known as watershed lines, between re-

gions of interest are computed by following the ‘drop of water’ principle. The watershed

lines are a set of separating points from which a drop of water can flow down towards

at least two regional minima. These attraction zones, also called catchment basins can

provide an alternate interpretation of the watershed transform. The watershed lines be-

come the set of points that are equidistant to the minima of the relief function, where the

distanced traveled is usually in terms of a topographical distance, i.e. a spatial distance

between two points weighted by the gradient norm.

There are many possible relief functions, but it is a common choice to use the mor-

phological gradient (i.e. the image gradient followed by a small dilation and erosion)

instead of the original image.Since image gradient computation is very sensitive to inten-

sity fluctuations, applying the watershed transform in an automatic fashion directly on the
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a: stereocilia b: A549 cells c: HEK 293T cells d: silicon defects

Figure 2.1: Our algorithm (bottom row) is more accurate and robust than watershed ex-
amples (top row) at finding dots in 4 types of images, all with the same set of parameters.

morphological gradient image results in severe oversegmentation (Fig. 2.2). A solution is

to introduce initial seeds, or markers, either automatically or manually, in order to choose

the regions that would be sources for the flooding and drive the subsequent segmentation.

The segmentation can therefore be thought of as a combination of two steps: a first one

that relies on the watershed transform to extract an initial set of contours, and a second

step that relies of defining markers either manually or automatically in order in to refine

the contours of interest. Finding the markers represents the most interesting and challeng-

ing part, while the watershed transform step itself is done entirely automatically. When

the watershed transform step is done automatically, finding the markers turns out to be a

very challenging exercise. The traditional method of morphological segmentation (based

on watershed transform with automatic marker selection) fails in the instance where the

segmentation requires an unknown number of regions.

The watershed transform has various advantages: parameter independence, complete
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a: image b: watershed c: power watershed d: our result

Figure 2.2: Motivation behind Markers. The image gradient is highly sensitive to local
intensity fluctuations and gives rise to an elevated number of minima (b), i.e. results in
severe oversegmentation. Latest watershed methods using markers to drive the segmenta-
tion, such as power watersheds (c), highly improve the results but fall short when dealing
with these type of structures as low contrast dots are overseen. We are able to find all
desired dots in a two way segmentation with the same set of parameters.

edge detection with good localization, detection invariance to lighting, robustness to pres-

ence of contrasting regions and accompanied high edge sensitivity, ability to handle gaps

(e.g. in the absence of any edges between two markers, it finds the points equidistant be-

tween the two) and finally, computation can be efficiently implemented through flooding

of the topographical surface. Nevertheless, the original flooding algorithm, in which pixels

are individually labeled as the basins are enlarged, is inherently of local nature and hence

can be easily disrupted by local intensity fluctuations. As previously mentioned, adding

markers can overcome the oversegmentation problem, but it is generally used with inter-

active or semi-supervised segmentation. In order to deal with oversegmentation also in an

automatic way, different levels of flooding are associated with a hierarchical segmentation,

thus allowing the elimination of contours or combining regions of less importance.

The following sections show how the original local watershed segmentation method

can be shifted from a pixel level to a more global region level through the construction

of hierarchical structures [Mey05]. Both automatic and interactive segmentations benefit

from the hierarchical structures, as a priori information can be integrated in a variety of

ways by (i) controlling the rate of the flow in the automatic version or by (ii) using markers

to construct the hierarchy in the semi-supervised case. The watersnakes method [NWB03]

15



also relies on a hierarchical watershed segmentation. The initial segmentation is used to

improve the contours and is able to add priors on the contour smoothness that cannot

be integrated with the other approaches. Finally, the watershed cuts graph framework

[CBNC09] extends the definition of watersheds in terms of optimal minimum spanning

forests, and provides a faster linear-time algorithm to find the optimal cut. The method

can be used in conjunction with the hierarchies on region-adjacency graphs, instead of

at the pixel level, to accelerate the computation even further. The construction of optimal

spanning forest has since been used to unify other graph-based seeded image segmentation

methods, namely graph cuts [BVZ01], random walker [Gra06b] and geodesics [XS07,

CSB08], into a more generalized class of seeded watershed segmentations called power

watersheds [CGNT09], illustrated in Fig. 2.2.

2.1 Morphological Segmentation

The original watershed based on flooding [Mey94] can be viewed as a local process that

takes place at the pixel level. Almost thirty years after his original formulation, [Mey05]

explores the inherent hierarchical structure of the flooding idea to shift the viewpoint to a

more global region level. The author presents two main approaches in terms of floodings

and in terms of levelings to construct better hierarchies and extract the desired contours.

If f(x) gives the altitude of the relief at point x, the maximum erosion at ε(f)(x) is

given by the maximum altitude difference encountered between x and its neighbors.

Definition (Topographic distance). The topographic distance L(x, y) between two points

x and y is given by

L(x, y) = min
π∈[x;y]

n∑
i=2

µpi (2.1)

where π = 〈x = p1, p2, . . . , pn = y〉 are all possible paths between x and y and µ(x) =

f(x)− ε(f)(x) is the slope of steepest descent.

The lines of steepest descent are given by the geodesics of this distance. Let the image

be represented by a graph, in which image pixels correspond to graph nodes. The regional
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minimaM1,M2, . . . ,MK of the relief function f are K finite distinct connected sets of

points of a constant value of f , denoted altitude f(mi) for each regional minimumMi,

from which there is no ascending path to other points of strictly lower altitude. Construct-

ing the catchment basins for the minima will intuitively be a shortest path problem to find

the path of minimum weight between the markersMi and image points, alternatively.

Definition (Catchment Basin, Watershed Lines I). A catchment basin (CBi) of a regional

minimumMi of the set of pixels which are closer toMi than any other regional minimum

for the topographical distance. The watershed line (WS) of the function f is then defined

as the set of points not belonging to any catchment basins.

The most efficient implementation of watershed is based on the idea of flooding of

a topographical surface, where the relief is flooded from sources placed at each regional

minimum. In each region, lakes increase their level uniformly over the relief surface, until

two lakes meet. The pixels where this happens are the ones at the same topographical

distance from the two minima and hence are part of the watershed line.

Partitions and Hierarchies. Intuitively, finding the catchment basins will correspond

to finding a segmentation of the image, i.e. a partition of image space X into a family of

connected regions Ω1,Ω2, . . . ,ΩK with the following properties:

•
⋃K
i=1 Ωi = X

• ∀i 6= j : Ωi ∩ Ωj = ∅

The regions Ω1,Ω2, . . . ,ΩK are elements of P(X), the power set of X containing all

subsets of X . The properties state that if two regions do not have an empty intersection,

then they must be the same region and that the union of all regions equals the image space

itself. Partitions can be finer or coarser, and this is measured by an order relation between

them, with increasing level flooding. As regions merge together, multiple finer regions

get included within larger coarser ones and further causing the partitions to get nested.

The collection of the partitions at the different levels of refinement forms a hierarchy of
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Figure 2.3: Levelings. The function g is a leveling of the function f , with λ = 0. Image
taken from [Mey05] .

partitions, which can be formally described as building a classification tree with special

properties:

Definition (Hierarchy). A hierarchyH is a collection of subsets of P(X) together with an

inclusion order relation, such that if A,U, V ∈ H then A ⊂ U A ⊂ V =⇒ U ⊂ V or

V ⊂ U , and in addition the following axioms hold:

• If A,B ∈ H then A ∩B ∈ {A,B, ∅} and

• ∀A ∈ H, ∪{B ∈ H|B ⊂ A;B 6= A} = {A, ∅}.

The different levels of flooding are characterized by a stratification index: an index

function σ : A → R which is strictly increasing with the inclusion order and therefore can

be used to extract partitions of a desired level of coarseness by thresholding the hierarchy.

To construct hierarchical structure, we need to add a notion of order and distance

between the partitions within the hierarchy. The ultrametric distance is interesting because

the triangle inequality is replaced by a stronger ultrametric inequality so that the sets of

ultrametric balls of increasing radii λ produce a family of nested partitions of the image

domain. The radii of the balls give the stratification index for the family of partitions

which is strictly increasing with the inclusion order and the resulting structure is called a
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stratified hierarchy of partitions. The hierarchy of the catchment basins associated to the

family of floodings is in fact equivalent to the definition of an ultrametric distance.

Hierarchies based on Levelings. Leveling can be seen as preprocessing filters for

the segmentation to enlarge homogeneous regions by symmetrically erasing peaks and

flooding valleys. The definition can be understood in terms of quasi-flat zones, i.e. con-

nected pixels with the same intensity value that satisfy the following symmetrical relation:

|f(x)− f(y)| ≤ λ for all neighboring pixels x, y and maximal slope λ. A leveling is then

given by:

Definition (Leveling). A function g is a leveling of a function f if and only if for any

neighboring pixels x and y we have g(x) > g(y)+λ =⇒ f(x) ≥ g(x) and g(y) ≥ f(y).

Levelings can be generated starting from any marker function g. The result (Fig. 2.3)

retains the initial characteristics of the marker function and the remaining contours will

coincide with the function f simultaneously restoring boundary sharpness. The parameter

λ equals the maximal slope of the quasi-flat zone, so that for λ = 0 the smooth zones

become flat. Since levelings enlarge quasi-flat zones and enlarge or suppress minima

and maxima without introducing new ones, either approach can be used to construct a

hierarchy. If extrema are chosen as markers to construct the hierarchy, the merging of

the regions can be controlled by the vanishing of the extrema between one level and the

next. Alternatively, the quasi-flat zones of a family of increasing levelings itself forms a

hierarchy. Quasi-flat zones can result for either large regions associated to homogenous

zones, or very small ones where the gradient is high. The hierarchy is obtained by first

constructing a fine partition without the transition zones and then merging the finer level

regions to obtain coarser ones.

Hierarchies based on Floodings. Floodings are a special type of leveling in which

the function g also has to satisfy g ≥ f :

Definition (Flooding). A function g is a flooding of a function f if and only if g ≥ f and

for neighboring pixels x and y we have g(x) > g(y) =⇒ g(x) = f(x).
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Figure 2.4: Tailored synchronous flooding. Four different levels are presented where red
indicated that the minimum marker has been slowed down by a factor of 5. The resulting
segmentation into 3 regions is shown together with the analogous segmentation in the case
of no source being slowed down. Image taken from [Mey05].

Following the analogy of a flood, for each type of flooding increase, there is a corre-

sponding hierarchy of catchment basins. The rate of the flooding can be controlled in a

variety of ways: flooding can depend on height, area or volume of the regions; Fig. 2.4

illustrates an example of tailored flooding to favor some regions over others by reducing

the rate of flow associated to specific minima, which for example can be defined as initial

markers. These three approaches can be grouped by the concept of fuzzy markers. To each

marker an associated value 0 ≥ λ ≥ 1 can be associated to control the rate of the flooding

at that particular source. Using fuzzy markers allows to close the gap between marker

driven segmentation and unsupervised multiscale segmentation.

Segmenting with hierarchies. A hierarchical approach to the segmentation, based on

the watershed and markers, allows to inject various types of information in the segmen-

tation process, through the markers themselves or through adaptations of the hierarchy

depending on the specific application. The hierarchy construction based on floodings
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can be done by one flooding of the gradient image and hence is very fast. The rate of the

flooding can be adjusted to account for different properties (e.g., size, contrast or a balance

between the two) also in different parts of the image, making the construction versatile for

a variety of applications. This method fails in the presence of thin regions as the gradient

image will wash out the information of the original structure instead of producing a min-

imal region. In these cases, a hierarchy based on levelings is better. Thin structures are

detected as flat zones, so the hierarchies constructed on the quasi-flat zones of levelings

will capture their fine details. Finally, the original simpler hierarchy construction based

on merging regions together from an initial fine partition can be used in many different

scenarios, since a variety of similarity measures can be used and merging criteria can even

change with the coarsening of the partition.

2.2 Energy-Driven Watershed Segmentation: Watersnakes

Although the selection of the regional minima from markers allows for better partitioning

and an approach to overcome oversegmentation, it does not deal with the smoothness of

the watershed lines. Within the original watershed setup, no a priori information can be

given to the system to improve on the boundary smoothness of the watershed lines. With

the introduction of watersnakes, [NWB03] show how to integrate these priors by repre-

senting watershed segmentation as the result of the minimization of an energy function.

Let Li(x) is the corresponding topographical distance transform Li(x) = L(x,Mi) =

infy∈Mi
L(x, y) between point x and the regional minimum Mi introduced in Eqn. 2.1

(recall that the topographic distance is the spatial distance between two points weighted

by the gradient norm of f , which in a continuous domain can be expressed as L(x, y) =

infγ∈[x;y] |∇f(γ(s))|). We can then redefine:

Definition (Catchment basin, Watershed Lines II). A catchment basin (CBi) of a regional

minimumMi of the set of pixels which are closer toMi than any other regional minimum
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Figure 2.5: Watershed lines, catchment basins and markers, illustrated in 1D and 2D (im-
age taken from [NWB03]). The 1D (left) illustrates the definition in terms of the altitude
αi of each regional minimumMi and of the corresponding topological distance transform
Li. It can be noted that within each catchment basin CBi, f(mi) + Li(x) equals f(x).
The 2D depiction (right) shows the partition of the image into regions Ω1, . . . ,ΩK , each
containing one and only one catchment basin CBi derived from a regional minimumMi.

for the topographical distance L(x, y):

CBi = {x ∈ X |∀j 6= i, 1 ≤ j ≤ K : f(mi) + Li(x) ≤ f(mj) + Lj(x)}. (2.2)

The watershed line (WS) of the function f is then defined as the set of points not belonging

to any catchment basins:

WS(f) = X\
⋃
i

CB(Mi). (2.3)

As shown in the 1D illustration in 2.5, within the catchment basin CBi, f(mi) +

Li(x) equals f(x), and beyond the catchment basin, it becomes the reflection of f(x) with

respect to the horizontal line passing through the watershed point.

Criterion (Watershed segmentation). A partition of the space X into regions Ω1, . . . ,ΩK ,

that additionally satisfies Int(Ωi) = Ωi, where Int(R) denotes the interior of the set R
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and the bar it’s closure. If the following property is satisfied:

∀x ∈ Ωi = αi + Li(x) = min
1≤j≤K

{αj + Lj(x)}. (2.4)

where αi corresponds to f(mi), the altitude of the function f on the corresponding re-

gional minimum, and Li(x) is the corresponding topographical distance transform. The

partition is a watershed segmentation for the function f .

The additional partition property ensures that each boundary segment separates at least

two different regions. Each watershed partition thus constructed contains one and only one

catchment basin and the borders of the regions lie within possibly thick watershed lines

as shown in Fig. 2.5. Interestingly, the function f(x) can be fully reconstructed from the

distances to the regional minima, i.e. f(x) = min1≤i≤K{f(mi) + Li(x)}

The main idea of the paper is based on the following theorem, which connects the

definition of watershed (Eqn. 2.4) with a possible energy function:

Theorem. : A partition Ω1,Ω2, . . . ,ΩK minimizes the following function:

E(Ω1,Ω2, . . . ,ΩK) =
K∑
i=1

∫∫
Ωi

{αi + Li(x)}dx (2.5)

if and only if it is a watershed segmentation.

With this definition of watershed, it is possible to add a boundary length to the energy

function, hence introducing a smoothness prior to the region boundary:

Criterion (Watersnakes segmentation). The watersnakes segmentation is obtained by min-

imizing the following function:

E(Ω1,Ω2, . . . ,ΩK) =
K∑
i=1

(∫∫
Ωi

{αi + Li(x)}dx+ β

∫
∂Ωi

dS
)

(2.6)

where β is a weighting coefficient.

This energy function falls within the region-based minimization approaches. In order

to better understand the connection to energy-minimization methods we compare Eqn. 2.6

23



with the energy term used in the region competition method [?]. In [?], the first term is

replaced by − logP (Ix|ai)dx, the probability density of the measured intensity of pixel

x given the assumption that x ∈ Ωi and ai is a parameter for this distribution. In both

methods, this term measures homogeneity within the region Ωi, but the lack of additional

parameters in the Watersnakes formulation allows for a much simpler minimization pro-

cedure eliminating parameter upgrading steps. Each of the regions Ω1,Ω2, . . . ,ΩK in the

partition corresponds to a unique region in the original watershed criterion. The added

boundary term allows smoothing of the boundaries of these regions.

Proposed Solution. There are two methods to implement the watersnakes minimiza-

tion energy problem (Eqn. 2.6) in the discrete domain. The first, based on a region growing

algorithm and a second, based on energy discretization. Although very intuitive, the re-

gion growing method has a few shortcomings. If implemented with level sets [2.6], it is

only efficient in the presence of two markers. On the other hand, if implemented by as-

signing marker labels to the boundary pixels as the region is growing at some speed given

by a compression force determined by the local relief function geometry, the approach

smoothes boundaries in many practical applications and does not guarantee a solution.

[NWB03] present a method based on energy discretization. A local contour length

estimate is needed in order to calculate by how much the region perimeter increases when

a pixel is added to the region’s border using only local information. The perimeter of Ωi

is estimated using a Chamfer neighborhood:∫
Ωi

dS =
∑
x∈Ωi

[w4n4(x) + w8n8(x) + wknk(x)], (2.7)

where w’s are the weighting coefficients (estimated empirically) and n4(x), n8(x), nk(x)

are the number of pixels in the four, eight and ‘knight-move’ connected neighborhood of

x but outside of Ωi.

In order to compute the partition of the image on a discrete grid, the continuous water-

snakes energy function given in Eqn. 2.6 now becomes:

E(Ωi,Ω2, . . . ,ΩK) =
K∑
i=1

∑
x∈Ωi

{αi + Li(x) + β(w4n4(x) + w8n8(x) + wknk(x))} (2.8)
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where we have substituted the local contour estimate found in Eqn. 2.7 for the smoothing

term, which is non-zero only near the region boundary. The algorithm is divided into a two

stage process to minimize Eqn. 2.8: a first stage for the original watershed segmentation

(shown in algorithm box 1) and a second stage (algorithm box 2) in order to integrate the

watersnakes smoothing step.

Watersnakes shows an improvement over region-based energy minimization methods;

even if edges between two markers are faint, the resulting contours will still lie between the

markers, since the latter are given in the initial segmentation. Watersnakes are therefore

capable of filling out the gaps between broken edges as they try to minimize the distance

to both regional minima. In addition, as the watershed line always corresponds to the

most significant edges between the markers, watersnakes improve the original watershed

lines to smoothen out the contour, without converging to weaker edges and the process is

entirely parameter independent.

Algorithm 1 Stage 1: Watershed Segmentation

1. Compute K distance transforms Li(x)
2. Initialize the regions Ωi from the regional minimaMi

3. From unassigned pixels on the outer boundary of the regions, select one with minimal
value αi+Li(x), where i is the label of the adjacent region, and assign the selected pixel
to the region Ωi.
4. Iterate Step 3 until all pixels are assigned.

2.3 Watersheds on Graphs: Watershed Cuts

The intuition behind the drop of water principle of the original watershed algorithm is for-

malized in the work of [CBNC09]. Let the image space X be represented by a graph

G(V,E), where vertices V correspond to pixels in an image and edges E to weights

between the pixels. Instead of assigning altitudes of the relief map using values at the

nodes, the values associated with the edges are used. The altitude f then becomes a map

f ∈ (F ) : E → Z, so that for an edge u between pixels x and y, f(u) is the altitude of
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Algorithm 2 Stage 2: Watersnakes Iterated Smoothing
1. Start with a low-resolution level by sub-sampling the label image as well as the K
distance transforms.
for each finer partition in the hierarchy, do

2. For every boundary pixel compute the stability according to the change of energy:

∆E(x, i→ j) = (αi − αj) + (Lj(x)− Li(x))

+2β
{
w4[n4(x, i)− n4(x, j)] + w8[n8(x, i)− n8(x, j)] + wk[nk(x, i)− nk(x, j)]

}
.

3. Select the boundary pixel with lowest ∆E and perform the reassignment when
this value is negative.
4. Recompute the stability of the pixel ∆E(x, i→ j).
5. Iterate steps 3 and 4 until no further reassignment is possible.

end for

the function F . Each regional minimaMi forms then a subgraph X of G and is called the

minimum with respect to the function f as it satisfies:

• X is connected

• k is the altitude of any edge of X and

• the altitude of any edge adjacent to X is strictly greater than k.

The notion of flooding from initial sources in order to enlarge the catchment basins until

the watershed lines are reached, can be translated to finding the extension of the subgraphs

given by the minima. To appreciate the equivalence of the catchment basins and the drop

of water principle on the lines separating them, the their basic definitions are reformulated

in terms of graph.

Definition (Watershed Cut, Watershed Lines III). Let S be a subgraph of E and M(f)

denote the union of the vertex sets and edge sets of all the minima of f . S satisfies the ‘drop

of water’ principle, and is therefore defined as a watershed cut of f , if given an extension

S ofM(f), for any u = {x0, y0} ∈ S, there exist two descending paths π1 = 〈x0, . . . , xn〉

and π2 = 〈y0, . . . , ym〉 in S such that xn and ym are vertices of two distinct minima of f

and f(u) ≥ f({x0, x1}) whenever π1 is not trivial, and similarly for π2.
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From this definition it follows that if S is a watershed of f , then S is also a cut for

M(f). The catchment basins intuitively ‘extend’ these minima. In graph terminology,

the seeds or minima are a subgraph X whose extensions become the catchment basins. A

subgraph Y is an extension of X if both X and Y are non-empty subgraphs of G, X ⊂ Y

and if any connected component of Y contains exactly one connected component of X .

When the extension has reached its maximum size, a graph cut is obtained:

Definition (Basin Cut, Catchment Basins III). Let S be a subgraph of E, S is a basin

cut of the function f if, from each point of the vertex set V to the minima M(f) there

exist a path of of steepest descent for f in the graph induced by S. Any component of S a

catchment basin of f .

Finally, one last definition is needed before presenting the proof of optimality and

consistency of watersheds on graphs. Intuitively, a forest relative to a subgraph X is an

extension Y of X such that any cycle in Y is also a cycle in X . Y is called a spanning

forest relative to X if its the vertex set V (Y ) equals the vertex set V of the graph itself. A

relative minimum spanning forest is then defined as:

Definition (Relative minimum spanning forest). Let X, Y be subgraphs of G. Y is the

minimum spanning forest (MSF) relative to X for the function f on G if Y is a spanning

forest relative to X and if the sum of its edges weights is less than or equal to the weight

of any other spanning forest relative to X . In this case, Y is also a relative MSF.

Consistency and optimality of watersheds. First, [CBNC09] prove that watersheds

can be equally defined in terms of the catchment basins, where the construction of the

basins can be viewed as (i) a shortest-path problem, to find the optimal path between the

regional minimumMi, i.e. the marker, and an image point or (ii) in terms of the dividing

lines between these basins (through the drop of water principle):

Theorem (Consistency). Let S be a subset of the edges E. S is a basin cut if and only if

S is a watershed cut of F .
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Second, [CBNC09] establish the optimality of the watershed cut, i.e. by showing the

equivalence of a cut that satisfies the ‘drop of water’ principle with the cuts induced by

the minimum spanning forests (MSF) relative to the minima of a map:

Theorem (Optimality). Let S be a subset of the edges E. The set S is an MSF-cut for the

minima of the relief functionM(F ) if and only if S is a watershed cut of F .

In other words, the graph X is a MSF relative to the minima of the relief function

M(F ) if and only if, for any x ∈ V there exist a path in X from x to M(F ) which is

also a path of steepest descent for F . This result is interesting because, by proving that a

relative MSF can be constructed from any minimum spanning tree, it reduces watershed

computation to finding a minimum spanning tree in the graph. Classical algorithms such

as Kruskal’s or Prim’s can be used to find the segmentation in quasi-linear complexity.

Proposed solution. In order to compute the watershed segmentation, [CBNC09] go

beyond computation of a minimum spanning tree by introducing an algorithm that runs in

linear time with respect to the number of edges E of the original graph. This is achieved

by computing the flow cut of F in a series of depth-first search and breadth-first search

along the the paths of steepest descent, to iteratively extract streams (i.e. a set of vertices

L such that for any two points x, y on L there exist a path of steepest descent between

these two points with respect to the map F ). Given a graph G(V,E) with an altitude

function f , the algorithm computes a flow map ψ of f by extracting and labeling streams.

It is worth noting that this algorithm does not take into account control of the watershed

lines on plateau regions, which is left to be taken care of in a preprocessing step. But

it does always guarantee convergence, even on plateaus in the graph (namely, connected

subgraphs with constant altitude), since all nodes are eventually explored.

Depending on the application, the altitude f can be defined in various ways. Common

choices would be the image gradient f(x, y) = |I(x) − I(y)| where u ∈ E is the edge

between pixels x and y. The classical watershed problem, defines the edge weights be-

tween pixels x and y by the map f(x, y) = min{I(x), I(y)} where I(x) is the grey-scale

intensity value of the image at point x. Segmentation into k regions can be achieved by
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starting with a function f that contains exactly k minima, which is achieved through a

preprocessing filtering step that progressively fills in the gaps that are considered unim-

portant. As mentioned in the paper by [Mey05], the choice can depend on various factors;

here the importance is given based on the area of each candidate region, i.e. the number

of vertices of the subgraph that represents this region.

2.4 Generalization of Watersheds: Power Watersheds

Thanks to the consistency and optimality proven in the previous section by [CBNC09],

watershed lines can be computed in quasi-linear time by finding the optimal spanning

forests relative to the minima of the relief map. The work presented in [CGNT09] extends

the class of watersheds on graphs to a new family of seeded watersheds, thus providing

a general energy-minimization approach for computing watershed lines while linking wa-

tershed algorithms to commonly used seeded segmentation methods such as graph cuts

[BVZ01], random walker [Gra06b] and shortest path optimization [XS07, CSB08].

Originally for interactive image segmentation, graph cuts produce a labeling by find-

ing a minimum cut via a maximum flow computation between foreground and background

seeds that are treated as sink/sources for a max/min flow computation. It is biased towards

a ‘small cut’, yielding boundaries that cut through thin protruded regions. To avoid leak-

ing and the shrinking bias present in graph cuts, the random walker algorithm, formulated

on a weighted graph, determines the labels for the unseeded nodes by assigning pixels

to seed for which it is most likely to send a random walker, viewable also as the seeds

for which there is a minimum diffusion distance, as a semi-supervised transduction learn-

ing algorithm [DAK+08] or as an interactive version of Normalized Cuts [SM00]. In

this framework, edge weights are treated as probabilities that the particles travel first to

foreground or background seeds. These probabilities can be computed analytically with-

out any random walk simulation, but the quality of the segmentation boundary depends

more strongly than in the graph cuts scenario on original seed location. Shortest-paths (or
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geodesics) assign pixels a foreground label if there is a shortest path between the pixels

to another foreground seed rather than to any background seed; paths are weighted simi-

larly to graph cuts and to random walker approaches; speed and shrinking bias advantage;

stronger dependence on seed locations when compared to random walker; leakages more

likely through weak boundaries (since a good single path is sufficient for connectivity).

The first segmentation algorithm linking graph cuts and random walker was presented

in [SG07]. The image is viewed as a weighted graph G = (V,E), with vertices v ∈ V and

edges e ∈ E, with non-negative, real weights wij on edges eij linking vertices vi and vj .

The weights set are set as standard gaussian weighting function wij = exp(−β(Ii− Ij)2).

Given foreground F and background B seeds, a generalized segmentation is given by:

min
x

∑
eij∈E

(wij|xi − xj|)q +
∑
vi

(wFixi)
q +

∑
vi

(wBi |xi − 1|)q (2.9)

such that x(F ) = 1, x(B) = 0 and segmentation output si = 1 if xi >= 1/2, zero

otherwise. wBi and wFi are the unary weights penalizing foreground and background

affinity at node vi. It has been showed in [SG07] that when q = 1 gives graph cuts, when

q = 2 gives random walker and as q →∞ it gives shortest paths.

The new segmentation algorithm which includes power watersheds [CGNT09] arises

as a generalization of Eqn. 2.9. Recall from the previous section that regions of the

watershed can be seen as connected components of an extension relative to the regional

minima, separated by a set of edges by the ‘drop of water principle’. Watershed lines

become a cut relative to the regional minima of the weight function, which satisfy the

drop of water principle and can be computed by viewing them on a graph induced by a

shortest-path forest rooted in the minima.

Generalizing the theory of [SG07] to include also the optimal spanning forest al-

gorithm, therefore provides the unification of watersheds with the energy-minimization

methods of graph cuts, random walker and shortest-paths. This new family of segmenta-

tion algorithms is obtained by separating the exponent between the weights and adding an

additional parameter on the weights and variables in the generalized energy function.

30



Criterion. (Power Watersheds). A new family of segmentation algorithms is obtained by

minimizing the following energy criterion:

min
x

∑
eij∈E

wpij|xi − xj|q +
∑
vi

wpFix
q
i +

∑
vi

wpBi |xi − 1|q (2.10)

Letting p → ∞ and varying q yields ‘power watersheds’, a family of previously unex-

plored segmentation models.

When p is a small finite value can interpret q = 1, 2 as before; when p and q converge

together towards infinite solution can be computed with shortest path. When q = 1 and

p→∞ the minimum is given by a maximum spanning forest algorithm, i.e. as the power

of the weights increases to infinity, the graph cuts algorithm produces a segmentation cor-

responding to the maximum spanning forest. Power watersheds arise by letting p → ∞

and varying q. By associating p = β, above some value of the parameter beta, the ex-

pensive max-flow computation can be replaced with an efficient maximal spanning forest

computation, regardless of q.

Proposed solution. The algorithm proposed to minimize the energy term for any value

of q when p→∞ is solved by a maximum spanning forest starting from the initial seeds

and treating the plateau regions separately (in order to retain binary labeling). The al-

gorithm is based on Kruskal’s or Prim’s algorithm to compute a maximum spanning tree

but instead of a tree a forest is computed and a q-cut is performed on the plateaus. Ad-

ditionally, unary terms are incorporated into the usual watershed segmentation algorithm

as binary terms connected to phantom seeds. To retain the speed of the MSF algorithm,

q = 2 in the experiments. Optimality of the power watershed is achieved if seeds are the

only maxima in the image. Hence, it is achieved by applying a geodesic reconstruction

on the gradients before applying the algorithm. Plateau regions (where weights are equal)

are dealt with separately. Given the usual fixed size of plateaus, the algorithm runs in

quasi-linear time making it comparable to standard watershed algorithms. Thanks to this

approach, power watersheds can be easy to implement and resolve the issues of leakages

and degeneracy of the solution on the plateaus of the original watershed framework.
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Chapter 3

Robust Segmentation by Cutting across

A Stack of Gamma Transformed Images

3.1 Introduction

Hair cells of the inner ear transduce mechanical signals into electrical signals [VKC07].

Each hair bundle is composed of tens of stereocilia organized in an organ-pipe-like for-

mation of increasing height (Fig. 3.1). Automatic segmentation of these stereocilia in

their fluorescent images is vital for medical research on hearing. Segmentation of such

medical images appears to be governed by global intensity levels, yet imaging noise and

local intensity fluctuation present considerable challenges (illustrated in Fig. 3.2).

We present a spectral-graph partitioning approach that is robust to local intensity fluc-

tuation and can extract several regions of interest without any user initialization. We en-

code the impact of high and low intensities, which we will refer to as peaks and valleys,

in local pairwise grouping cues that encourage peak regions to stay together and valley re-

gions to divide apart. It is the job of global integration to decide where region boundaries

should be.

Our idea is that regions of an image appear stable with respect to the gamma trans-

formation of the image, while cues in each gamma transformed version reflect an ever
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a: 3D view of hair cells b: 2D fluorescent slices & their segmentations

Figure 3.1: Stereocilia segmentation. a) Hair cells are composed of tens of stereocilia
organized in an organ-pipe-like formation of increasing height. b) Fluorescent images
(Row 1) and their segmentations (our results, Row 2) at multiple heights show the cross
sections (e.g. A,B,C in a) of individual stereocilia (marked by colored dots).

changing balance between peaks and valleys, as peaks keep shrinking and valleys enlarg-

ing with an increasing gamma. The desired segmentation must be the global consensus of

local cues from a stack of these gamma images.

Illustrated in Fig. 3.3, given an image I , we first create several gamma transformed

versions: In = Iγn . For each In, we define two complementary local pairwise grouping

cues: a short-range attraction between nearby pixels with similar intensities and a long-

range repulsion between distant pixels with similar intensities but separated by valleys.

The former occurs most likely for pixels belonging to the same stereocilium and the latter

for pixels belonging to adjacent stereocilia. Large repulsion demands single boundaries to

occur somewhere between two distant pixels, whereas large attraction discourages the for-

mation of boundaries between two nearby pixels, preventing the oversegmentation prob-

lems in Fig. 3.2. We establish rough local pixel alignment between gamma images and

project cues derived from each In to the original image I through pixel correspondences.

We seek a graph cut across the cue stack which respects both attraction and repulsion,

producing segmentation Xk for the original image I , with a granularity determined by the

number of eigenvectors k.
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Figure 3.2: Local intensity fluctuation presents considerable challenges in medical image
segmentation. A) Fluctuation at boundaries weakens the separation between two intensity
peaks. B) Fluctuation inside regions tends to break up an otherwise well defined intensity
peak. Both cases cause oversegmentations in watershed approaches. The solid black line
plots the 1D intensity profile along the line connecting the two pixels in the inset, which
shows the image in a marked window on the left. The dotted green lines mark the desired
boundaries between intensity peaks.
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Figure 3.3: Method Overview. Given an image, we build a stack of its gamma transformed
versions, i.e., In = Iγn . For each gamma image In, we derive pairwise attraction An and
repulsion Rn between pixels. We compute pixel correspondences Cn between adjacent
gamma layers, and project cues at each layer to the reference layer I1: An→1 and Rn→1.
Cutting across the aligned cue stack produces segmentation Xk that is invariant to gamma
transformations, k indicating the granularity of segmentation.

3.2 Constrained Cuts with Attraction and Repulsion

We formulate the segmentation in a spectral graph framework. We collect pairwise cues

and seek the solution that optimizes a global criterion. We consider pairwise cues of three

kinds: attraction A, repulsion R, and partial grouping constraints U . These cues have

been studied separately in [YS04, YS01]. We combine them for the first time in a single

framework.

3.2.1 Graph Representation

In spectral graph methods, an image I is represented by a weighted graph G(V,E,W ),

where V denotes the set of nodes, E the set of edges connecting the nodes, and W the

weights attached to edges. A pixel then becomes a node in the graph, each pairwise

grouping cue becomes a weight between two nodes, and image segmentation becomes a

graph node partitioning problem: We seek k partitions of node set V such that V = ∪kl=1Vl

and Vi ∩ Vj = ∅, ∀i 6= j.
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3.2.2 Criterion with Attraction and Repulsion

A good segmentation should have strong within-group attraction and between-group re-

pulsion, and weak between-group attraction and within-group repulsion.

Characterizing this intuition with linkratio allows us to achieve both objectives simul-

taneously [YS03]. linkratioL of two node sets (P,Q) measures the fraction of connections

from P to Q among all the connections P has:

linkratio L(P,Q;W ) =
C(P,Q;W )

C(P, V ;W )
(3.1)

connections C(P,Q;W ) =
∑

i∈P,j∈Q

W (i, j) (3.2)

In particular, we have L(P, P ;W ) +L(P, V \P ;W ) = 1, i.e. maximizing a within-group

linkratio is equivalent to minimizing its between-group linkratio.

We seek to maximize linkratios from within-group attraction and between-group re-

pulsion, combined linearly according to their total degree of connections:

max ε =
k∑
l=1

αL(Vl, Vl;A) + (1− α)L(Vl, V \Vl;R) (3.3)

where α =
C(Vl, V ;A)

C(Vl, V ;A) + C(Vl, V ;R)
(3.4)

α measures the total attraction, and 1− α the total repulsion.

3.2.3 Partial Grouping Constraints

We represent the partitioning by partition indicator X = [X1, . . . , Xk] where Xl is an

N × 1 binary indicator for partition Vl, Xl(i) = 1 if pixel i ∈ Vl, and 0 otherwise,

l = 1, . . . , k. N is the number of pixels in the image.

We consider partial grouping constraints which require pixels a and b to belong in the

same region, i.e. X(a) = X(b). The collection of c such constraints result in UTX = 0,

where U is an N × c matrix, and each column of U has only two non-zero numbers, +1

and −1.
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3.2.4 Optimal Solution

Our criterion ε with pairwise attraction A and pairwise repulsion R, subject to grouping

constraints U can be written in a compact matrix form:

maximize ε(X) =
k∑
l=1

XT
l WXl

XTDXl

(3.5)

subject to X ∈ {0, 1}N×k, X1k = 1N (3.6)

UTX = 0 (3.7)

where W = A−R +DR (3.8)

D = DA +DR (3.9)

where 1n denotes the n× 1 vector of all 1’s, and DW = Diag(W1N) denotes the N ×N

degree matrix of weights W , with the diagonal containing the total degree of connections

for each node.

Relaxing the binary constraints, we can solve this optimization problem [YS04] with

the eigenvectors of HD−1WH , where H = I − D−1U(UTD−1U)−1UT , and then dis-

cretize the eigenvectors to obtain the final segmentation [YS03].

3.3 Pairwise Grouping Cues from Image Intensities

The success of global integration depends on the local cues that feed into it. We define

a short-range attraction that pulls pixels towards region centers, a long-range repulsion

that pushes pixels away from region boundaries, and a partial grouping constraints that

force peripheral background pixels to belong together. With pixel correspondence between

gamma images, we obtain a cue stack for the original image.
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Figure 3.4: Pairwise attraction and repulsion. a) Our attraction is adaptive to the local
intensity range within each neighborhood N (i), so that A(i′, j′) ≈ A(i, j), enhancing the
discrimination of two nearby similar peaks. b) Our repulsion is strongest for nearby peaks
and gets reduced as two pixels approach the inbetween valley: R(i, j′′) > R(i, j′). mij is
the minimal intensity level between pixels i and j.

3.3.1 Short-Range Attraction within Individual Peaks

Attraction A(i, j) between pixels i and j encodes local intensity similarity. The straight-

forward definition

A(i, j) = e
−
|Ii−Ij |

2

2σ2a (3.10)

requires fine parameter tuning and tends to merge nearby peaks of similar intensities. We

introduce a new definition that is asymmetrical between two pixels and acts to pull pixels

towards intensity peaks.

For pixels i and j, A(i, j) is inversely proportional to the the maximal intensity dif-

ference Mij between i and any pixel on the line ij, with sensitivity regulated by local

intensity range δ(i) in i’s neighborhood N (i):

A(i, j) = e
−

maxt∈line(i,j) |Ii−It|
2

2δ2
i
·σ2a (3.11)

δi = max
t∈N (i)

It − min
t∈N (i)

It (3.12)

We chooseN (i) to be slightly larger than a stereocilium so that δi is estimated between the

peak and surrounding valleys (Fig. 3.4a). With adaptive scaling by local intensity range
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δi, A(i, j) effectively enhances attraction within weak peaks and allows a single parameter

setting for σa to work on a variety of images.

3.3.2 Long-Range Repulsion between Peaks

Adjacent peaks provide a strong cue as to where the boundaries should lie. This cue

is encoded by long-range repulsion. Intuitively, two pixels of similar intensity should

belong to different peaks if they are separated by a valley. We define repulsion R(i, j)

between pixels i and j to be proportional to the difference with the minimal intensity mij

encountered on the line ij:

R(i, j) = 1− e−
min(|Ii−mij |,|Ij−mij |)

σr (3.13)

mij = min
t∈line(i,j)

It. (3.14)

The farther away the pixels are from the valley, the larger the intensity difference with the

minimum, and the larger the repulsion (Fig. 3.4b).

3.3.3 Pixel Correspondence and Cue Projection

With each gamma transformation, while peaks remain peaks and valleys remain valleys,

their regions of influence change: Peaks shrink and valleys expand; pixels belonging to

one peak region could become part of the background. Local grouping cues derived from

gamma images consequently do not agree with each other. We establish rough pixel cor-

respondence and project cues on individual gamma image back to the original image.

Let An(i, j) be the affinity (i.e. attraction) between pixels i and j at gamma image In.

We follow the approach in [Yu05] by computing the corresponding pixel location Cn(i) as

the center of mass of i’s affinity field and composing them recursively to obtained aligned
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γ0 γ1 γ2 γ0,γ1,γ2

Figure 3.5: Better segmentation is obtained by cutting across the gamma stack instead of
a single gamma image. Left shows images and segmentations based on individual γ’s in
4 marked windows. Right shows the segmentations based on all 3 γ’s.

cue stack:

An→1(i, j) = An(Cn(i), Cn(j)) (3.15)

Rn→1(i, j) = Rn(Cn(i), Cn(j)) (3.16)

Cn(i) =
∑
j∈N(i)

An(i, j)Cn−1(i) (3.17)

where C1(i) is pixel i’s location in the original image I .

Cutting across the aligned cue stack for the original image is equivalent to cutting a

single graph with the following attraction and repulsion:

A =
∑
n

D−1
A,nAn→1 + An→1D

−1
A,n (3.18)

R =
∑
n

D−1
R,nRn→1 +Rn→1D

−1
R,n. (3.19)

where DA,n and DR,n are the degree matrices for An and Rn respectively.
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3.3.4 Partial Grouping Constraints

We obtain a crude background mask by intensity thresholding on the original image. This

mask is translated into our graph cuts framework as partial grouping constraints where

two pixels in the background must belong together in the final segmentation. We form the

constraint matrix U from the collections of these pairwise grouping constraints.

3.3.5 Algorithm

Given image I , we compute a segmentation with the following procedure:

1. Build a gamma image stack where In = Iγn;

2. For each gamma image In,

(i) compute attraction An and repulsion Rn,

(ii) compute pixel correspondence Cn,

(iii) compute An→1, Rn→1 by projecting An, Rn to the original image I;

3. Compute total attraction A and repulsion R by collapsing the stack;

4. Form partial grouping constraints U from a background mask ;

5. Solve the eigenvectors of weights W = A−R +DR with constraints U ;

6. Obtain a discrete segmentation from the eigenvectors.

3.4 Experiments

We implement our algorithm in MATLAB. The same set of parameters are used for all

our images: γ = {1, 2, 4}, σa = 0.3, σr = 2σa, window sizes 8 and 16 for attraction and

repulsion respectively. We choose the number of eigenvectors k according to the expected

number of hair bundles in the images.
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a: image b: watershed c: k = 80 d: k = 100 e: k = 120 f: cells only

Figure 3.6: Coarse-to-fine stereocilia segmentations. For each image (Column a), we
compare our results (Columns c-e) with watershed (Column b) when the number of eigen-
vectors k increases. Extracted stereocilia (Column f) show that our method is robust to
local intensity fluctuation, can discover weak peaks, and have precise boundaries.

Fig. 3.5 shows that better segmentation is achieved by integrating cues over the entire

gamma stack instead of an individual gamma image. Single peaks originally faint or

without clear boundaries are enhanced in gamma transformed images. However, with

an increasing gamma, valleys are widened and boundaries become less precise. Cutting

across the gamma image stack allows segmenting out weak peaks while retaining precise

boundaries throughout the image.

Fig. 3.6 shows our coarse to fine segmentations. When the number of eigenvectors k

is small, our segmentations resemble the watershed results. However, our segmentations

42



Figure 3.7: Our method works equally well on noisy and low-contrast images. k = 40.
Rows 1-3 show images, watershed results and our results respectively.

are not disrupted by local intensity fluctuation and do not cut through salient peaks. When

k increases, our segmentations locate each peak with tighter delineation. Most noticeably,

our method is able to successfully segment weak peaks without utilizing the near regularity

of stereocilia layout. Fig. 3.7 shows additional results on images of poor imaging quality.

We measure the goodness of segmentation by scoring it with respect to the ground-

truth center locations of stereocilia. Let disk(i) denote a disk of some fixed radius

throughout the haircell bundles, located at stereocilium center i.

Let segment(i) denote the segment of maximal overlap with disk(i). Our score is a

number between 0 and 1, measuring the extent of overlap between the two:

score(i) =
disk(i) ∩ segment(i)

disk(i) ∪ segment(i)
. (3.20)

The higher the score, the more precise the segmentation. As the number of eigenvectors

increases, our segmentations capture a more precise shape of individual stereocilia. Fig.

3.8 shows with an image example as well as statistics that our method overall scores higher

than watershed.

Our method segments the background into multiple valley regions, which are of no
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interest to medical researchers. By requiring the mean intensity in the region center to be

higher than the periphery, we get rid of valleys and automatically extract the stereocilia,

as shown in Fig. 3.6f.

3.5 Summary

The segmentation of medical images appears to be governed by the global intensity level,

yet local intensity fluctuation poses considerable challenges to both local methods such as

watershed and global methods such as level sets.

We develop a spectral graph-theoretic method which finds the best segmentation on

every gamma transformed version of the original image. The local grouping cues at each

gamma image include short-range intensity similarity cues that pull pixels towards stere-

ocilia centers, and long-range intensity difference cues that push pixels away from stere-

ocilia boundaries. When they are projected back to the original image, we can seek the

optimal graph cuts across the aligned cue stack which maximize within-group attraction

and between-group repulsion. The near-global optimal solution can be found efficiently

using eigendecomposition.

Our method has only a few parameters and requires little tuning. We obtain accurate

and robust results on a variety of low-contrast images with the same set of parameters,

showing the advantage of cutting across the entire gamma stack instead of the original

image or any gamma image alone.

The segmentation issues we investigate in this paper are not restricted to stereocilia

images. Our approach of making a global decision based on two types of local cues at

different spatial ranges provides a robust and efficient alternative to watershed or level set

methods in many medical image applications.
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a: watershed b: our method at k = 120

c: distribution of scores

Figure 3.8: Segmentation scores with respect to ground-truth stereocilia centers. These
center locations are marked by colored dots. Each number indicates the score of a par-
ticular segment that contains a stereocilium center. a and b show a score example for
watershed and our method. c shows the distribution of scores from all the images. Our
method has a higher score than watershed overall.
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Chapter 4

Finding Dots: Segmentation as Popping

out Regions from Boundaries

4.1 Introduction

Finding dots, i.e. small round regions, in an image is a frequently encountered task in

medical and scientific research. The dots could be microscopic views of cochlea haircells,

epithelial A549 cells, HEK293T embryonic kidney cells or silicon wafer defects (Fig. 4.1).

Counting these dots, locating them, and measuring their intensity are important for under-

standing hearing mechanism, cancer development, or material properties. Given the large

number of dots in each image and the large number of images in these applications, it is

essential to have a computer vision algorithm which extracts these dots automatically.

Finding dots is a challenging segmentation problem. These microscopic images often

have poor imaging quality (Fig. 4.1a), large intensity variation (Fig. 4.1b-c), and extensive

occlusion and conjunction between dots (Fig. 4.1c-d). Even to the human eye, while fuzzy

haircells do pop out, low-contrast A549 and kidney cells need scrutinizing, and conjoined

silicon pits require thinking to separate them. Our goal is to develop an algorithm that is

capable of finding dots in all these types of images.
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a: stereocilia b: A549 cells c: HEK 293T cells d: silicon defects

Figure 4.1: Finding dots in an image is a challenging segmentation problem when the im-
age has poor imaging quality, large intensity variation, occlusion and conjunction between
dots. These dots could be: a) Haircells in hearing research, courtesy of Pathak and Corey
at Harvard University, b,c) Hoechst stained nuclei of A549 cells and HEK293T embryonic
kidney cells in cancer research, courtesy of Sosale at UPenn, d) Etch pit dislocations of
silicon wafer in material research, courtesy of Bertoni at MIT.

Image segmentation is conventionally formulated as separating regions of homoge-

neous features such as intensity and texture [Gra06b, SM00, Gra06a, MS97]. However,

the difference of features in adjacent regions is not always large enough to separate them

completely, creating gaps along region boundaries. A common remedy for completing

the gaps is to include in the formulation a prior term which favours a segmentation with

smooth boundaries [Mey94, LM98, XP98, ZSS07, WSC09].

All these traditional formulations of segmentation view regions as solid entities occu-

pied by pixels, and boundaries as abstract lines taking up zero space in-between.

While precise region delineation is useful for image manipulation (Fig. 4.2a) or object

recognition and grasping, it is not necessary for our dot finding (Fig. 4.2b) and many other

applications. Where boundaries should be located is flexible, so long as the core of each
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a: precise cutout b: flexible boundary

Figure 4.2: Precise boundary delineation is useful for image manipulation but not nec-
essary for our dot finding applications. a) Image cutout (Li et al, Lazy Snapping, SIG-
GRAPH 2004) is an editing tool which produces a segmentation that follows the facial
contour precisely. b) Finding haircells only requires locating the core of dots where the
boundaries between dots could be flexible.

dot is retained in the region.

If we view boundaries not as regions’ dependent existing only in the 1D space, but

rather as regions of their own in the 2D space, we can effectively pop out all the dots

simultaneously from a two-way region segmentation (Fig. 4.3).

That boundaries form regions of their own has long been observed in [MBLS01],

but only as a hazard to real image segmentation which needs to be actively suppressed

[MFM04]. The idea is that while edges themselves are good features for intensity seg-

mentation, only their statistics over small windows are meaningful features for texture

segmentation. These window statistics prevent edges from breaking up an area of the

same texture, but they also tend to break up an area of the same intensity: Boundaries

between black and white areas certainly have different statistics from either the black area

or the white area, and thus become regions of their own.

The features that make our dot boundaries regions of their own are not statistics which

characterize local textural appearance, but patterns which characterize local geometry.
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Figure 4.3: Finding dots overview. Given image I , we first compute a flow field peak
direction vector p which characterizes the geometry of local intensity distributions: A
pixel inside a dot (intensity peak) becomes a sink, and a pixel outside the dots (intensity
valley) becomes a source. We then compute (green) attraction A between nearby pixels
based on similarity of a convexity feature vector derived from p, and (red) repulsion R
between distant pixels based on dissimilarity. A two-way node partitioning based on both
attraction and repulsion pops out all the dots from their backgrounds simultaneously as
one foreground region with many disconnected components.

Most evident in Fig. 4.1d, what allows us to break a long tube into a string of small dots

is local convexity created by a few dents. However, instead of measuring local convexity

with curvature numbers, we describe it using a distributed relational representation, i.e.,

each pixel has a pixel-centric flow field, which is a sink for pixels inside the dots (intensity

peaks) and a source for pixels outside the dots (Fig. 4.3F ).

We formulate our algorithm in the spectral graph cuts framework [SM00], where pix-

els are nodes of a weighted graph, and finding dots becomes dissecting the graph based on

weighted connections between nodes. When segmentation is viewed as finding regions of

homogeneous features, the weights are affinitive. They characterize how much two pixels

attract each other to the same group, a larger weight for larger feature similarity. When

segmentation is viewed as popping out a collection of core regions from their boundary

regions, the weights also need to be divisive. They characterize how much core pixels

and boundary pixels repel each other, a larger weight for larger feature dissimilarity. If

attraction binds pixels locally both inside and outside the dots, repulsion actively binds all
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dots to form one group against their common boundaries (Fig. 4.3A,R). The best segmen-

tation cuts off connections between pixels of minimal attraction and maximal repulsion,

popping out all the dots in a two-way region segmentation (Fig. 4.3X).

Our method works better than other segmentation algorithms on finding dots in a va-

riety of microscopic images, and it works well on real images, all with the same set of

parameters.

4.2 Finding Dots with Spectral Graph Cuts

We formulate the dot finding problem as a weighted graph partitioning problem, where

nodes denote pixels, weights attached to edges connecting two nodes encode grouping

cues between the pixels, and finding dots becomes a node bipartitioning problem: pixels

inside the dots form one group, and pixels between dots form the other group.

Given an image I , we first compute the feature vector F at each pixel, which is a

flow field with sinks and sources characterizing intensity peaks and valleys respectively,

then establish short-range attraction A with feature similarity, and long-range repulsion

with feature dissimilarity, and finally use normalized cuts with attraction and repulsion to

obtain a two-way segmentation [YS01, YS03].

4.2.1 Pixel-Centric Convexity Feature Vector F

Since dots are small round regions of bright pixels, we first attach to each pixel a peak

direction vector p(i) that indicates where pixels of higher intensity are located in its local

convex vicinity. LetL(i) denote the 2D location of pixel i in the image, and |·| theL2 norm

of a vector. Consider pixel i and pixel a in its neighbourhood N(i). If a can be reached in

a straight line from i with nondecreasing intensity, a is a higher intensity pixel in the same

convex region. p(i) computes the average direction from neighbour a’s, weighted by the

50



total nondecreasing intensity T (i, a) along the straight line from i to a:

p(i) ∝
∑
a∈N(i)

T (i, a)(L(a)− L(i)), |p(i)| = 1 (4.1)

T (i, a) =
∑

I(m1)≤I(mt)≤...≤I(mk)
m1m2...mk=line(i,a)

I(mt) (4.2)

p(i) can be regarded as pixel i’s local estimation of the direction towards the dot it belongs

to. Pixels inside a dot have p(i)’s pointing towards the center, whereas those between dots

have p(i)’s pointing away from it (Fig. 4.4a).

While the vector field {p(a) : a ∈ N(i)} characterizes where pixel i is in the convex

shape of a dot, all the directions need to be normalized with respect to p(i) so that pixels

(i’s) at an equal distance to the center of a dot have similar vector fields no matter how

they are oriented towards the dot. We define the pixel-centric feature vector F as:

F (i, a) =< p(i), p(a) > (4.3)

where <,> denotes vector inner product. F (i, :) shows how much i’s neighbours agree

with i on the direction the dot lies in, with p(i) itself factored out. Pixels inside a dot have

mostly positive values (Fig. 4.4b,c), whereas pixels between dots have both positive and

negative values (Fig. 4.4d).

4.2.2 Grouping Cues: Attraction A and Repulsion R

Since the feature vector F is a direction vector, we use the inner product between two

feature vectors to measure feature similarity S. The larger the similarity, the larger the

attraction, and the smaller the repulsion.

S(i, j) =
< F (i, :), F (j, :) >

|F (i, :)| · |F (j, :)|
, j ∈ N(i) (4.4)

A(i, j) = e−
1−S(i,j)

σ , |L(j)− L(i)| ≤ rA (4.5)

R(i, j) =
1− S(i, j)

2
, |L(j)− L(i)| ≤ rR (4.6)
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a: peak direction vector p b: F (i, :)

c: F (j, :)

d: F (k, :)

Figure 4.4: Pixel-centric convexity feature vector F . a) Peak vector p at each pixel points
towards the center of dot the pixel belongs to. The dot centers and boundaries are sinks
and sources in the vector field. b,c,d) Feature vector F at pixels i, j, k marked in a). F (i)
indicates how much each neighbour agrees with pixel i on p(i), i.e., where it thinks the
peak direction is. i and j have different local p fields, but both are inside a dot and have
similar F fields which are far different from k, a pixel outside any dot.
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a: attraction A and repulsion R over feature similarity S

b: A(i, :) c: A(m, :) d: A(k, :)

e: R(i, :) f: R(m, :) g: R(k, :)

Figure 4.5: Short-range attraction A based on feature similarity S and long-range repul-
sion R based on feature dissimilarity 1 − S. a) Attraction A is proportional to S and
defined for nearby pixels, whereas R is inversely proportional to S and defined only for
distant pixels. b,c,d) A and e,f,g) R at pixels i,m, k marked in Fig. 4.4a. Both i and m
repel k, causing them to group together.

53



Note that rA � rR, i.e., attraction only operates at a short range to pull pixels in the same

dot together, whereas repulsion only operates at a long range to push pixels completely

inside dots and pixels completely outside dots apart.

4.2.3 Graph Cuts with Attraction and Repulsion

Given attraction A and repulsion R between pixels, we segment the image using the nor-

malized cuts criterion [YS01]:

max ε =
within-group A

total degree of A
+

between-group R
total degree of R

This criterion can then be written in a matrix form using n× 2 partition matrix X , where

X(i, g) = 1 if pixel i belongs to group g, g = 1, 2. n is the total number of pixels. Let

1n denote n× 1 vectors of 1’s, and DW = Diag(W1n) the diagonal degree matrix for any

n× n weight matrix W .

maximize ε(X) =
2∑
g=1

XT
g WXg

XT
g DXg

(4.7)

subject to X ∈ {0, 1}n×2, X12 = 1n (4.8)

UTX = 0 (4.9)

where W = A−R +DR, (4.10)

D = DA +DR (4.11)

U is an n × c constraint matrix: If pixels a and b are known to belong in the same region

(e.g. from a background mask), we have one constraint X(a, :) = X(b, :), i.e. U(a, k) =

1, U(b, k) = −1 as the k-th constraint in matrix U .

We follow the solution procedure developed in [YS04, YS03] and use their code online

to find a near-global optimum to this constrained normalized cuts problem.
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4.3 Experiments

We implement our algorithm in MATLAB and apply it to 4 sets of microscopic images

as well as real scene images. Each microscopic dataset has 60 images, provided by our

collaborators and considered representative of their images.

The dot diameter ranges from 8 to 20 pixels. The same set of parameters are used for

all our results: σ = 0.75, rA = 4, rB = 12. We threshold R to remove repulsion cues

from intensity peaks: R(i, j) = 0, if
∑

j F (i, j) < −10. No constraints (Eqn. 4.9) are

used except for dislocation images, where a background mask from intensity thresholding

is applied to avoid extracting unwanted lighter shapes.

While our space complexity is more than the traditional normalized cuts with attraction

cues only, our time complexity is often less. In particular, since we are not treating one

dot as one region [BY09], but treating all the dots as a single region, we get all the dots in

a two-way segmentation.

We compare our method to 4 other algorithms (Fig. 4.6).

Meanshift: We use a local implementation [BC04]. It enhances intensity differences,

but it is sensitive to scale choices and cannot break up dots based on convexity.

Watershed: We use MATLAB’s built-in function in two different ways: Watershed is

directly applied to either the intensity image or the gradient magnitudes (with radius

5) of the image, in the same procedure as MATLAB’s demo on Marker-Controlled

Watershed Segmentation. While the standard watershed results tend to be over-

fragmented in the presence of local intensity fluctuation, the gradient-based water-

shed results tend to be under-segmented and miss many dots of weak contrast. We

drop the latter from further evaluation.

Oriented watershed: We use the implementation provided by [AMFM09]. It relies on

Pb [MFM04] to clean up watershed lines and has been shown to work well on most

natural images. The inadequacy of Pb on our images causes it to have worse results

than the standard watershed.
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image meanshift watershed grad-ws oriented-ws isoperim our method

Figure 4.6: Comparison of results on the 4 representative images in Fig. 4.1. Meanshift
cannot break up conjoined dots. Standard watershed tends to oversegment, and gradient-
based watershed misses many weak dots. Oriented watershed does not produce closed
regions. Isoperimetric segmentation tends to under-segment the image. While all these
methods require some post-processing, our method produces isolated dots all at once in a
two-way region segmentation.

Isoperimetric: We use the implementation provided by [Gra06a]. It recursively par-

titions an image into two regions depending on initial seeds automatically chosen

from pixels of minimal intensity. Its results are under-segmented and lack sensitivity

to local convexity.

While these algorithms are not designed to find dots, their results demonstrate the diffi-

culty and issues involved in segmenting dots. Unlike any of these algorithms, our method

does not require post-processing and produces all the isolated dots at once in all these

images (Fig. 4.8, Fig. 4.9).

We benchmark these results against human labeled dot centers. Given m ground-truth

dot centers and n segment centers for an image, let Dij be the Euclidean distance between
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Figure 4.7: Precision-recall statistics for meanshift, watershed, isoperimetric, and our
method on 4 categories of microscopic images. The oriented watershed shown in Fig. 4.6
is not included as it often does not produce closed dot regions. Our method (red round
dots, upper right corner) has better precision and recall overall.

dot i and segment j. If it is less than a certain radius threshold ρ, we consider (i, j) a

matched detection. We define

precision =
#{j : minmi=1 Dij ≤ ρ}

n
(4.12)

recall =
#{i : minnj=1Dij ≤ ρ}

m
(4.13)

The precision measures how many true dots are picked out in the segmentation, and the

recall measures how many segmented dots are in fact true dots. Fig. 4.7 shows that our

method performs much better than these other methods. The data points with perfect

precision and lower recall rates correspond to haircell images. Our method fails to detect

some extremely blurry haircells in the periphery which usually only experts can pick out.
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haircells segmented dots A549 cells segmented dots

Figure 4.8: Our sample results on haircells and A549 cells. We can segment out clear or
fuzzy dots in a near-regular or irregular layout.
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HEK293T cells segmented dots dislocations segmented dots

Figure 4.9: Our sample results on HEK293T kidney cells and silicon wafer dislocation
Images. We can segment out dots independent of the size of their intensity contrast and
even in the presence of partial occlusion and dot conjunction.
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4.4 Summary

Finding dots is a challenging image segmentation task which naturally arises in a diversity

of applications. We develop a spectral graph partitioning algorithm that pops out all the

dots in a single two-way region segmentation. There are three key components to our

algorithm.

The first is viewing dot boundaries as flexible regions of their own. Many applica-

tions do not require precise segmentation, neither does human vision. There is, however, a

deeper computational reason. When too much emphasis is put on the precision of bound-

ary locations and shapes (as in all traditional image segmentation methods), it is hard for

the desired segmentation to become the dominant optimum of any criterion. When that

requirement is relaxed, paradoxically the solution is closer to the desired segmentation.

The second is to encode geometry (convexity in particular) in a pixel-centric relational

representation. While such a representation is coarse for each pixel, its distributive nature

is capable of encoding subtle differences in local convexity with the ensemble of pixels.

An extension of our work is to handle more complicated geometry other than convexity.

The third component is to introduce grouping cues of both attraction and repulsion na-

tures. While repulsion from feature dissimilarity seems to encode the same attraction cue

of feature similarity, as it operates at a larger spatial range, it plays an active and comple-

mentary role to local attraction. Popout would not be possible without repulsion. While

the mechanism of attraction and repulsion in spectral graph theory has been elucidated in

[YS01], its utility has never been demonstrated on any visual tasks. Our work is in fact

the first successful application of attraction and repulsion to real segmentation problems.

While our method is designed to pop out all the dots in a microscopic image based

entirely on the convexity flow field feature, Fig. 4.10 shows that it works equally well on

natural scene images. The dots there are small repetitive patterns, or textons, in frontal,

or slanted, tilted, and perspective views (further explored in Chap. 8). These interesting

results open up new possibilities for shape from texture algorithms.
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images our results: dot boundaries and regions

Figure 4.10: Finding dots in natural scene images with the same set of parameters used
for microscopic images. These dots, i.e. small repetitive patterns, are useful for recovering
shape from texture.
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Chapter 5

Pop Out Many Small Structures from a

Very Large Microscopic Image

5.1 Introduction

There is often a need in medical research to count, measure, and compare numerous small

structures in a large image. Recall from Chap. 1 the examples in Fig. 5.1, which can

be very different in nature and visual appearance. They could be from a frog’s inner ear

(left) or from a drosophila’s fly brain region from electron microscopy (EM) data (right).

On the left, regions of interest could be the larger scale haircell bundles or the smaller

scale individual stereocilia that compose them. While cluster intensities vary across the

image, cell intensities peak towards the center of each bundle. On the right, salient regions

assume a larger range of shapes and they are densely packed in the image together with

new elongated structures. Whether one wants to extract a 15 pixel cilia from the frog’s

hairbundles or a similar size vesicle in the fly’s brain, one has to address complexity issues

associate with a 1600×1600 pixels image. In both images, the regions of interest are very

small when compared to the large image size.

As we have shown in the previous chapters, finding these small structures is a challeng-

ing segmentation problem on its own. Figures 5.2 and Fig. 5.3 displays images from two
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Figure 5.1: Many small structures in a large image. Left: stereocilia bundles of the
frog’s inner ear, 1600 × 1600 pixels (Image Courtesy: Medha Pathak and David Corey
at Harvard). Right: electron microscopy (EM) data from the medulla brain region of the
drosophila fly, 1800 × 1800 pixels (Image courtesy: Mitya Chklovskii, C Zhiyuan Lu,
Rick Fetter, Shinya Takemura and Ian Meinertzhagen at Janelia Farm Research Institute).
Cells are approximately 15 pixels in diameter.

human pathology image datasets in cancer research. The appearance variety of these cells

illustrate common problems encountered when dealing with these small regions. Fig. 5.2

displays images of epithelial and embryonic cells, with faint boundaries, large intensity

variations and occlusions. Fig. 5.3 display histopathological images of tumor-like lesions

with textured cells and non-homogenous backgrounds.

The challenge of segmenting many small structures in a very large image is therefore

two-fold: fine segmentation granularity when dealing with the size of the small segment

and segmentation complexity when dealing with the size of the large image.
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Figure 5.2: Segmenting cells challenges. Row 1: Epithelial A549 and embryonic kidney
HEK293T cells featuring faint boundaries, varying dot intensities and occlusions. Row
2: More HEK cells of different convex geometries often appearing as cell clusters (Image
courtesy: Nisha Sosale at UPenn).

5.1.1 Challenge 1: Segmenting many small structures

Segmentation of medical images often appears to be governed by global intensity levels,

yet imaging noise and local intensity fluctuation present considerable challenges. Faint re-

gions, similar intensities between adjacent regions and conjoined cells make these images

challenging even for a human eye.

Many segmentation approaches for these type of image are based on mathematical

morphology and energy-driven methods. In mathematical morphology, the watershed

transform [Mey94] is applied to extract an initial set of contours, and markers or seeds are

used to refine the contours of interest. The watershed transform is computationally very

efficient [Mey05], but finding seeds automatically is application-driven and can be very

challenging. Without proper seeds, oversegmentation results, since watershed is easily
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Figure 5.3: Segmenting cells challenges. Row 1: Histopathology images depicting tumor-
like lesions: cells of various sizes and textures in spleen cell lymphoma. Row 2: spleen
tumor cells metastatic melanoma, clusters of glands in ovarian cells and clear cell cribri-
form hyperplasia from prostate illustrating cells on non-homogenous backgrounds (Image
courtesy: www.webpathology.com).

disrupted by local intensity fluctuations. Less prone to local noise fluctuations, energy-

driven methods involve the minimization of an energy function formulated either on re-

gions [MS89, GG90, ZY96] or contours, such as snakes [XP98] and level set methods

[MS97]. These algorithms though are computationally costly and they depend on initial

seed choices. Various techniques have been proposed to combine the benefits of water-

shed and energy-driven methods, e.g. level sets for watershed [THW+07] or watersnakes

[NWvdBW03] that allows to inject smoothness priors in the watershed formulation.

Graph cuts methods have also been employed to overcome the limitations of watershed

algorithms, e.g. segmenting a single connected component with isoperimetric graph par-

titioning [Gra06a]. In [CBNC09], watersheds are formulated within a graph setup. Their

theory together with a larger family of segmentation methods including random walker

[Gra06b] are generalized in the theory of power watersheds [CGNT09]. The latter though

also depend on initial seeds and are thus not tailored for images with many small conjoined
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a: image b: our results

c: watershed d: k-means e: normalized cuts

Figure 5.4: Efficiency versus robustness dilemma for segmenting small regions in a large
image. a,b) Image of epithelial cells and our resulting cell segmentation (gold). c,d) Ef-
ficient two-way segmentations by watershed, k-means. Watershed oversegments in the
presence of local intensity fluctuations while k-means is unable to distinguish cells of
similar intensities apart. e) Normalized cuts (N-cuts) for 2, 4, 32, 64 regions is meant to
segment large regions in natural images. While robust in general, it fails for these struc-
tures.

regions with faint boundaries and no clear minima.

5.1.2 Challenge 2: Dealing with a large image

Segmentation methods such as watershed and k-means clustering are efficient but unable

to deal with large intensity variation (Fig. 5.4c,d). On the other hand, spectral graph

partitioning methods [SM00, Yu05] are prized for their ability to grasp the large structural

organization of an image from the global integration of local cues. While this property is

desired for understanding a real-scene image, it unnecessarily handles a huge number of
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pixels in a large image, since segmenting cells in one region really should not be influenced

by cells far from them. It also prevents small structures from being segmented all at once

(Fig. 5.4e), since a larger image size leads to larger regions instead of numerous small

ones given a fixed number of segments.

The two main approaches to reduce complexity, coarse-to-fine and multiresolution

segmentations [Yu05, FH04, CBS05, BZ03, GSBB03, HPB97, Yu04], are not suitable

for this task. The former approach speeds up the segmentation by initializing a finer

segmentation with the results of a coarser one, whereas the latter integrates features at

multiple scales to yield a better segmentation. Since small structures are not present in

either coarser-scale segmentations or coarser-scale features, there is no help to be gained

from either approach.

5.1.3 Our Solution: Popping out many small structures in a large

image

We propose a spectral-graph framework which scales effectively with image size without

losing the fine granularity of small segments (as shown in Fig. 5.4b). Our segmentation

algorithm is outlined in Fig. 5.5.

We focus on segmenting small convex regions (e.g. cells), which we will refer to as

dots. Each image is divided into patches and each is segmented independently. Pixels

in the image become nodes of a weighted graph, and finding dots becomes dissecting

the graph based on weighted connections between nodes. Whereas attraction cues are

commonly used to encode affinity between pixels, it is the crucial role of repulsion cues

that allows popping out all dots simultaneously from a common background. In order to

compute these local cues, unlike real-scene image segmentation [SM00], we do not use

single edge features (e.g. large intensity gradients along region boundaries) to delineate

regions. Instead, we use distributive local gradient fields to characterize geometrical dis-

tinction between region cores in the foreground and region peripheries in the background.
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a: input image

c: stitching constraints

e: output segmentation

b: independent segmentation d: constrained segmentation

BackgroundCells

Figure 5.5: Segmentation subject to stitching constraints algorithm overview. Segmenting
numerous small structures in a large input image (a) is performed as a series of indepen-
dent patch segmentation subject to stitching constraints between neighboring patches. The
constraints (c) are derived from mutual agreement analysis on adjacent patch segmenta-
tions from a previous round. Segmentations between neighboring patches are marked in
blue, green, or maroon, if 1, 2, or more than 3 patches agree. Stitching constrains cells
(yellow circles) and background (purple squares) to group within each type respectively.
The constrained segmentation (d, in gold) improves the initial segmentation (b, in cyan)
and can be seamlessly combined to obtain the final output (e).
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Similar ideas have been used in [SKRV99] to detect critical points in images with topo-

logical numbers, and in the mean shift-generated displacement vectors used in [DTCW01]

to guide active contour models.

The individual segmentations are then used to establish the agreement between the

patches, which provide pairwise long-range stitching constraints to be respected by each

patch. We run the segmentation again on each patch, but now subject to these pairwise

constraints on its pixels. The segmentation can be solved efficiently as a constrained

eigenvalue problem [YS04]. Since these segmentations have mutual agreement in the

overlapping areas, their individual solutions can be collapsed into one segmentation on

the entire large image. Segmentation subject to stitching is more than simple stitching.

Constraints in the overlapping regions propagate through in the optimization process to

also improve the interior segmentation.

This chapter presents the extension [BY11] of our theoretical model on segmentation

subject to stitching constraints [BY10b] and finding dots [BY10a], presented in Chap.

4. In Section 5.2, we present a constrained spectral-graph partitioning framework that

naturally integrates the stitching constraints with the fine segmentation granularity of the

individual patches. In section 5.3, we present a detailed analysis of the parameters used in

the algorithm and how they can be adaptively chosen without user interaction. The benefits

of stitching are illustrated both on dot structures and on more complex geometries. Finally,

we present results and performance comparisons with both general and state-of-the-art

domain specific segmentation algorithms, and conclude with Section 5.4.

5.2 Spectral Graph Partitioning Subject to Stitching Con-

straints

We formulate the image segmentation problem as a constrained graph partitioning prob-

lem over a set of overlapping patches. Each patch is represented by a weighted graph,

where nodes denote pixels and weights attached to edges connecting two nodes encode
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grouping cues between the pixels. Segmenting small structures becomes a two-way node

partitioning problem: pixels inside cells form a foreground node set, and those outside

form the other background node set.

5.2.1 Segmentation with Stitching: Constrained Graph Partitioning

We first formulate the constrained spectral graph two-segmentation criterion ε [YS01] in

terms of pairwise grouping cues encoding short-range (with-group) attraction A and long-

range (between-group) repulsion R between background and cells:

max ε =
within-group attraction

total degree of attraction
+

between-group repulsion
total degree of repulsion

(5.1)

For each image patch I , we encode the grouping cues in an n × n weight matrix W ,

where n is the total number of pixels, to facilitate the foreground-background segmenta-

tion. Let:

W = A−R +DR (5.2)

D = DA +DR (5.3)

where DM = Diag(M1n) is the diagonal degree matrix for a n × n matrix M . Note that

W could have both positive and negative weights. If we let X denote an n × 2 binary

partition matrix, where X(i, g) = 1 if pixel i belongs to group g, g = 1, 2, the above

criterion can be formally written in matrix form as a two-way segmentation using the

constrained normalized cuts [YS04, YS03]:

maximize ε(X) =
2∑
g=1

XT
g WXg

XT
g DXg

(5.4)

subject to X ∈ {0, 1}n×2, X12 = 1n (5.5)

UTX = 0 (5.6)

where 1n denote an n× 1 vector of 1’s.
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The near-global optimal solution is given by the eigenvectors of QPQ, where

P = D−1W (5.7)

Q = I −D−1U(UTD−1U)−1UT . (5.8)

While the eigensolution of QPQ takes longer than that of P (unconstrained version) to

compute at each iteration, it often requires fewer iterations.We follow the eigensolution

and its discretization procedures developed in [YS04, YS03] and their code online to ob-

tain a binary segmentation.

We next need to address: 1) How to compute local grouping cues A and R to achieve

the desired segmentation; 2) How to set up stitching constraints U between adjacent

patches.

5.2.2 Local Features and Grouping Cues

To derive the attraction and repulsion cues, we start by extracting local features from the

image. The features that make our dot boundaries regions of their own are not statistics

which characterize local textural appearance, but patterns which characterize local geom-

etry. Instead of measuring local convexity with curvature numbers, we describe it using

a distributed relational representation, i.e., each pixel has a pixel-centric flow field, which

is a sink for pixels inside the dots (intensity peaks) and a source for pixels outside the

dots. We characterize cells of small convex bright regions as the sinks of local gradient

fields as in [BY10a]. Each pixel is associated with a peak direction vector p that indicates

where pixels of higher intensity are located in its convex vicinity. Two pixels are attracted

to the same region if their pixel-centric local gradient fields are similar, and repelled into

different regions if they are of opposite types (e.g. sources and sinks). Computing the cues

can therefore be divided into the following three steps.

Step 1: Consider pixel i and its neighborhood Nd(i) of radius rd (neighborhoods are

taken as log-polar) as in Fig. 5.6a (a simple case of two separate dots, as can be appreciated

by viewing the intensity profile in Fig. 5.6d). If neighbor a ∈ Nd(i) can be reached in a
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a: image I c: peak direction vector p e: degree of F
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Figure 5.6: Computing pairwise features and grouping cues. Step 1: Given a) image I ,
with b) a sample intensity profile along the line intersecting a pair of separated dots, an
initial radius rd is used to compute c) a peak direction vector p at each graph node. This is
achieved by taking the average of the direction from i to all its a neighbors, each weighted
by the total non-decreasing intensity T (i, a) along the straight line from i to a. Step 2: A
convexity feature radius rc is then used to compute d) the local convexity feature vector
F , which characterizes where pixel i lies with respect to closest convex region. F can be
visualized by looking at e) its degree at each i, i.e.

∑
a∈Nc(i) F (i, a). Sinks of the flow (dot

centers) result in negative values while sources are positive. Step 3: Finally, F is used
to compute the pairwise cues: f) short-range attraction A and g) a long-range repulsion R
between graph nodes within radii rA and rR of each other.
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straight line from i with non-decreasing intensity, a is a higher intensity pixel in the same

convex region. Let p(i) be the average direction from its a neighbors, weighted by the

total non-decreasing intensity T (i, a) along the straight line from i to a:

p(i) ∝
∑

a∈Nd(i)

T (i, a)(L(a)− L(i)), |p(i)| = 1 (5.9)

T (i, a) =
∑

I(m1)≤I(mt)≤...≤I(mk)
m1m2...mk=line(i,a)

I(mt) (5.10)

where L(i) denotes the 2D location of pixel i in the image, I(i) the intensity of pixel i,

and | · | the L2 norm of a vector. The peak direction vector p(i) thus points from i towards

the core of the cell that i belongs to, i.e., the highest intensity of its local convex region. It

measures the direction and distance from pixel i to the center of the cell. T (i, a) = 0 if no

ascending path exists on the specific line (resulting in p = 0 at the center of the dots, i.e.

where sinks occur).

Step 2: We define the convexity feature vector F (i, a) as the inner product of p(i) and

p(a) within a convexity neighborhood Nc(i), measuring how much a’s cell center estimate

agrees with i’s. The ensemble of {F (i, a): a ∈ Nc(i)} is a pixel-centric vector field (i.e.

with the absolute direction of p(i) factored out) that characterizes where pixel i is in the

shape of a convex region, and we can use the feature similarity S to establish later pairwise

pixel attraction and repulsion grouping cues:

F (i, a) =< p(i), p(a) >, a ∈ Nc(i) (5.11)

S(i, j) =
< F (i, :), F (j, :) >

|F (i, :)| · |F (j, :)|
, j ∈ NA(i), NR(i) (5.12)

where NA and NR are the attraction and repulsion neighborhoods respectively. F (i, :)

shows how much i’s neighbors agree with i on the direction the dot lies in, with p(i) itself

factored out. Note that p(i) ∈ R2 while F (i, :) is a 2rc × 2rc vector. S(i, j) is more likely

to be positive for nearby pixels inside the same dot, and negative for distant pixels between

different dots, giving rise to two kinds of grouping cues. In Fig. 5.6 we visualize F also

by computing its degree at each pixel i, i.e.
∑

a∈Nc(i) F (i, a), so that sinks (dot centers)
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a: separated dots b: tangent dots c: overlapping dots
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Figure 5.7: Local pairwise cues based on feature similarity for three typical scenarios. The
initial image with intensity profiles (rows 1 and 2) of the line joining the two dot centers is
used to compute the peak direction vectors (row 3). Three points (off-centered on the left
dot, midpoint between the dots and on-center on the right dot) are selected to show feature
vector F (row 4), attraction A (row 5) and repulsion R (row 6).
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are characterized by negative values and sources by positive ones. We illustrate the sizes

of attraction and repulsion neighborhoods NA and NR on this last image.

Step 3: Since only convexity cues are used to differentiate dots apart, pairwise group-

ing cues are based directly on the similarity feature measure S. While the attraction A

only operates at short ranges, the repulsion R operates at long ranges pushing apart pix-

els inside dots from pixels outside and is essential for popping out disconnected regions

[YS01, BY10a]. The short range attraction A and long-range repulsion R are then defined

as:

A(i, j) = e−
1−S(i,j)

σ , |L(j)− L(i)| ≤ rA (5.13)

R(i, j) =
1− S(i, j)

2
, |L(j)− L(i)| ≤ rR (5.14)

Figure 5.7 illustrates how A and R change as two dots become closer together.

5.2.3 Stitching Constraints U

A two-way node partitioning can be described by a n×2 binary partition matrixX , where

n is the total number of pixels, X(i, 1) and X(i, 2) indicating whether pixel i belongs to

the inside or outside of a cell.

Our stitching constraints are imposed on the partition indicator X that is to be solved

in the optimization. If pixels a and b are known to belong in the same region, we have

the constraint X(a, :) = X(b, :), or X(a, :) − X(b, :) = 0. All these equations can be

described in a linear constraint UTX = 0, where U(a, k) = 1, U(b, k) = −1 is the k-th

constraint that a and b belong to the same region.

The initial first-round patch segmentation does not require any constraints U , although

simple intensity thresholding or initial seeds can be introduced. In the second-round patch

segmentation, where each patch has been segmented, U comes from a mutual agreement

analysis of X in the overlapping regions between neighboring patches: pixels for which

two adjacent patches agree on the segmentation become either foreground or background
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pixels. Only a sparse set of pairwise constraints are needed to ensure that two neighboring

patches will have consistent segmentations in their overlapping areas.

Compared with traditional normalized cuts, the increase in time complexity is negli-

gible if the number of constraints is small [YS04]. Additionally, the space complexity is

reduced using patch segmentation with stitching constraints, as the image is broken down

into smaller patches and finding numerous small regions becomes possible in a single

two-way segmentation.

5.3 Experiments

We implement our algorithm in MATLAB and present results on different datasets of dot-

like structures encountered in human pathology studies. The experimental section starts

with a detailed analysis of parameter selection followed by details on the selection and

effects of stitching constraints. We extend our model to thin and elongated structures

to illustrate the benefits of the segmentation subject to stitching constraints beyond the

simpler dot structures. We benchmark our method for the epithelial and embryonic cells

against other commonly used segmentation algorithms. Finally, we also compare our

dot segmentation method with state of the art domain-specific segmentation algorithms

presented at the 2010 International Conference for Pattern Recognition (ICPR) as part of

the Pattern Recognition in Histopathological Images contest for counting lymphocytes on

histopathological images.

5.3.1 Segmentation Parameters

The setup of pairwise cues for convex region detection requires four radii, first to compute

image features and then to compute pairwise cues:

rd : radius of the neighborhood from which the peak direction vector p is computed.

Beyond a certain radius, rd gives a constant p, so it can be chosen independently of

the dot scale.
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a: rc = 4 b: rc = 6 c: rc = 8 d: rc = 12 e: rc = 16

Figure 5.8: Finding larger dots by increasing the convexity feature radius rc . As the attrac-
tion and repulsion radii remain fixed, we display the change of segmentation boundaries as
a function of increasing rc. This shows how choosing a smaller template allows detection
of all dots regardless of their exact sizes with the same set of parameters. As the radius
increases, the boundary expands to include the entire dot shape after which neighboring
regions start merging together.

rc : radius of the neighborhood used to compute the feature vector F , it encodes the local

convexity of the neighborhood. Increasing rc, while keeping all other parameters

fixed, allows to look for larger shapes (Fig. 5.8). As rc increases, the boundary

expands to first include the entire dot and then to merge adjacent dots together.

rA : radius used to compute short-range attraction cues. Increasing rA brings nearby

pixels together, so it should be at least comparable to the dot size.

rR : radius that determines the extent of long-range repulsion cues. The absence of re-

pulsion yields a segmentation similar to the traditional normalized cuts result shown

in (Fig. 5.4e).

Intuitively, rc has to entirely contain the dot to set a proper ‘template’ size for the feature

vector F computation, while rA and rR have to be large enough to capture shape informa-

tion and surrounding information respectively. rc, rA and rR can be therefore defined in

terms of a core radius r0 that represents the size of the average dot. To compute the core

radius, we use the heuristics depicted in Fig. 5.9. Starting with degree of the convexity

feature F (illustrated in Fig. 5.6), we threshold the negative values to obtain disconnected

components that represent possible dot regions and estimate the radius of each component.
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a: degree of F b: degree of F ≤ 0 c: dots radii distribution
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Figure 5.9: Automatic core radius estimation for parameter selection. Starting with a) the
2D visualization of the degree of the feature vector F , where negative values (blue) repre-
sent the sinks (dots) while positive ones (red) are background. We obtain b) disconnected
components (i.e. possible dots candidates) by simply thresholding the negative values.
After computing a radius estimate for each component, we look at c) the radii distribu-
tions for each patch (shown in the histogram) and we take the peak as possible core radius
estimate (red dotted line).

We take the radius associated with peak of the radii distribution as core radius estimate,

restricting the radius to be at least 4 pixels. The rest of the parameters can then be set ac-

cordingly: rc = max(4, 1.5r0), ra = max(4, r0) and rR = max(20, 3r0). In special case

scenarios, such as the hierarchical dot phenomenon illustrated in Fig. 5.10, parameters

have to be manually tuned to extract the desired structures.

5.3.2 Constraint Propagation and Elongated Structures

Segmentation subject to stitching constraints is not simple stitching. The constraints set

on the overlapping regions propagate to the interior regions and are able to correct im-

proper initial segmentation, as shown in cyan in Fig. 5.11. A few constraints are sufficient

to correct mistakes, such as two cells erroneously segmented as one, spurious segment

cleanup and boundary refinement. We choose an overlap size that is able to contain at

least one entire dot in order to be informative. For all results, we use 20 pixels of overlap

and patches of approximately 256× 256 pixels. Clearly, larger overlap would allow more

constraints between cells but one must take into account the tradeoff of having to compute
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a: segmenting individual cilia: rc = 4, rR = 20, rA = 4

b: segmenting haircell bundles: rc = 30, rR = 40, rA = 10

Figure 5.10: Hierarchical dot structures and radii parameters. Changing the template size
rc is not sufficient when looking for significantly larger objects. In order to add proper
repulsion between the regions, the overall radius rR must also be increased. In a) we have
results with the standard set of parameters and in b) with increased repulsion and template
radii.
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a: input image c: constrained segmentationb: stitching constraints

Figure 5.11: Beyond simple stitching. b) Constraints are derived from mutual agree-
ment analysis on adjacent patch segmentations from a previous round (blue, green, or or-
ange/maroon indicate 1, 2 or more patches agreement). Stitching constrains cells (circles)
and background (squares) to group together respectively. c) Constrained segmentation
(gold) improves the initial segmentation (cyan) by cleaning up spurious small regions,
separating conjoined cells, and refining their boundaries.

more patches and the complexity increase due to increasing the number of constraints.

Recalling the EM data from the medulla brain region of the drosophila fly from Fig. 5.1,

there is often also a need to segment small and thin structures. The strength of our method

is that it can be extended to a larger set of geometries. The same visual popout applies,

since salient regions have a common repelling background, but in order to extract the more

complicated geometries, new attraction and repulsion cues have to be defined.

To avoid breaking each line into many small convex regions, we add an additional

pairwise component S̃(i, j) = exp (− 1
σ
(Φ(i)− Φ(j))2) based on the degree Φ(i) =∑

a∈Nc(i) F (i, a) of the feature vector F , introduced in Section 5.2.2. The pairwise at-

traction and repulsion cues are now a function of:

T (i, j) = βS(i, j) + (1− β)S̃(i, j) (5.15)

where β a constant parameter and S(i, j) is the similarity feature measure from Eqn. 5.12.
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Figure 5.12: Thin structures and constraint propagation.The initial segmentation (cyan)
is corrected by the constrained segmentation (brown). The final constrained segmentation
(gold and brown) is more than simple stitching. Its effectiveness can be better seen for
membrane structures that have a geometry that inherently propagates throughout the image
to interior regions which are farther away and not located within the overlapping regions.
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The pairwise attraction and repulsion cues are then defined as:

R(i, j) = |α− T (i, j)|, |L(j)− L(i)| ≤ rA, T < α (5.16)

A(i, j) = |T (i, j)− α|, |L(j)− L(i)| ≤ rR, T ≥ α. (5.17)

For the images shown, we empirically chose parameters σ = 0.25, β = 0.35 and α = 0.35.

As before, attraction A only operates at short ranges and repulsion R operates at long

ranges, to give a total effective weight W is A−R +DR.

The benefits of the stitching are highlighted in Fig. 5.12. The initial (cyan) segmen-

tation is improved after the constraints are enforced to obtain a final (gold) segmentation

that corrects segmentation mistakes also outside the overlapping regions. The yellow seg-

mentation denotes where the segmentations, before and after the constraints, agree. The

elongated structures then allow the stitching benefits to be more pronounced as the con-

straints propagate within the regions to the interior of the image. The final results for the

original 1800 × 1800 pixel image, obtained using a 8 × 8 stitching grid, are shown in

Fig. 5.19. In Fig. ??, a post-processing step, dividing regions with larger diameters, is

added to discriminate between membranes (gold) and all the other structures (blue).

5.3.3 Benchmark with General Segmentation Methods

To compare our results with other commonly used segmentation algorithms, we run our

method on images (a selection was given in Fig. ??) from two datasets of dot-like struc-

tures encountered in human pathology: 1) 512 × 512 pixels bright field and fluorescent

images of epithelial and embryonic cells; and 2) 600 × 900 pixels histopathology images

from various tumor-related lesions. Figures 5.15, 5.16, 5.17 and 5.18 illustrate sample

results of our segmentation method.

We benchmark our results against human labeled dot centers. Given m ground-truth

dot centers and n segment centers for an image, let Dij be the Euclidean distance between

dot i and segment j. If it is less than a certain radius threshold ρ, we consider (i, j) a
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a: epithelial & embryonic kidney cells
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b: histopathology cells
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Figure 5.13: Precision-recall statistics for a) epithelial cells images and b) histopathol-
ogy images. Our method (yellow square dots, upper right corner) has better precision
and recall overall when compared with quickshift, k-means, gradient-based and standard
watershed.

83



matched detection. We then define:

precision =
#{j : minmi=1 Dij ≤ ρ}

n
=

# nearest dots within radius ρ
# segments

recall =
#{i : minnj=1Dij ≤ ρ}

m
=

# nearest segments within radius ρ
# dots

The precision measures the proportion of true dots among all the segments, and the recall

measures the proportion of segments among all the true dots. We compare our method

with the following segmentation methods:

k-means: We use MATLAB’s built-in function. It clusters pixels based on their intensity

values, thus has trouble separating conjoined like-intensity cells and increasing k

only leads to clustering instability.

Watersheds: Watershed is directly applied to either the intensity image (MATLAB’s

built-in function) or the gradient magnitudes (with radius 5) of the image. While

the standard watershed results tend to be over-fragmented in the presence of local

intensity fluctuation, the gradient-based watershed results tend to miss many dots of

weak contrast but improves on the precision.

Quickshift: We use the online code by [VF10]. Analogous to meanshift, quickshift

can be used to partition an image into a set of superpixels. It enhances intensity

differences, but it is sensitive to scale choices and cannot break up dots based on

convexity.

The precision-recall statistics in Fig. 5.13 shows that our method works better than

others at segmenting small regions in terms of both precision and recall. Our stitching

constraints can be appreciated by comparing the quality of segmentation without and with

constraints: While there is no significant improvement in the recall, there is an average

improvement of 0.04 in the precision.
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a: labeled centers b: our result c: our segmented dots

Figure 5.14: Sample results from the ‘Counting Lymphocytes on Histopathology Im-
ages’ contest dataset [FBX+09, BGA+10], courtesy of Anant Madabhushi at Rutgers. a)
Labeled ground-truth was provided for comparison. b) Our results: boundaries of our
computed segments and c) the centers (gold pluses) extracted from them together with the
ground truth (green dots). Performance details are given in Table 5.1. We display our
results on the inverse images, for clearer display. As in the contest, the goodness of the
boundaries was not measured as specific boundaries cannot be identified to begin with.
Our algorithm is not domain specific, which explains why we pick up many more dots
that are not identified by experts as lymphocytes. A post-processing step, for example
based on color, can be applied to refine the results.

5.3.4 Benchmark with Domain Specific Methods

We also compare our dot segmentation method with state of the art domain-specific seg-

mentation algorithms presented at the 2010 International Conference for Pattern Recog-

nition (ICPR) as part of the Pattern Recognition in Histopathological Images contest for

counting lymphocytes on histopathological images. For this benchmark we use an addi-

tional set of 100× 100 pixels histopathology images, very kindly provided by the contest

organizers. Given the 100 × 100 pixels dimensions, we did not divide the images and

simply ran the segmentation once. Each image took approximately 2 seconds to segment.

Sample results are shown in Fig. 5.14. Finally, we compare performances in Table 5.1

with the algorithms presented at the contest:

Method 1: [KSG10] based on extracellular matrix segmentation, i.e. mean shift cluster-

ing for color approximation followed by hsv space thresholding. Texture features
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Group md sd mN sN

[KSG10] 3.04 3.40 14.01 4.4
[PRT10] 2.87 3.80 14.23 6.3
[GGP10] 7.60 6.30 24.50 16.2
[CVR10] 8.10 6.98 26.67 12.5

our results (ρ = 5) 3.22 3.92 5.40 3.68
our results (ρ = 4) 2.84 2.89 8.20 4.75
our results (ρ = 3) 2.20 1.80 12.90 5.38
our results (ρ = 2) 1.12 0.71 16.75 7.47

Table 5.1: Our results compared with the finalists of the PR in HIMA (ICPR 2010) contest
performance ranking provided online, for the ‘Counting Lymphocytes on Histopathology
Images’ dataset. The ranking of performance, where m and s denote the mean and stan-
dard deviation, respectively. For all numbers, smaller numbers represent a better result.
The criteria are (a) the Euclidean distance d between the ground truth and the result pro-
vided by the participants; (b) the absolute difference between the true number of cells and
N the number of cells found. We show our results for tolerances ρ = 2, 3, 4, 5 pixels
from the center. Our results are very intuitive. Decreasing the tolerance allows to find less
true dots (higher mN ) but with higher precision (smaller d). For each choice of radii, we
perform well when compared with the other proposed methods.

are extracted from the cells and then used to train a SVM classifier to find the lym-

phocytes.

Method 2: [GGP10] based on connected components. A first processing step involves

thresholding and morphological operators to improve the quality of the images for

recognition; a second recognition step then extracts the lymphocytes with a template

matching method.

Method 3: [CVR10] starts with a segmentation based on multi-phase level sets, fol-

lowed by morphological operations to clean-up the image of small spurious regions.

Features are then used to identify the target cells.

Method 4: [PRT10] based on the estimation of a mixture of Gaussians for determining

the probability distribution of the principal image component. Lymphocyte are de-

tected after post-processing to eliminate small regions, using a transferable belief

model for knowledge modeling.
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The criteria for evaluation are (a) the Euclidean distance between the ground truth and

the segmented lymphocytes; (b) the absolute difference between the true number of cells

and the number of cells found, denoted by N . m and s denote the mean and standard

deviation, respectively. As before, we consider (i, j) a matched detection if the segment

center is within a ρ threshold from the ground-truth dot ( we use tolerance radii ρ =

2, 3, 4, 5 pixels). For all numbers, smaller numbers represent a better result. We are not

able to distinguish lymphocytes from the other dot structures present because our method

is not domain-specific. For fairness we stress that we did not have different training and

testing sets. We used one image to test our automatic core radius estimator and then

ran the algorithm on the entire image set. For each tolerance radius, we perform well

when compared with the other proposed methods. As intuitively expected, decreasing the

tolerance allows to find less true dots (higher mN ) but with higher precision (smaller d)

and vice-versa, so the threshold can be fixed according to desired balance.

5.4 Summary

Segmenting small structures in a large image presents a scale dilemma between the im-

age size and the segment size. Our approach resolves this by decoupling the two sizes in

constrained patch segmentations. Although segmentation subject to stitching constraints

could work with any patch segmenter, a spectral graph partitioning formulation naturally

integrates stitching constraints together with the foreground/background patch segmenta-

tion. The experimental section features a detailed parameter analysis to segment dots of

different shapes and sizes, and illustrations of the different cases that arise in segmenting

dots. We benchmark our results with general segmentation algorithms and we also com-

pare our method with domain-specific algorithms presented at the ‘Counting Lymphocytes

in Histopathology Images’ contest at ICPR 2010. Our method outperforms state-of-the-art

results in both precision and recall by identifying all faint and conjoined cells simultane-

ously in a two-way segmentation, without need for post-processing.
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a: A549 & HEK293T cells b: our results

Figure 5.15: Results (b) on human alveolar basal epithelial A549 cells and embryonic kid-
ney HEK293T cells (a). A quantitative measure of our segmentation is given in Fig. 5.13.
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a: HEK cells b: our results

Figure 5.16: Results (b) on HEK cells (a) with a variety of ‘convex shapes’. Our method
pops out all the cells in these images with the same parameters. Minimal post-processing
with morphological operations allows to mask out the ‘flat’ background regions.
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a: cells in histopathology b: our results

Figure 5.17: Results (b) on histopathology images (a) depicting tumor-like lesions in the
spleen (top,bottom) and in mediastinum (center) containing ‘dots’ of various sizes and
textures. Our method pops out all the cells in these images with the same parameters and
no post-processing.
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a: cells in histopathology b: our results

Figure 5.18: Results (b) on histopathology images (a) depicting tumor-like lesions in the
ovaries (top), spleen (center) and prostate (bottom) containing ‘dots’ within a variety of
background structures. Our method pops out all the cells in these images with the same
parameters and no post-processing. Images were darkened for final result display only.
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Figure 5.19: Results on EM brain sections of drosophila fly. Extending the weights beyond
the ’dots’ structures shows the potential of our method to extract a wider shape variety.
Displayed are 900×900 cutouts of the original 1800×1800 pixels image. Post-processing
with a simple sequence of morphological operations yields (bottom row) thin membranes
in gold and mitochondria in blue. 92



Chapter 6

Shape Extraction through

Region-Contour Stitching

6.1 Introduction

We consider the problem of extracting salient shapes from an image, which is an important

part of any image analysis. This problem has been studied in the context of region seg-

mentation [SM00, MAFM08], contour grouping [TZ06, US88, MWTX03, FB03, GM96],

as well as a combination of them [WKSW05, Jac96]. For many applications, the key re-

maining challenge is detecting faint contours and boundaries along low contrast regions.

Traditional approaches that rely only on local edge detection in order to detect all faint

contours boundaries have the side effect of generating many additional spurious edges.

On the one hand, contour grouping techniques, such as edge linking [GZW07] and more

recent methods such as untangling cycles [ZSS07], are often used as a way to prune out

spurious edges and complete missing ones. The downside is that these methods depend

on fragile local cues, and fail to take into account the global information provided by the

regions along the boundary. On the other hand, region segmentation such as Normalized

Cuts (Ncut) [SM00] has the ability of cleaning up spurious edges and bridging gaps among
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missing or faint contours. However, in order to find all the salient segments, oversegmen-

tation is needed which leads to fragmentation along the salient shape boundary.

The intuition behind our method, as shown in Figure 6.1, is to combine the Ncut

segmentation of an image (shown in Fig. 6.2) with a flow on its edge map [BS08]. There

are two key insights: (1) region information provides edge boundaries with more global

information of how they should be connecting with each other. From this more robust

flow information, one can extract salient contours more easily even under low contrast

and clutter; (2) we only use soft segmentation eigenvectors, which capture the likelihood

of region segmentation. This allows us to retain edges which do not line up with the

segmentation boundaries and could be washed out in the discretized segmentation. In these

cases, the contours extract the low contrast region information from the soft eigenvectors.

6.2 Graph Setup

6.2.1 From Filter Responses to Edge Mask

Motivated by human vision, we define the image gradient using oriented edge energy:

OEΦ,α = (I ∗ f eΦ,α)2 + (I ∗ f oΦ,α)2, (6.1)

where f eΦ,α, f oΦ,α, are a quadrature pair of even and odd symmetric filters at orientation Φ

and scale α.

Most algorithms detect edges by applying non-maximum suppression onOEΦ,α across

different orientations Φ to obtain edge orientation Φmax, and then localize the edge by

checking zero-crossing in f eΦmax,α. Such edge detection procedure often destroys edges

around junctions. At the junctions, the boundary pixels could have multiple orientations.

Forcing them to make a hard choice on a single edge orientation leads to erroneous orien-

tation estimates. We compute the edge zero crossings for each oriented f eΦ,α. To remove

spurious edge detections (those that extend from the boundary into the surrounding flat

image region), we apply non-maximal suppression across the orientations allowing only
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Figure 6.1: The intuition behind our method: each segmentation region induces directional
flows on the region boundaries. Right: each image pixel could have multiple induced flow
directions, one for each nearby segmentation region. Contour grouping using the induced
edge flow results in the stitching of fragmented segmentation regions.

pixels NOT on a zero crossing to suppress their neighbors. We initialize the edge mask E

to include the surviving zero crossings.

6.2.2 Region Segmentation using Normalized Cuts

We use the NCut [SM00] graph partitioning setup to extract image region information.

The set of points in the image space are represented as a weighted undirected graph

Gregion = 〈V region,W region〉, where the nodes V region of the graph are the image pixels

and the W region is a similarity function between pairs of nodes computed by Interven-

ing Contours [MBLS01] directly using f eΦ,α, f oΦ,α. The weight matrix W region is used

to compute the NCut soft eigenvectors which will be denoted by {v(1), . . . , v(n)}. Each

eigenvector can be seen as an image itself, with the brightest pixels corresponding to the

hard segmentation region labeling {S(1), . . . , S(n)}.
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Figure 6.2: Region Segmentation and Lorentz force on edges. We compute the Ncut
image segmentation eigenvectors to obtain a set of soft segmentation maps, one for each
region. Using the soft segmentation map as negative particle charges, we compute the
force on the initial image edges. Its direction encodes the local shape of the segmentation
region, while the magnitude reflects the saliency of the image region, containing more
global information than local image contrast.

6.2.3 From Region Segmentation to Lorentz Edge Flow on the Edge

Mask

Our method contrasts with previous contour grouping approaches in the sense that the

magnitudes and orientations associated to each edge point are not given by the local ge-

ometrical properties of the contour itself, but rather they are induced from more global

information computed by using both the edge mask E and the region segmentation soft

eigenvectors {v(1), . . . , v(n)} with corresponding labels {S(1), . . . , S(n)}.

Jalba et al. [JWR04] introduced the charged particle model to recover shapes by mod-

eling the image as a charged electric field. In their model, the free charges in the image
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Figure 6.3: Computation of the Lorentz force Fl from each of the soft region segmentation
eigenvector. Left: Initial image edge detections superimposed on the segmentation eigen-
vector (resulting in the free particles pi shown with darker color). Dotted lines indicate
the region boundary, white circles the fixed region particles ei and d denotes the distance
vector ri−Rk. Computation of Fl tolerates imprecision in the region segmentation bound-
ary. Center: an example of resulting Lorentz force Fl. Right: The corresponding directed
Lorentz flow after a 90 degree rotation. The flow also encodes contour-region membership
(indicated by the one sided edge flow).

regions are attracted to the contours by an electric field in which image pixels are assigned

charges based on gradient magnitude of the image. In this work, the exact contours are not

known a priori and finding the contours, viewed as static entities, relies on the repulsive

forces within similar regions. Inspired by this, we invert the setup and exploit the initial re-

gion segmentation information to fix the electrical particles within the regions instead and

let the electric field defined on them create a flow on the previously found edge map. For

each eigenvector v(i) we view the N image pixels as charged particles with corresponding

negative electric charges qi given by the pixels’ negative eigenvector magnitude value. To

each eigenvector, we superimpose the initial edge map E and we keep as fixed particles ek

only pixels that do not lie on the edges, the edge points instead will be considered as free

particles pi. It is important to note that the contours found from the region segmentation

and the edge map contours do not need to coincide (as is in the example illustrated in

Fig. 6.3) and in fact the purpose of combining them is to allow one to correct the mistakes

of the other.
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For each free particle pi (which will later correspond to nodes of our graph), with

position vector ri, we are only interested in the Lorentz force F due to the electric field

generated by the fixed charges ek as this force captures the external attractive interactions.

Following the simplifications in [JWR04] we omit the magentic field. The Lorentz force

Fl at each particle pi can then be written as:

F pi
l = qi

M∑
k:Rk 6=ri

ek
4πε0

ri −Rk

‖ri −Rk‖3
, (6.2)

where the summation is over the M fixed charges ek with grid vector positions Rk that

fall within a fixed radius of the free charge pi, and ε0 is the electrical permittivity of free

space. Note that the summation only accounts for interaction from the fixed charges and

does not consider forces generated by all other free particles taken in isolation.

We use the Lorentz force Fl induced from the soft region segmentation to compute a

flow on the initial image edges. Each contour point in the original edge mask can have

up to n copies (n being the number of NCut segments) in the line graph nodes V contour

explained in the next section. We define the flow vector to be a 90 degree rotation of Fl.

This flow’s orientation, denoted by F θ
l or simply θ, captures global shape information of

the regions, and its magnitude Fmag
l or simply m, reflects the region saliency instead of

image contrast. To prune the number of nodes further, we threshold the magnitude of Fl

and apply non-maximal supression across the flow’s orientation.

6.2.4 Contour Graph Weight Setup

How do we utilize Lorentz force flow to detect salient contours? We will develop a graph

formulation for this task as shown here. The first step is to define a graph Gcontour =

〈V contour,W contour〉 which consists of a set V contour of n nodes, and a directed weight

matrixW contour with dimensions |V contour|×|V contour|. For the rest of the paper,W contour

will be simply referred to as the directed graph
−→
W . For each pair of nodes (vi, vj) where

vj ∈ Nbhd(vi) = {(i, j) : ‖(xi, yi) − (xj, yj)‖ ≤ δ} for a fixed distance δ, the weight
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Figure 6.4: Schematic representation of our method. The phase and magnitude of the edge
filter responses are used to obtain the initial line and region graphs (first row). In the line
graph, the nodes are image edge pixels E computed from the filter responses (section 2.1).
In the region graph, the nodes are all image pixels, the graph is undirected and the weights
are computed by Intervening Contours (illustrated on the right). The region segmentation
eigenvectors computed by using NCuts are then used to compute the Lorentz Edge Flow
on the edge mask E . Our line graph, here denoted by a new subscript, has nodes that are
duplicated copies of the edge mask E with the flow vectors given by the Lorentz Edge
Flow. Bottom Row: in contrast with previous contour grouping algorithms, denoted by
a old subscript, which use image gradient orientation to compute the weights (lower left
figure), the new vector flow (lower right figure) includes the global properties given by the
segmentation eigenvectors {v(1), . . . , v(n)} and inherits an implicit region belonging. The
graph weights (section 2.4) are computed by using the new flow’s magnitude (proportional
to the thickness of the arrows) and orientation as well as information of the region labeling
(lower right boxes). The three different cases are best viewed in color.
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wi→j of the edge connecting them is defined by:

wi→j = wmag
i→jw

dir
i→jw

reg
i→j, (6.3)

where wmag , wdir and wreg are the contour magnitude and direction and region cutting

components. Flow directionality will further impose restricting conditions on which nodes

i and j will be actually connected in the final weight matrix. Since there can be multiple

nodes (each with its own (θ,m) pair) per image pixel, the weights of edges connecting

two nodes corresponding to the same pixel are set to zero. For graph nodes (vi, vj) with

corresponding flow magnitudes mi and mj and orientations θi and θj respectively, the

three components are as follows:

contour magnitude wmag
i→j : The higher magnitudes correspond to contours bounding a

region in the current eigenvector. To enhance also smaller magnitude contours, we choose

a magnitude component that prefers similar magnitudes:

wmag
i→j = exp (−|mj −mi|/σm) . (6.4)

contour bending wdir
i→j: the directionality of the edgels is measured by how much

bending is needed in order to complete a curve between two nodes vi and vj . The weight

is given by the co-circularity conditions in terms of the angles αi and αj between the nodes

orientation and the distance vector between them:

wdir
i→j = exp

(
−1− cos(2αi − αj)

1− cos(2σd)

)
. (6.5)

We restrict the bending amount by allowing only connections between nodes whose vec-

tors satisfy cosαi ≥ 0 and cosαj ≥ 0. The orientations of both nodes cannot be simultane-

ously perpendicular with respect to the direction vector between them, i.e. cosαi cosαj 6=

0. We fix σd = π/4.

region cutting wreg
i→j: to avoid jumping between disconnected contours around the

same region (hence cutting through the region rather than going around it) we look at

the distance transform ∆ of the regions to their boundaries (highest values will occur

at the medial axis of the regions). For each region store the maximum ∆ values as
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Figure 6.5: Graph normalization for directed Contour Random Walk setup. Left: Graph
nodes are grouped according to the region segmentation labels Sk they arise from. We
normalize the graph weights by the sum of connections reaching each region label Sk

separately. This gives a boost to contours flowing between regions. Right: Effects of this
normalization. When the flows belonging to each Sk are normalized to one, fainter flows
that would otherwise not be able to compete with the stronger neighbors are enhanced
(case b, indicated in green) instead of dissipated (case a, indicated in magenta). The
‘feather’ length on each arrow indicates the flow magnitude.

{∆(1)
max, . . . ,∆

(n)
max}. Let lij denote the set of points on the line between graph nodes

(vi, vj). We then compare the maximum point on this line, max(∆(lij)), with the highest

value ∆max of the region S(k) in which it occurs:

wreg
i→j = exp

(
−max(∆(lij))/(σr∆

(k)
max)

)
, (6.6)

hence penalizing cutting through the interior of the labeled regions {S(1), . . . , S(n)}.

6.3 Salient Contour as Persistent Cyclic Random Walk

We generate a directed random walk matrix
−→
P = D−1−→W by normalizing the connections

from each node. Normalizing the random walk matrix is known to provide a segmenta-

tion criterion robust to leakages. In contrast to the previous approaches which normalize
−→
W by its total weighted connections [SM00], we choose to normalize the connections
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within each eigenvector separately hence allowing the random walk to bifurcate. This

is an important feature of our algorithm; it allows contours to flow on in different re-

gion segments without penalty. Since the connections of the flow in each region add up

to one, this normalization effectively enhances faint contour flows that arise from low

contrast regions, as well as minor flows through regions which would otherwise be sup-

pressed by the stronger neighboring options. Recall that we can view
−→
W as column blocks

with
−→
W = [

−→
W S(1) ,

−→
W S(2) , . . . ,

−→
W S(n) ] are ordered in terms of the original region labels

{S(1), . . . , S(n)}. The normalization for each column block [
−→
W S(β) ] for β = {1, . . . , n}

(illustrated in Fig. 5) will then have the form D−1
β [
−→
W S(β) ] where Dβ is a diagonal matrix

with entries Dβ(i, i) =
∑

j[
−→
W S(β)(i, j)].

According to our graph setup, finding salient image contours amounts to searching

for cycles in this directed graph. How would salient cycles appear in this random walk

and how would they be distinguishable from generic clutter? We first notice an obvious

necessary condition. If the random walk starting at a node comes back to itself with

high probability, then there likely is a cycle passing through it. We denote the returning

probability by Pr(i, t) =
∑

` Pr(i, t | |`| = t). Here ` is a random walk cycle with length

t passing i. However, this condition alone is not enough to identify meaningful structures.

Consider the case where there are many distracting branches in the random walk. In this

case, paths through the branches will still return to the same node but with different path

lengths. Therefore, it is not sufficient to require the paths to return only; they have to

return in the same period t.

Salient contours can be thought of as 1D cycles, structures that have a 2D geometry

but are topologically 1D, i.e., a set of edgels with a well defined ordering and connections

between them strictly follow it. 1D cycles have a special returning pattern probability

Pr(i, t). A random walk step on a 1D cycle tends to stay within the cycle, while moving

a fixed amount forward in the cyclic ordering. Our task is to separate these persistent

cycles from all other random walk ones. To quantify this observation, [ZSS07] introduces
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a peakness measure of the random walk probability pattern:

R(i, T ) =

∑∞
k=1 Pr(i, kT )∑∞
k=0 Pr(i, k)

, (6.7)

which computes the probability that the random walk returns at steps of multiples of T .

R(i, T ) being high indicates the existence of 1D cycles passing through node i. The key

observation is that R(i, T ) closely relates to complex eigenvalues of the transition matrix

P , instead of real eigenvalues [ZSS07]:

Theorem. (Peakness of Random Walk Cycles) R(i, T ) depends on P ’s eigenvalues:

R(i, T ) =

∑
j <(

λTj
1−λTj

· UijVij)∑
j <( 1

1−λj · UijVij)
, (6.8)

where Uij and Vij are respectively the left and right eigenvectors of
−→
P . This theorem

shows that R(i, T ) is the average of f(λj, T ) = <(
λTj

1−λTj
· UijVij)/<( 1

1−λj · UijVij). For

real λj , f(λj, T ) ≤ 1/T . For complex λj , f(λj, T ) can be large. For example, when

λj = s · ei2π/T , s → 1, Uij = Vij = a ∈ R, f(λj, T ) → ∞. It is the complex eigenvalue

with proper phase angle and magnitude that leads to repeated peaks.

6.4 Circular Embedding for Contour Grouping

The above analysis shows that salient contours correspond to persistent cycles in random

walk, and their persistency can be computed from the eigenvalues of the random walk.

It has been shown in [ZSS07] that the eigenvectors are an approximate solution to the

following ideal cost for circular embedding of salient contour grouping. A circular em-

bedding is a mapping between the vertex set V of the original graph to a circle plus the

origin: Ocirc : V 7→ (r, θ) : Ocirc(i) = xi = (ri, θi), where ri is the circle radius which

can only take a positive fixed value r0 or 0. θi is the angle associated with each node. The

ideal embedding encodes both the cut and the ordering of graph nodes, and maximizes the

103



4 5 6 7 8 9 10 11
−8

−6

−4

−2

0

2

4

6

8

Re(λ)

Im
(λ

)

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Re(Eigenvector(λ))
Im

(E
ig

e
n
v
e
c
to

r(
λ
))

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Re(Eigenvector(λ))

Im
(E

ig
e
n
v
e
c
to

r(
λ
))

Figure 6.6: Examples of paths found by sampling. Center: The top eigenvalues sorted
by their real components. For the eigenvector associated to each eigenvalue, we sample
several contours. Displayed are two eigenvectors with two sampled contours each.

following score:

Ce(r, θ,∆θ) =
∑

θi<θj≤θi+2∆θ
ri>0, rj>0

−→
P ij/|S| ·

1

∆θ
, (6.9)

where S is a subset of graph nodes and ∆θ = θj − θi is the average jumping angle.

Optimizing this score is not an easy task. Moreover, we are not only interested in the

best solution of eqn(7.4), but in all the locally optimal solutions, which give all the 1D

structures in the graph. We find a relaxation by setting u = x, v = u · e−i∆θ. We set c =

t0e
−i∆θ to be a constant. Eqn. (7.4) can be rewritten as maximizing <((uH

−→
P v ·c)/(uHv))

with u, v ∈ Cn and is equivalent to the following optimization problem:

max
u,v∈Cn

<(uH
−→
P v) s.t. uHv = c. (6.10)

This problem leads exactly to
−→
P ’s complex eigenvectors as shown in [ZSS07].

6.5 Contour Cuts as a Hermitian eigenvalue problem

In their recent extension, [KGS11] have shown that solving the eigenvalue problem Px =

λX is just an approximation of a new generalized problem. While we summarize their new

work in the the following sections, we refer to [KGS11, Gal00] for proofs and details.

In the new framework, each contour point xj is represented by a complex number xj =

rj exp(iθj) which allows to encode ‘ordering’. Let F = ΠP , where P = D−1W , with
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D = diag(
∑

jWij), and Π = diag(π) the diagonal matrix of the stationary distribution P .

Letting H(δ) = F exp(−iδ)+FT exp(iδ)
2

, the new contour cut criterion becomes

Ccut(x) =
internal cut(x) + external cut(x)

volume(x)
=
x∗[Π−H(δ)]x

x∗Πx
(6.11)

where the right hand side can be written as a generalized Rayleigh quotient RΠ−H(δ),Π(x).

This new formulation has also a random-walk interpretation in terms of the original dis-

tribution P :

Ccut(x) =
x∗[Π−H(δ)]x

x∗Πx
=

∑
(i,j)∈B πiPij∑

i∈C πi
(6.12)

where, as in the original framework, P is the probability of moving a step forward on

the contour. Therefore, minimizing Ccut(x) is equivalent to minimizing RΠ−H(δ),Π(x)

or, alternatively, maximizing the Rayleigh quotient RH(δ),Π(x) and finding all the critical

points corresponding to different contours, is achieved by solving

max
x

x∗H(δ)x

x∗Πx
(6.13)

such that xj = rj exp(iθj), rj ∈ {0, 1} and θi = O(j)δ.

It has been proved in [KGS11] that finding the eigenvectors of Π−1H is equivalent to

solving for the eigenvector of the Hermitian matrix Π−1/2H(δ)Π−1/2.

Theorem. The critical points of the relaxed contour cut problem

max
x

x∗H(δ)x

x∗Πx
(6.14)

such that xi ∈ C, can be found by searching over δ and finding the eigenvectors of the

corresponding matrices Π−1H(δ); any eigenvectors for which x∗H(δ)x = |x∗Fx| are

critical points with respect to both x and δ.

The original eigenvalue problem Px = λx can be seen as only an approximation of

this more general problem, as the solutions of Π−1H(δ)x = λx are given as a combination

of the eigenvectors of P and Π−1P TΠ. Indeed, [KGS11] prove that if P = D−1W is a

normal matrix, the critical points are given by the eigenvectors of P .

The contour results presented in this chapter rely on the original work by [ZSS07] and

are found by solving the eigenvalue problem in terms of the matrix P .
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6.6 Computational Solution

One way to extract contours is to find the maximal covering cycle in the complex eigen-

vectors space using a modified shortest path algorithm. We compute line fragments by

local edge linking to reduce complexity and construct a directed graph where each node

represents a fragment. Two nodes are connected by a directed edge according to the em-

bedding phase angle (which specifies their ordering) and spatial connectivity.

For any two nodes in the graph, we seek to compute shortest path between them, which

represents a contour hypothesis. We use dynamic programming to compute at each node

vj for all its parents vi the recursive functions: Bj(li) = maxlj(A(lj) + L(lj) + d(li, lj) +∑
k∈Cj Bk(lj)) and the best fragment l∗j at which the max occurs. Here, A is the area

spanned by li in the embedding space, d the phase overlap of li and lj , L is a measure of

the fragment’s length and leaf nodes only consider the terms A, d and L. The optimal path

L∗ is obtained by picking the fragment that maximizes (A(lr) + L(lr) +
∑

k∈Cr Bk(lr))

at the root node vr and then backtracking the values l∗j at each node vj until a leaf node is

reached.

To discover more contours, we sample a set of paths around the optimal one. We com-

pute this path by sampling over the marginal distributions, as in [FH05], given recursively

by the functions Sj(li) ∝
∑

vc∈Cj p(li, lj)Sc(lj), where p(li, lj) is the joint probability

p(li, lj) ∝ exp(−(A(li) + d(lj, li) +L(li))). For leaf nodes, Sj(li) only considers the term

p(li, lj). At the root node vr, we sample from ∝
∑

vc∈Cj Sc(lr). All contour fragments for

nodes vj thereafter are sampled from the marginals Sj(li) until a leaf node is reached.

6.7 Experiments

Examples of different contours extracted from different eigenvectors for the tooth image

are shown in Fig. 6.6. We compare our extracted contours with NCut on several objects of

the Berkeley Segmentation Database [MFTM01] in Fig. 6.7. We select from the extracted

samples the contours enclosing the regions that best match the object by shape context

106



Algorithm 3 Global Contour Flow Stitching
1: From the initial filter responses, use the magnitude and phase to obtain (a) an initial

Edge Mask E (section 2.1) and (b) NCut Region Segmentation (section 2.2) eigenvec-
tors.

2: Use the NCut eigenvectors to compute the Lorentz Edge Flow Fl on E (section 2.3).
3: Define a new directed contour graph Gcontour = 〈V contour,W contour〉 in which the

nodes are duplicated copies of the edge mask E with the flow vectors given by the Fl.

4: Compute graph weights using the new flow’s magnitude and orientation as well as
information of the region labeling: wi→j = wmag

i→jw
dir
i→jw

reg
i→j (section 2.4).

5: Solve for the eigenvectors of this new directed graph: V (D −
−→
W ) = V λ (section 3).

6: Extract maximum covering cycles using a modified shortest path algorithm in the
complex embedding space (section 5) hence extracting corresponding salient contours
in the image.

on the boundaries. Piecing segments into an object from the oversegmentation would

require searching through exponentially many combinations of the fragmented regions.

Our contour grouping can draw samples from limited salient contours (the number of

samples is quadratic in the size of contour fragments). Our contours improve efficiency of

segmentation and fix small leakage problems.

6.8 Summary

The algorithm summarized in Algorithm 3 extracts salient closed contours by exploiting

region segmentation. The results produce segments that withstand varying contrast on the

object boundaries and are therefore, less fragmented. We contrast our method with two

related approaches:

1. Region Stitching using Hard Segmentation: The naive approach to region stitching

would be to oversegment an image and use contour grouping over the region boundaries to

stitch the segments back together. The main disadvantage is that the amount of segmenta-

tion needed is unknown a priori and unnecessary overfragmentation increases computation

and reduces region saliency. Moreover, this contour grouping would find cycles through

the various region boundaries independent of regions’ size. Our approach only makes use
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of a few salient region segments and enables the region boundary map to be juggled using

the soft eigenvectors information and the initial edge mask.

2. Contour Grouping using Soft Segmentation: The method in [MAFM08] indeed

uses the global information to extract contours and localize junctions. However, as this

method does not involve any grouping, it does not resolve ambiguity of contour group-

ing in the places where three regions merge (i.e. junctions). Our approach introduces a

normalization that enables the contour to flow through the junctions given by the region

segment boundaries resulting in long contours. Since the contour has an inherent region

belonging associated to it, the extracted contour is also guaranteed to enclose a region.

In this chapter we highlight how salient contours enclosing objects can be detected

by combining the complementary power of region segmentation and contour grouping.

Regions bridge the gaps between contours due to faint boundaries. Contour flows stitch

oversegmented regions into large and salient ones, which can greatly simplify tasks such

as object extraction and detection. Results on real images have shown great potentials of

our approach on extracting salient object boundaries.
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Figure 6.7: Extracted contours for several object images taken from the Berkeley seg-
mentation dataset. From left to right: original image, ground truth object silhouette, ncut
region segmentation, segmentation given from our extracted contour, untangling cycles
contour grouping result (each contour with a different color), and finally, our extracted
contour (yellow) on the original edge map (black). Note that the contour can be discon-
nected since we do allow jumping in the shortest path algorithm. The jumping is guided
by the phase angle of the eigenvector in the embedding space, which allows to follow the
contour throughout the boundary even if image continuity is broken. For all the images
we used 30 eigenvectors for the Ncut segmentation and 20 for the contour grouping one.
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Chapter 7

From Dots to 3D Tubes: Structural

Correspondence as A Contour

Grouping Problem

7.1 Introduction

Extracting 3D tubular cell structures across a stack of 2D image slices (Fig. 7.1) requires

establishing cellular correspondences between images (Fig. 7.2), and we approach it as a

contour grouping problem.

The most straightforward approach is to consider all the images in a stack simultane-

ously and solve a 3D pixel segmentation problem. There are many 3D image segmentation

methods, e.g. level sets [OS88], clustering algorithms [CA79, WL93] and region growing

[HS85], etc. While this formulation has an output format that naturally describes 3D tubes,

it is unclear how grouping cues within and across individual 2D images can be properly

integrated. Another major issue is scalability. The number of pixels increases with the

increasing image resolution and number of slices, often rendering the computation infea-

sible. An alternative approach is to solve a series of 2D pixel segmentations independently

and then combine the results to obtain the 3D structures [MS97, Mey94, CGNT09, SM00].

110



Figure 7.1: 3D Stereocilia segmentation. Hair cells are composed of tens of stereocilia
organized in an organ-pipe-like formation of increasing height. We propose to solve the
correspondence between cells across the 2D image stack as a contour grouping problem.

Since cells of different tubes often look alike, there are few good features to distinguish

them. In practice, it is problematic to identify and cluster 3D tubes of varying lengths.

Both these approaches need to address the structural correspondence problem, which

is explicit in the 2D segmentation approach and implicit in the 3D segmentation, e.g. in

the derivation of motion cues linking the deformation of one image slice to the next image

in the stack.

We propose to solve the structural correspondence between slices in the 3D space

by solving a contour grouping problem [BY10c]. Here the contours are imaginary closed

contour cycles cutting through the stack, going through the centers of the regions that have

correspondences in the 3D space. We derive grouping cues between cells in adjacent slices

based on their ability to relate in the 3D space. Those that form a long 3D tube in the space
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Figure 7.2: Extracting 3D tubes by finding correspondences (coded in color) across image
stacks. In our contour grouping framework, missing correspondences simply result in
shorter contours.

become the most salient contour, while those of shorter lengths become less salient. We

solve the contour grouping problem in the spectral graph-theoretical framework [ZSS07].

The separation by the contour length is reflected in complex eigenvectors of different

magnitudes, from which these 3D tubes of various lengths can be extracted.

The most appealing strength of our formulation is that missing correspondences no

longer poses a special and difficult problem. They simply lead to shorter contours which

are extracted from cycles of shorter lengths.

7.2 Contour Grouping for 3D Correspondence

To find the 3D tubes transversing a 2D image stack, we formulate the cellular correspon-

dence as a contour grouping problem. Each 3D tube is represented by a contour starting
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from the cell in the lower stack, transversing the stack and turning backward once the end

of the hair cell is reached, returning back to the initial slice.

Our method is inspired by the Untangling Cycles [ZSS07] model for contour grouping,

which extracts contours by searching for salient cycles of a random walk, within a spectral

graph partitioning framework. In our setup, nodes of the weighted graph no longer rep-

resent edge pixels of possible 2D contours on an image, instead, they represent segment

centers from each individual stack.

7.2.1 Untangling Cycles for Contour Grouping

Within a single image, modeling contour grouping as a spectral graph partitioning problem

can be seen as finding persistent cycles in a random walk along a weighted graphG(V,E),

where weights W correspond to ‘edge’ nodes V , derived from an initial edge map, and

edges E between nodes are given by spatial proximity in the original image. We generate

a directed random walk matrix
−→
P = D−1W normalized with respect to the outgoing con-

nections from each node, i.e. D is a diagonal matrix with entries D(i, i) =
∑

j[W (i, j)].

The criterion is more robust to contour leakages.

The idea behind Untangling Cycles, is that paths within the random walk have to return

to their initial starting point (to guarantee closeness of the contour) and have to do so in

the same period t (to guarantee the repeated transversing of a salient contour rather than

an accidental returning from surrounding clutter). In this context, salient contours can be

thought of as 1D cycles, with a special returning pattern quantified through a peakness

measure R(i, T ) of the random walk probability pattern at steps of multiples of T .

The key observation [ZSS07] is that R(i, T ) closely relates to complex eigenvalues

of the transition matrix P , instead of real eigenvalues, showing that it is the complex

eigenvalues with proper phase angle and magnitude that lead to repeated peaks. A random

walk step on a 1D cycle tends to stay within the cycle, while moving a fixed amount

forward in the cyclic ordering. Therefore, the link between finding image contours and

distinguish them from clutter amounts to searching for persistent cycles in this random
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walk.

7.2.2 Graph Setup for Structural Correspondence

We start with stack of images and their respective segmentations and assign to each seg-

ment a node. With this new set of vertices, nodes can now have the same image spatial

coordinates, while belonging to a different stack number. Edges between nodes are added

if the corresponding segments are lying in adjacent images, while, within the same stack,

only a self returning edge is added at each node. The two frameworks are sketched in

Fig. 7.3. The weight associated to each edge has two components.

First, we recall the single image scenario, where each node had an associated direction

to it, and a ‘good’ contour was one maximizing smoothness. We still seek smoothness

in terms of the 3D tubular structure, so that intuitively each tube does not bend too much

while transversing the stacks. If we imagine each node with an arrow pointing downwards,

measuring bending between two nodes can be simplified by projecting them onto one

single plane and measuring the spatial distance between them. Letting the positions of

node i and j be di and dj respectively on the x − y planes of the individual images, we

define

ξ(i, j) = exp (−|dj − di|/σ) (7.1)

We have empirically found that the introduction of a complex component θ to the

weights allows better cycle discrimination in the embedding space. ψ encodes the number

steps taken in the random walk, so that jumping between stacks, in terms of the n images

stacks {I(1), I(2), . . . , I(n)}, can be written as

ψi→j = t− s, (7.2)

i ∈ I(s), j ∈ I(t)

s, t ∈ 1, . . . , n

where the unit step is given by ψ = 1. The final weight between two nodes will then be
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structural correspondence in 3D contour grouping

a: image input

b: graph setup

c: complex
eigensolution

Figure 7.3: Structural correspondence as a contour grouping problem. We contrast our
method with the traditional Untangling Cycles model. In order to solve structure corre-
spondence and find the cycles (a, yellow), nodes in the graph (b) are no longer edge pixels;
instead, they represent segments on the individual images. In order to have close contours
we add a return link to each outer stack node (dark green). Cycles through the 3D tubu-
lar structures then correspond to cycles in the complex eigenvectors v of a random walk
matrix (c).
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Figure 7.4: Embedding Space. While real eigenvalues (orange ellipse) collapse eigenvec-
tors on the real line, eigenvectors corresponding to complex eigenvalues with large phase
angle and real components (purple square, red circle) encode cycles information: each
cycle corresponds to a cycle in the original graph, which itself encodes a cycle though the
image stacks. Positive and negative phase angles encode clock and anti-clockwise cycles
respectively.

given by:

wi→j =


ξ(i, j) + (ψi→j)i i 6= j

ξ(i, i) + i i = j = 1, n

ξ(i, i) ∗ 0.1 + i i = j = 2, . . . , n− 1

(7.3)

In order to have close contours we add a return link to each node Fig. 7.3. Adding a

returning edge at each layer guarantees that cycles of shorter lengths will also be able to

be picked up in the random walk, hence dealing with missing correspondence throughout

the stacks.

116



7.2.3 Circular Embedding for Random Walk Cycles

In order to understand the intuition behind the eigenvectors of the random walk matrix

P , [ZSS07] showed that the eigenvectors are an approximate solution to an ideal cost for

circular embedding of salient contour grouping.

A circular embedding (Fig. 7.4) is a mapping between the vertex set V of the original

graph to a circle plus the origin: Ocirc : V 7→ (r, θ) : Ocirc(i) = xi = (ri, θi), where

ri is the circle radius which can only take a positive fixed value r0 or 0. θi is the angle

associated with each node. The ideal embedding encodes both the cut and the ordering of

graph nodes, and maximizes the following score:

Ce(r, θ,∆θ) =
∑

θi<θj≤θi+2∆θ
ri>0, rj>0

−→
P ij/|S| ·

1

∆θ
, (7.4)

where S is a subset of graph nodes and ∆θ = θj − θi is the average jumping angle.

Setting u = x, v = u·e−i∆θ, and c = t0e
−i∆θ, we can rewrite Eqn. (7.4) as maximizing

Real((uH
−→
P v · c)/(uHv)) and it is equivalent to the following:

max
u,v∈Cn

Real(uH
−→
P v) s.t. uHv = c. (7.5)

which leads exactly to
−→
P ’s complex eigenvectors.

As in the previous chapter, our results pre-date the untangling cycles extension pro-

posed by [KGS11, Gal00]. In section 6.5, we briefly summarized their work proving that

solving the eigenvalue problem Px = λX is just an approximation of a new generalized

problem. Although we introduce new complex weights, the contour results presented in

this chapter rely on the original work by [ZSS07] and are found by solving the eigenvalue

problem in terms of the matrix P .
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7.3 Experiments

We have 20 stacks of microscopic haircell images. For each stack, we selected 6 image

slices. The parameters used were kept constant for all stacks: connectivity radius of 25

pixels and σ = 5. The choice of radius relates to the amount of shifting allowed between

the images. Cells centers were found using the 2D segmentation method of [BY10a]. We

allowed cells to connect only up to two slices forward. Cylindrical tubes representing hair

cells in 3D are then picked up individually as cycles in the eigenvectors Fig. 7.4. Given n

stacks, cycles of length 6 represent cells that can be seen throughout the slices, while cy-

cles of length 5, 4, . . . represent the ones with missing correspondences, i.e. disappearing

cells in the upper stacks.

Our implementation in MATLAB takes about 1 second to find the correspondences in

a stack of about 60 tubes. Our method is summarized in Algorithm 4. We show results

of two different image stacks inFig. 7.5 and Fig. 7.6, illustrating the main two challenges

present in these type of cells. Hair cell bundles are formed by an organ-pipe like struc-

ture of tubular cells, with the radially outer ones of shorter lengths when compared to

the central ones. Depending on each hair bundle and imaging technique, the difference

in shrinking of the cells can be seen either as cells shifting in space, possibly assuming

ellipsoidal cross-sections before dissipating in the next image layer, or as cells concentri-

cally shrinking, if the images and the hair bundle actually align with respect to its center.

Fig. 7.5 and Fig. 7.6, each of one image stack, illustrate how two different eigenvectors

contain the information of different length cycles.

Algorithm 4 Structural correspondence algorithm.
Given an image stack with their associated segments:
1. Build a graph G(V,E) where the nodes V correspond to the segments throughout
the stack.
2. Compute the weight matrix by Eqn. 7.3.
3. Solve the complex eigenvectors of the associated random walk matrix

−→
P .

4. Extract contours from cycles in the embedding space [ZSS07].
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7.4 Summary

We present a contour grouping approach to extract tubular structures across image stacks.

The key insight is to view the structural correspondence problem as finding closed con-

tours across the image stack. We formulate it in the spectral graph partitioning frame-

work, where the random walk matrix is constructed from complex graph weights capable

of encoding stack ordering. While the resulting eigenvectors correctly encode the tubular

structure information for all cells, regardless of their lengths throughout the stacks.

What’s most appealing about our method is that cycles found can handle missing cor-

respondences in the form of disappearing, shrinking, and shifting cells. In addition, this

particular choice of contour grouping with complex weights allows all salient cycles of

the same length to be extracted from the same eigenvector.
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Figure 7.5: Extracting 3D tubes shrinking across image stacks. Sample cycles extracted
from two eigenvectors: above, cycles of lengths 6 and below, of length 5. Each cycle in
the embedding space is color-coded to show the 3D cell correspondences throughout the
6-image stack. Longer cycles are first extracted from the eigenvector.
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Figure 7.6: Extracting 3D tubes shifting across image stacks. Sample cycles extracted
from two eigenvectors: above, cycles of lengths 6 and below, of length 5. Each cycle in
the embedding space is color-coded to show the 3D cell correspondences throughout the
6-image stack. Longer cycles are first extracted from the eigenvector.
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Chapter 8

From Dots to Real-Scene Textures

Dots are truly everywhere. As illustrated in Fig. 8.1, corn, cobblestones and roof tiles

can all be catalogued as dots. Increasing scales, windows can be seen as dots in a build-

ing, and the building themselves become dots from a satellite image. Our dot extraction

approach, relied on the assumption that dots appeared as many repeated elements and spa-

tially homogeneous throughout the image. In real-images these dots are denoted by textels

or textons and their repetition results in a textural surface.

Textural surfaces have traditionally been studied as stochastic patterns resulting from

these basic textons elements and special focus has been given to understanding their under-

lying statistics [Jul62], by defining Markov texture models [GG90], or using multi-scale

decomposition approaches such as wavelet representations [ZWM98, HB95, PS00]. By

Monday, March 28, 2011

Figure 8.1: Dots in real-scene images. A mosaic floor made of cobblestones, an irregular
lemon array, shaded cobble stone street, corn on the cob and a rooftop with regular pattern.
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viewing these textures as 2D stochastic entities, the individual dots and their (3D) geome-

try became of secondary importance.

The focus shifted back to ‘geometrically meaningful’ textons in shape from texture

models, approximating texture fields from varying views of single textons [For01, LF04,

MR97] and recovering the underlying lattice for near-regular or regular lattice structure

[HLEL06, PBCL09]. In many cases, assumptions on shape, viewpoint or scales of the

textons have to be set a priori. Detecting the individual textons was done in the work

of [LM96], which, for the first time, highlighted the importance of feature positional re-

lationship within each texton and the point-to-point correspondences between features of

different textons. The number of texton elements in the image though had to remain small.

In this chapter, we show the potential of our finding dots approach to automatically de-

tect textons in real-scene images without prior knowledge of specific shape or viewpoint.

While our method is meant for microscopic images and fails in the presence of extreme

gradient changes that can occur in real-scenes, our results show that our approach can suc-

cessfully extract textons in many instances. The precise location and contour delineation

of the textons found can be of potential benefit for many shape from texture or graphics

applications. Hence, we conclude this chapter by presenting one such example of a new

method for synthesizing 3D textural scenes.

8.1 Automatic Parameter Estimation

While in microscopic applications dots of different scales represent dots of different na-

ture and parameters can be set accordingly to find one type versus the other, in real-scene

images the same object can appear as dots of different sizes due to geometrical perspec-

tive or variations in surface geometries, and constant parameters are no longer sufficient.

We exploit the patch segmentation approach of Chap. 4 to adaptively estimate the radii

parameters within each image patch, thus properly segmenting all textons independently

of their size or viewing angle throughout the image.

123



0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

nu
m

be
r o

f r
eg

io
ns

radius
0 2 4 6 8 10 12 14

0

10

20

30

40

50

60

70

nu
m

be
r o

f r
eg

io
ns

radius

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

nu
m

be
r o

f r
eg

io
ns

radius
0 2 4 6 8 10 12 14 16

0

5

10

15

20

25

30

35

40

nu
m

be
r o

f r
eg

io
ns

radius

A B

C D

D

BA

C

rd

rc

rc

rc

rc

Tuesday, March 29, 2011

Figure 8.2: Adaptive radii estimation. The large (600× 900 pixels) input image is divided
into four patches for processing. The vector field p is computed by setting the direction
radius to rd. For each patch we compute the degree by adding up the angles differences
from each pixel to its surrounding neighbors. Negative values (blue) represent sinks (tex-
tons) while positive ones (red) are background. By thresholding these new images, we
obtain many disconnected components, whose radii distributions shown in the histograms
are used to estimate the average core radius for each patch. Radii parameters are set ac-
cordingly, such as the convexity radius rc displayed on each patch.

Recall from Chap. 5 that four radii are involved in the local grouping cues setup:

rd: radius of the neighborhood to compute the peak direction vector p. Beyond a certain

radius, rd gives a constant p, so it can be chosen independently of the dot scale.

rc: radius of the neighborhood used to compute the feature vector F , it encodes the local

convexity of the neighborhood and increasing it allows to look for larger shapes.

rA: radius used to compute short-range attraction cues. Increasing rA brings nearby

pixels together, so it should be at least comparable to the dot size.

rR: radius that determines the extent of long-range repulsion cues.
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a: input image b: fixed radii segmentation c: our results

Figure 8.3: Automatic segmentation of a) textons in image (e.g. lemons and mandarines)
of different scales. We compare our c) adaptive radii results to a b) fixed parameter seg-
mentation . While fixed parameters yield cleaner results for the larger textons, they incor-
rectly clusters together most of the smaller ones. In addition, the fixed parameters fail in
capturing the appropriate texton shape and results in a uniform dot appearance.

Intuitively, rc has to entirely contain the dot to set a proper ‘template’ size for the feature

vector F computation, while rA and rR have to be large enough to capture shape infor-

mation and surrounding information respectively. rc, rA and rR can be therefore defined

in terms of a core radius r0 that represents the size of the average dot, computed with the

heuristics depicted in Fig. 8.4. Starting with degree of the convexity feature F , we thresh-

old the negative values to obtain disconnected components and estimate the radius of each

component. We take the radius associated with peak of the radii distribution as core radius

estimate, restricting the radius to be at least 4 pixels. The rest of the parameters can then

be set accordingly: rc = max(4, 1.5r0), ra = max(4, r0) and rR = max(20, 3r0). Sample

results with constant and our new adaptive parameters are compared Fig. 8.4.

8.2 Experiments on the CMU NRT database

We implement our algorithm in MATLAB and apply to a variety of textons in real-scenes

structures (Fig. 8.4 and Fig. 8.5). Distribution and sizes can vary significantly even within

a single image. We test our method on the Near-regular textures from the CMU NRT

database (http://vivid.cse.psu.edu/texturedb/gallery/). Images are further divided into 2×2

patches with a patch overlap size of 20 pixels.
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a: intensity and color variation within textons

b: occlusions and intensity variation across textons

Figure 8.4: Intensity variations within and across textons. a) A common background
allows textons to be extracted simultaneously regardless of color variations within the
tiles. b) In the presence of larger intensity variations across the image (shadows, occluding
objects, background gradient variation), local convexity cues are not sufficient to properly
extract all the dots and additional directional information should be used.

We measure the goodness of segmentation by scoring our results with respect to the

ground-truth center locations provided with the dataset. We define for each image I:

score (I) =
No. true positives

No. segments + No. missed
(8.1)

and, given the dot variety, we display each score on the respective images in Fig. 8.5. As

we show in Fig. 8.4, our approach is able to deal with varying color and gradients within

each textural element. The importance relies on having a common background that can

be distinguished by a lighter (or darker) intensity. This assumption fails in the presence

of larger image gradients such shadows or occluding objects or varying background gra-

dients (Fig. 8.4b), which could be obviated by adding a directional component to the local

weights, as shown in Sec. 5.3.2. Overall though, our method is able to automatically seg-

ment the dots in many real-scene images, independently of scale and viewing conditions.
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Figure 8.5: Automatic texton segmentation on the CMU NRT dataset on different texton
lattices with complex geometries. The parameters adapt to each image allowing to find
the textons present independently of their shape or scale.
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8.3 3D Scene Rendering From Textured Images

The concept of texture mapping is one of the most powerful perceptual insights in com-

puter graphics. Simply put, the idea is that one can create a very realistic representation

of even the most complex scene using just a few surfaces, as long as these surfaces are

“painted” in the right way. Planar surfaces, in particular, have a very nice property: any

two views of the same plane are related via a simple homography transformation. This

means, for example, that a planar building facade on a photograph could be easily warped

to look like it’s being seem from any other viewpoint. This concept has been extensively

used by image-based modeling and rendering systems to cheaply and easily create very

realistic 3D models from just a few photographs (e.g. [DTM96]) or even a single image

(e.g. [HAA97]). In the game industry, planar texture mapping from photographs is widely

used for adding realistic road surfaces and building facades to urban environments.

Planar texture mapping makes two somewhat related assumptions: 1) that the surface

to be texture-mapped is ideally planar (without even the smallest bumps), and 2) that it’s

lambertian (i.e. viewpoint-independent). Unfortunately, many real-world surfaces – grass

fields, asphalt pavements, pebble roads, sandy beaches – violate these assumptions. As a

result, one often encounters characteristic stretching and flattening artifacts, especially at

oblique angles. Although these artifacts are usually small, perceptually they are significant

enough to substantially reduce the perceived realism, e.g. of a virtual environment, to be

of major concern, particularly to game designers.

Several solutions to this problem have been proposed. In traditional computer graph-

ics, people have used bump mapping [Bli78] and displacement mapping to introduce sur-

face roughness. However, while attempts have been made to capture bump maps from

real photographs, using photometric stereo [RTG97] or normal stereo [DTM96], the re-

sults not been particularly encouraging. Others have taken the path of utilizing a dataset

of textures taken under varying lighting and viewing conditions as a way to learn how

a texture might look from a different viewpoint/lighting. For example, the now classic

work of Leung and Malik [LM01] proposed to utilize the CuReT database [DNvGK97] to
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(a) input image (b) standard texture mapping (c) our result

Figure 8.6: From the input image (a), moving the camera downwards, standard texture
mapping produces a warped result (b), but our algorithm is able to preserve the correct
three dimensional structure of the texture (c).

compute 3D textons across the stack of different views of the same texture. Each 3D

texton represents how a particular type of geometric surface patch on the texture be-

haves under different conditions. When novel material is presented, the approach tries

to first identify the corresponding 3D textons and then “rotate” them to generate a novel

view/lighting of that material. Other approaches that follow in this general direction in-

clude [LYS01, VZ02, CD04, VT04]. While successful for some types of textures taken in

a laboratory setting, all these approaches share the same weakness – they rely on the tex-

ture database to have very similar textures to the ones being processed. As a consequence,

the methods have not been shown to work well, say, arbitrary photographs of outdoor

scenes, such as the one on Fig. 8.6. At the same time, texture synthesis methods [EL99,

WL00, HJO+01, EF01] have been shown to be successful at synthesizing prospectively-

varying textures [KSE+03, DZP08] and adding surface detail [FJP02, MBG03], but have

not, to our knowledge, been used to create novel views of texture.

We present a very simple but effective approach for synthesizing novel views of a

given textured surface from a single photograph. The main idea is to exploit the fact that

analyzed surface is, in fact, a texture. i.e. it is composed of a repeated stochastic structure.

But because the surface is being viewed at an angle, different texture elements are being

seen at different viewing angles. This allows us to use a single image as a statistical sample

that should include the necessary data to synthesize novel views of that surface (since the

outdoor illumination remains constant).

This same insight has been exploited before, in particular for sharing the parameters
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of a reflectance model spatially across the surface [REB06, WZT+08]. What makes our

method different is that it’s non-parametric, and much more simple. Briefly, we start by

assuming that the given surface is planar, and apply a homography to warp it to a novel

view. We then apply non-parametric texture transfer [EF01] to inject the appropriate statis-

tics while maintaining the correct structural appearance. Moving the camera in 3D space,

we can predict how a patch would look like under a different viewing angle from a) its

appearance under the original viewing angle (structural similarity) and b) the appearance

under the new viewing angle of a different patch of the same texture (statistical similarity).

The rest of the chapter will present the details of the algorithm and show some results.

8.4 View-dependent Texture Transfer

Let the original camera location (xw, yw, zw) and tilt angle θ correspond to the input image

I and consider a new camera location (x′w, y
′
w, z

′
w) with new tilt angle θ′ corresponding to

a new image I ′. Points on the image plane given by (xi, yi, f), where f is the focal length

of the camera, will be abbreviated with (xi, yi). Points on the ground plane will be given

by (xw, 0, zw).

For a point in the new image (x′i, y
′
i), we compute the viewing angle φ of its corre-

sponding ground surface point (x′w, 0, z
′
w) and find, by similar triangles, the point (xw, 0, zw)

on the ground surface that has the same viewing angle with respect to the original image

I . For simplicity of the explanation and without loss of generality, consider camera move-

ments along the xw = 0 plane. The image points in I with the correct viewing statistics

can again be found by similar triangles by setting yi = f tanφ and solving

xi =

√
f 2 + y2

i xw√
(zw − zc)2 + y2

c

. (8.2)

where f is the focal length of the camera and (xc, 0, zc) is the original camera position. In

addition to exploiting viewing angles information, we also require that the transfer apply

the correct scaling of the texture elements. The rescaling factor s is the ratio between the

projected distances in the two images between two arbitrary known 3D points in the scene.
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Figure 8.7: 3D texture synthesis results. For each input image (left column), we simulate
camera movements by showing frames at different moments in time. The first row corre-
sponds to the standard texture mapping, while the second displays our results. The camera
path is chosen to be down and a bit forward. Our synthesis shows the correct 3D structure
of the textures. The flowers towards the back become denser as we move downwards (yel-
low tulips), while it recedes and more green patches become visible as we move upwards
(pink tulips). Both sets of flowers are scaled properly, giving the correct perception of the
distance to the surface surface.

Now that the geometry of our problem is defined, creating a new view is a relatively

straightforward application the texture transfer [EF01]. In Step 1, we assume that the

surface is totally planar and create the new view by simply applying the appropriate ho-

mography transformation to the input image. In Step 2, we “fix up” the distorted warped

image by transferring the texture from the original image onto it. We use the standard tex-

ture transfer algorithm, except for each patch location (x′i, y
′
i) in the new image, we only

allow it to sample from the neighborhood of the corresponding angle location (xi, yi) in

the original image (see previous section). The neighborhood is defined by a 2D Gaussian

with σ related to the patch size (we used .6 in our experiments). Moreover, the neigh-

borhood is resized by the scale factor s before matching to ensure that the correct texture

scale is preserved.
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Figure 8.8: 3D texture synthesis results. For each input image (left column), we simu-
late camera movements by showing frames at different moments in time. The first row
corresponds to the standard texture mapping, while the second displays our results. The
camera path is chosen to be down and a bit forward. Our synthesis shows the correct 3D
structure of the textures. The other two cases, eliminate distortions otherwise present in
the homography. Both the grass and the hay maintain a vertical overall structure as we
move downwards and the overall appearance remains three dimensional.

The above algorithm works well for small camera movements, “repainting” a less-

than-perfect homography warp to have the right texture statistics. However, for large cam-

era movements, the homography becomes completely wrong, and the transfer algorithm

is not able to “fix it”. We propose a simple but effective iterative solution: a large camera

movement is divided into intermediate steps. For each step, we run the above algorithm,

and use its result as the input image for the next iteration. This way, each time the algo-

rithm needs to do only a little bit of fixing up, better preserving the correct structure of the

input texture.
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Figure 8.9: Synthesis results. We display the homography and our synthesis at incremental
camera movements. The input images are displayed in the left column. While the aim of
this paper is to synthesize textures composed or repeated elements, it is interesting to
see that it can be applied in more general cases. The roof tops illustrate its potential.
Although it fails in some parts of the image due to not enough samples of the same texture
and elements of varying height within the input image, our synthesis is able to maintain
the correct 3D appearance as the camera is moved downwards and improves significantly
when compared to the distorted appearance given by the homography.

8.5 Experiments and Discussion

For each input image, we simulate incremental camera movements and display frames at

different moments in time. The results are shown in Fig. 8.7 and Fig. 8.8. The synthesized

results maintain the correct 3D appearance of the textures. The flower examples show an

interesting phenomenon that is lost in the standard texture mapping. The flowers towards

the back of the field become denser as the camera moves downwards (in the yellow tulips

case), while the line of flower density change recedes and the camera moves upward and

more green patches become visible (pink tulip scene). Both sets of flowers are scaled
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Figure 8.10: Flowers automatically extracted with our segmentation approach which could
be used as input for the synthesis application.

properly, giving the correct perception of the surface, showing a clear and significant im-

provement over the standard mapping. The other cases, eliminate distortions otherwise

present in the homography. Both the grass and the hay maintain a vertical overall struc-

ture as we move downwards and the overall appearance remains three dimensional. In the

case of images with the presence of textons, such as the flower one, our dot segmentation

results could be used (Fig. 8.10) as input to provide better synthesis. While the aim of this

paper is to synthesize textures composed or repeated elements, it is interesting to see that

it can be applied in more general cases. In the penguin image in Fig. 8.9, the 3D structure

is more visible towards the sides, where our texture transfer is able to keep the penguins

in vertical position. The roof tops illustrate its potential for future work. Although it fails

in some parts of the image due to not enough samples of the same texture and elements of

varying height within the input image, our synthesis is able to maintain the correct 3D ap-

pearance as the camera is moved downwards and improves significantly when compared

to the distorted appearance given by the homography.
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Chapter 9

Conclusions

Extracting dots is a challenging image segmentation problem: faint boundaries and low

contrast between regions, large intensity variations within the regions and conjoined clus-

ters of dots make some dots hard to tease apart even upon close inspection. This thesis

presents a constrained spectral graph partitioning framework to deal with the fine gran-

ularity of these small structures together with the ongoing challenge of dealing with the

complexity associated with increasing image sizes. Our work makes several contributions:

• We successfully extract salient regions by exploring local image structure to cap-

ture 2D geometrical information in the local pairwise cues. We encode geometry

(convexity in particular) in a pixel-centric relational representation. While such a

representation is coarse for each pixel, its distributive nature is capable of encoding

subtle differences in local convexity with the ensemble of pixels. As discussed for

thin and long structures, an extension of our work is to handle more complicated

geometries other than convexity.

• We introduce grouping cues of both attractive and repulsive natures. While repul-

sion from feature dissimilarity seems to encode the same attraction cue of feature

similarity, as it operates at a larger spatial range, it plays an active and complemen-

tary role to local attraction. Popout would not be possible without repulsion.
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• We decouple the challenge of fine segmentation granularity and image complexity

in constrained patch segmentations. We include stitching constraints that naturally

integrate within the spectral-graph framework of finding dots. The image is di-

vided into many subpatches than can be independently run subject to stitching con-

straints between them, allowing constraints to propagate through even in the interior

of the patches. This obviates segmentation complexity associated with larger images

and emphasizes that for many medical images the ‘global’ information contained in

smaller image patches is sufficient to properly segment the salient structures.

• While our method is designed to pop out all the dots in a microscopic image based

entirely on the convexity flow field feature, we show the potential of our dot model

to segment textons in real-scenes. We briefly present an algorithm for 3D synthesis,

but the potential of using dot segmentation as input has yet to be studied. Similarly,

many other shape from texture applications could benefit from an automatic texton

detection.

• We explore shape extraction for larger objects within a contour grouping framework,

by exploiting region information to establish the local cues in the 1D contour group-

ing approach in trying to extract large objects with faint boundaries. Intensities still

play a role, but most importantly local cues encode region membership which al-

lows even farther apart boundary points to correctly group together and form long

salient contours.

This thesis represents a first step in studying how local geometry representation can be

exploited in the local pairwise cues setup of spectral-graph approaches. We show how to

automatically segment many small and thin structures in an image, regardless of its size

and demonstrate the potential of repulsion cues for region extraction. Our ‘finding dots’

approach is robust to local intensity fluctuations and extracts regions of interest simultane-

ously, without user initialization, in one foreground with many disconnected components.
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