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Abstract

Perceptual popout is defined by both feature similarity
and local feature contrast. We identify these two measures
with attraction and repulsion, and unify the dual processes
of association by attraction and segregation by repulsion
in a single grouping framework. We generalize normalized
cuts to multi-way partitioning with these dual measures. We
expand graph partitioning approaches to weight matrices
with negative entries, and provide a theoretical basis for
solution regularization in such algorithms. We show that at-
traction, repulsion and regularization each contributes in a
unique way to popout. Their roles are demonstrated in var-
ious salience detection and visual search scenarios. This
work opens up the possibilities of encoding negative corre-
lations in constraint satisfaction problems, where solutions
by simple and robust eigendecomposition become possible.

1. Introduction

Visual processing starts by extracting local features such
as oriented edges. As a prerequisite for higher-level tasks
such as object recognition, these features detected at an
early stage must be grouped into meaningful global entities
such as regions, boundaries and surfaces. The goal of pre-
attentive visual segmentation [12] is to mark conspicuous
image locations and make them more salient for perceptual
popout. These locations not only include boundaries be-
tween regions, but also smooth contours and popout targets
against backgrounds (Fig. 1).

It has long been assumed that regions are first character-
ized by features which are homogeneous within the areas.
These feature measures are then compared at neighbouring
locations to locate boundaries between regions [12]. This
view of feature discrimination for grouping is supported

a. Boundary. b. Contour. c. Popout.

Figure 1. Pre-attentive segmentation is to mark conspic-
uous image locations, which could be caused by a) region
boundaries, b) smooth contours and c) popout targets. In
these examples, the similarity of features within figure and
ground compounds with the dissimilarity between figure
and ground. Figure and ground are well segregated in fea-
ture maps tuned to different orientations.

by evidence in neurophysiology on elaborate feature detec-
tors in visual cortex [6], in psychophysics on visual search
[22] and in modeling on texture segmentation [10, 4, 14].
Some other approaches of texture segmentation go beyond
the analysis of features obtained from image filters and
model the interactions between filters [24]. These Markov
Random Field models [8] capture context dependences and
other statistical characteristics of texture features [12].

However, it has been shown [3, 11, 19, 15] that when
feature similarity within an area and feature differences be-
tween areas are teased apart, the two aspects of perceptual
organization, association and segregation, can contribute in-
dependently to grouping. In particular, when features are
varied continuously within areas, it is the local feature con-
trast, rather than the feature properties themselves, that is
more important for the perceived grouping. Fig. 2 demon-
strates that local feature contrast plays an active role in bind-
ing (even dissimilar) elements together [15]. These results
motivate models of preattentive vision where region bound-
aries are directly localized through lateral interactions be-
tween edge detectors [16, 12].
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a. Boundary. b. Incoherent. c. Disconnected.

Figure 2. Local feature contrast alone is sufficient to per-
ceptually link dissimilar elements together. a) Boundary by
local orientation contrast. b) Figure without curvilinearity.
c) Spatially disconnected figure without element similarity.

Such contextual feature analysis for grouping can be un-
derstood in a relational graph framework, where each lo-
cation is denoted by a node and feature compatibility be-
tween locations is captured by a weight associated with
the edge between nodes. Gestalt grouping factors, such
as proximity, similarity, continuity and symmetry, can be
encoded and combined in pairwise similarity measures
[23, 21, 18, 7, 20]. While Gestalt laws have always stressed
the aspects of similarity of elements in grouping, the effect
of saliency by local feature contrast cannot be described in a
framework that models similarity grouping. Fig. 2c shows
that, completely dissimilar elements that are spatially dis-
connected can be perceived as a figure simply because they
are locally dissimilar to a common ground.

In this paper, we present a grouping method which
integrates pairwise attraction and repulsion information.
Whereas the attraction measures the degree of association
by feature similarity, the repulsion measures the segrega-
tion by feature dissimilarity. We generalize the normalized
cuts criteria [21] to a multi-way partitioning on these dual
measures. We derive the necessary and sufficient conditions
on the graph weights for objects to be segmented in a vari-
ety of settings. We demonstrate that both salience detection
and the asymmetry in visual search can be accounted for by
our method.

The rest of the paper is organized as follows. Section 2
expands our grouping method in detail. Section 3 presents
experimental results. Section 4 concludes the paper.

2. Method

In graph approaches, an image is described by an undi-
rected weighted graph G = (V;E), in which each pixel is
associated with a vertex v 2 V and an edge e 2 E between
vertex i and j is associated with weight Wij . W is often
assumed to be symmetric, W =W T . Let the degree matrix
DW be a diagonal matrix, where DW (i; i) =

P
j W (i; j),

8i. In our model, we have two nonnegative weight matrices,

A and R, for attraction and repulsion respectively.

2.1. Criteria

For attraction, we desire the within-group association to
be as large as possible; whereas for repulsion, we desire the
between-group segregation to be as large as possible (Fig.
3). We extend the bipartitioning in normalized cuts [21] to
a k-way partitioning based on both attraction and repulsion.
A k-way vertex partitioning fVl; l = 1; : : : ; kg on graph
G = (V;E) has V = [kl=1Vl and Vi \ Vj = ?;8i 6= j.

1 2

3 4

1 2

3 4

a) Association by attraction. b) Segregation by repulsion.

Figure 3. Grouping criterion. Illustrated here is �2G =
ff1; 2g; f3; 4gg. We want to maximize normalized sums of
thick-lined edge weights, while minimizing those of dotted-
lined weights. a) For attraction, we aim at maximizing
within-group association. b) For repulsion, we aim at max-
imizing between-group segregation. These two goals are
combined into one grouping criterion weighted by their rel-
ative strengths of total connections.

A formal description of the criteria is as follows. Given
nonnegative weight matrix W , vertex sets P and Q, let
CW (P;Q) denote the total W connections from P to Q,
DW (P ) denotes the degree of W connections of P , and
SW (P;Q) denotes the connection ratio from set P to Q:

CW (P;Q) =
P

j2P;k2QW (j; k);

DW (P ) = CW (P;V);

SW (P;Q) = CW (P;Q)
DW (P ) :

Note that SW (P; P ) + SW (P;V n P ) = 1. For each of the
k partitions, we measure the goodness of association by its
within-group attraction ratio and the goodness of segrega-
tion by its between-group repulsion ratio, resulting in the
goodness of grouping as the linear summation of the two
ratios, weighted by their relative strengths:

�a(�
k
G) =

Pk
l=1

h
SA(Vl;Vl)DA(Vl)
DA(Vl)+DR(Vl)

+ SR(Vl;VnVl)DR(Vl)
DA(Vl)+DR(Vl)

i
;

�c(�
k
G) =

Pk
l=1

h
SA(Vl;VnVl)DA(Vl)
DA(Vl)+DR(Vl)

+ SR(Vl;Vl)DR(Vl)
DA(Vl)+DR(Vl)

i
:
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A good partitioning maximizes �a while minimizes �c.
Since �a + �c = k, both goals can be satisfied simultane-
ously. Intuitively, we aim at having tight attraction within
clusters and loose attraction between clusters at the same
time, strong repulsion between clusters and weak repulsion
within clusters at the same time.

2.2. Computational solution

We introduce a few symbols to turn the above criterion
into a computable form. Let Xl be a binary membership in-
dicator vector for group l, l = 1; : : : ; k, which assumes the
value of 1 if a node belongs to this group and 0 otherwise.
Let

Weq = A�R+DR;

Deq = DA +DR:

It can be verified that

�a(�
k
G) =

kX
l=1

XT
l WeqXl

XT
l DeqX

T
l

= trace(Y TWeqY );

s. t. Y TDeqY = I;

where Y = X(XTDeqX)�
1
2 and X = [X1; : : : ; Xk].

Therefore, if we relax the discreteness constraints on Y ,
by using the method of Lagrange multipliers, the above
quadratic formulation leads to the standard generalized
eigenvalue problem, i.e., the maximizer of �a, in the form
of k column vectors of Y , is given by the k largest gener-
alized eigenvectors of (Weq ; Deq). Based on Gershgorin’s
theorem, we can estimate j�l(Weq ; Deq)j � 2;8l, where
�l(Weq ; Deq) is the l-th largest eigenvalue of (Weq ; Deq).

Let’s examine two extreme cases. If there is no re-
pulsion, we have Weq = A and Deq = DA, which re-
duces to the conventional normalized cuts [21], where the
all-one vector 1 is the eigenvector of (Weq ; Deq) with the
largest eigenvalue of 1. If there is no attraction, we have
Weq = DR � R and D = DR, where 1 is the eigenvector
of (Weq ; Deq) with the smallest eigenvalue of 0. Between
these two extremes is the case where we have both attrac-
tion and repulsion, usually 1 is no longer an eigenvector of
(Weq ; Deq). Indeed, attraction tends to bind elements to-
gether, while repulsion tends to break elements apart. The
optimal partitioning results from the balance of these two
forces.

2.3. Partitioning with a symmetrical matrix

In the framework of attraction and repulsion, we can
formulate the normalized cuts on an arbitrary symmetrical
weight matrix W . Let

W = W+ � (W�) = A�R;

where W+ and W� contain the absolute values of all non-
negative and negative entries of W respectively. We regard
W+ as the attraction of A and W� as the repulsion of R,
and interpret the normalized cuts on A and R as that on W .
The eigensystem (Weq ; Deq) is thus

Weq = W +DW
�

; Deq = DW+
+DW

�

:

With the introduction of repulsion, we no longer re-
quire weight matrices to be nonnegative in graph partition-
ing algorithms. This opens up the possibilities of encod-
ing negative correlations among constraints in optimization
problems, e.g. those formulated in an energy function on
Markov Random Fields [9, 5], whereby globally optimal
solutions through simple and robust eigendecompositions
become available.

2.4. Regularization

The above decomposition of W into an attraction field
and a repulsion field is not unique. In fact,

W = (W+ +�)� (W� +�) = A�R;

where � could be any nonnegative matrix. The previous
case corresponds to � = 0. If we interpret W using A =
W+ +� and R = W� +�, the partitioning is then given
by the eigensystem

(Weq +D�; Deq + 2D�):

We see that the only effect of � on the solution is the ma-
trix D�. As D� increases its magnitude, the first largest
eigenvalue approaches 0:5.

This extra degree of freedom provides us with solution
regularization. Practical experiences have indicated that
when Deq has near-zero values for some nodes, the seg-
mentation computed by (Weq ; Deq) becomes highly unsta-
ble. This situation occurs when a coherent figure is embed-
ded in a random ground. In the attraction case, this problem
can be remedied by the addition of a small constant base-
line connection weight. However, such a technique lacks
any theoretical justification and alters the measurements of
pairwise affinity. In our current framework, we can intro-
duce any constant baseline connection to the attraction ma-
trix W+, and its effect is cancelled by its addition to the re-
pulsion matrix W�. In other words, we choose D� = Æ I ,
where Æ is a scalar and I is the identity matrix. This does
not change the information contained in the variation of the
original graph weights. However, as the degree of total con-
nections for each node increases, the grouping sensitivity to
nodes of sparse connections is alleviated. The regularized
solutions can thus reveal the underlying stable structures.
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2.5 Conditions for popout

To aid our understanding of repulsion and regularization,
we study a simple 4-node graph (Fig. 3). Let

W =

2
664

0 x y y

x 0 y y

y y 0 z

y y z 0

3
775 ; V =

2
664

1 1 1 0
1 0 0 0
0 1 0 1
0 0 0 0

3
775 ;

where x, y, z denote figure-to-figure, figure-to-ground,
ground-to-ground connections [1, 2] respectively; each col-
umn of V gives a labeling of the graph. Due to the weight
symmetry, we only need to consider the four cases in V , all
others leading to one of the four �a values. We determine
the conditions on x, y and z such that figure-ground as given
by �2G = ff1; 2g; f3; 4gg can be guaranteed.

Since scaling W does not change the grouping, we as-
sume z = 1. The feasible set of x and y can be found (after
a lengthy derivation!) by requiring �a for the first column of
V to be larger than that for any other column. The closed-
form feasible solutions are given in Table 2. How feasible
sets change with regularization is illustrated in Fig. 4.

As shown in Fig. 4, repulsion and regularization expand
the regions of affinity strengths that cause correct group-
ing. These effects are summarized in Table 1: with negative
figure-ground connections such as those in figures defined
by local feature contrast, repulsion allows an object of weak
figure-figure connections to be segmented, while with nega-
tive ground-ground connections such as those in fragmented
or incoherent background cases, regularization allows mod-
erately coherent foreground to stand out.

Figure n ground coherent incoherent
coherent Attraction Regularization
incoherent Repulsion No figure-ground

Table 1. Popout through the normalized cuts criteria on a
weight matrix with negative weights illustrates distinct ma-
jor contributions of attraction, repulsion and regularization
to various figure-ground combinations. Attraction is most
effective at detecting a coherent figure against a coherent
ground. With repulsion, dissimilar figural elements against
a common ground popout. With regularization, a coherent
figure can popout from a random ground.

The problem of fragmented background has led [17] to
adopt an unbalanced criterion which emphasizes figural (but
not ground) coherence. However, an unbalanced criterion
tends to favor small local clusters and thus miss global
structures. Here we show that the same goal can be achieved
with a balanced criterion in the attraction-repulsion frame-
work. We demonstrate these effects in the results section.

a)

z y x

1 (�1; 0) (1� y �
p
1� 2y + 9y2; +1)

1 [0; 1] ( 2y
2

1+y
; +1)

1 (1; +1) (�y + 2y2; +1)

�1 (�1; �1) (�2y
2

1�y
; �1+2y+8y2

2
)

�1 [�1; � 1

2
] (�y � 2y2; �1+2y+8y2

2
)

b)

z y x

1 (�1; 0) (�1 + 2y; +1)

1 [0; 1] (max(0; �3+24y
21

); +1)

1 (1; +1) (0; +1)

�1 (�1; �1) ( 3+24y
21

; 1)

�1 [�1; � 7

8
] (�3+5y+2y

2

2
; 0)

�1 [0; 1) (1 + 2y; 1)

Table 2. Feasible sets of parameters for Fig. 3. a) No
regularization: Æ = 0. b) Regularization at a limit: Æ =1.

Æ = 0
�3 x

y

�3 x

y

Æ = 5
�3 x

y

�3 x

y

Æ =1
�3 x

y

�3 x

y

z = 1 z = �1

Figure 4. Repulsion and regularization help figural
popout. Here x, y and z are figure-figure, figure-ground
and ground-ground affinity. The shaded areas indicate fea-
sible regions for figural popout. The darker areas are those
with attraction alone. When z = 1, the ground is made of
similar elements. When y > 0, x has to increase rapidly
(quadratic). However, if y < 0, x can be even more repul-
sive than y. Therefore, with attraction, only coherent figures
can popout, while with repulsion, even incoherent figures
can popout. When z = �1, the ground is incoherent. If
y is attraction, no coherent figure (x > 0) can popout. If
y is repulsion, then a figure pops out even if x < y. With
regularization, measured by Æ, the solution space in general
expands. In particular, a sufficiently coherent figure (with
linear x�y relationship) can popout from a random ground,
which would be otherwise impossible.
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3. Results

To calculate the affinity between two features, we use a
Mexican hat function of their difference X :

h(X ; �1;�2) = g(X ; �1)� g(X ; �2);

where g(X ; �) is a Gaussian function with zero mean and
covariance �. Let �2 = �2�1. The evaluation signals pair-
wise attraction if positive, repulsion if negative and neutral
if zero. With this simple change from Gaussian functions
[21, 13, 17] measuring attraction to Mexican hat functions
measuring both attraction and repulsion, we show that re-
pulsion plays a very unique and effective role in grouping.

We compute pairwise affinity in a local neighborhood
around each pixel. We denote the neighborhood radius by
r. Larger radii require more computation, but allow for the
discovery of larger structures through our grouping engine.

Fig. 5 shows that repulsion not only binds objects re-
gardless of their contrasts, but also requires fewer local fea-
ture comparisons. For attraction, since zero could mean ei-
ther two pixels are highly dissimilar or they are not neigh-
bours, the result with r = 1 has graded valuation over the
ground and the larger object. With larger r’s, zero attraction
becomes disambiguated and both objects come out as dif-
ferent groups until r = 7. If the objects have opposite con-
trasts, attraction cannot possibly group them, whereas re-
pulsion capturing local feature contrast readily unites them
against a common enemy.

a)

30 x 30 image λ
2
 = 1.00

r = 1

λ
2
 = 0.99

r = 3

λ
2
 = 0.99

r = 5

λ
2
 = 0.97

r = 7

λ
1
 = 1.00

r = 1

b)

30 x 30 image λ
2
 = 1.00

r = 1

λ
2
 = 0.99

r = 3

λ
2
 = 0.99

r = 5

λ
2
 = 0.98

r = 7

λ
1
 = 1.00

r = 1

Figure 5. Repulsion can bind multiple objects with less
computation. We use �1 = 0:1 to evaluate affinity by in-
tensity, 3% of which become negative with � = 5. Column
2 to 5 are the results with attraction measured by g(X;�21)
with increasing r’s. The rightmost is the result with affinity
measured by h(X;�21 ; 25�

2
1). a) The image has two rect-

angles of equal average intensity 0:8 against background of
0:5, added by Gaussian noise with standard deviation 0:03.
A much larger neighborhood size is needed for attraction to
achieve a comparable result with repulsion. b) The smaller
object now has an average intensity of 0:2. Even with a
large r, the two objects cannot be united by attraction.

Fig. 6 are results on bar configurations. Attraction is
good for grouping similar elements, but poor at salience de-
tection. When the ground is coherent, repulsion between
figure-ground can greatly reduce the pressure on figural co-
herence, thus dissimilar elements are grouped together.

Figure 6. Pre-attentive segmentation on line segments
(first row). Row 2 and 3 are results by attraction and re-
pulsion respectively, �1 = 30Æ for orientation, �2 = 10 for
distance, r = 2 and � = 2.

Fig. 7 shows coherent figures against random grounds.
Since ground-ground connections are weak, no coherent
figure can popout without regularization. Regularization
improves the stability of grouping, the global figure-ground
organization can thus be discovered.

a) b)

c)

λ
2
 = 1.00 λ

1
 = 0.94 λ

1
 = 0.71

λ
1
 = 1.99

δ = 0

λ
1
 = 0.92

δ = 0.6

λ
1
 = 0.68

δ = 6 d)

λ
2
 = 1.00 λ

1
 = 0.80 λ

1
 = 0.57

λ
1
 = 1.81

δ = 0

λ
1
 = 0.79

δ = 0.6

λ
1
 = 0.56

δ = 6

Figure 7. Regularization helps coherent figures popout
from random grounds. a) Region. b) Contour. Results in c)
and d) are organized row-wise for attraction and repulsion,
with �1 = 5Æ, �2 = 5, r = 2, � = 2. Across the columns
varies the degree of regularization. It becomes saturated as
eigenvalue �! 0:5.
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Finally, Fig. 8 shows that the asymmetry in visual search
can be accounted for by the asymmetry in ground-ground
connections resulting from contextual influence (collinear-
ity). The figure-ground connections are comparable, but
ground-ground connections are weaker for vertical bars
among 45Æ bars, leading to smaller figure-ground contrast.

Figure 8. Asymmetry in visual search. The images con-
tain 0Æ and 45Æ bars. The first two are noiseless conditions,
the last two are added with the same �15Æ noise field. The
asymmetry is reflected in different figure-ground contrasts.

4. Conclusions

We developed a grouping method unifying dual proce-
dures of association by attraction and segregation by repul-
sion. Within this framework, we provided a theoretical ba-
sis for solution regularization in the normalized cuts algo-
rithms.

We showed that all popout phenomena can be modelled
with a balanced criterion, with attraction measuring feature
similarity, repulsion measuring local feature contrast and
regularization improving grouping stability.

We expanded graph partitioning to weight matrices with
negative values, which provides a representation for neg-
ative correlations in constraint satisfaction problems and
simple solutions to such formulations are thus possible.
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