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Solving Affine Constrained Rayleigh QuotientsM bl i t i i d Solving Affine Constrained Rayleigh QuotientsMany problems in computer vision and t i ti th i i li t ti l
Solving Affine Constrained Rayleigh QuotientsMany problems in computer vision and 

f no restrictions on the pairwise clique potentialsMachine Learning can be formulated no restrictions on the pairwise clique potentialsMachine Learning can be formulated 
using Markov Random Fieldsusing Markov Random Fields

l it O(# d #l b l 2) EQUIVALENT to IQP for x binarycomplexity O(#edges #labels2), EQUIVALENT to IQP for x binarycomplexity O(#edges #labels ), y
d h linear in the description length of the clique potentialsproposed approach: linear in the description length of the clique potentialsproposed approach:

Linear Constraint: Y d Shi 2001Linear Constraint: Yu and Shi 2001
i d l ti lit b d

Yu and Shi, 2001
improved general optimality bounds

ff C
improved general optimality bounds

Affine Constraint: SQPAffine Constraint: SQP

Inequality Constraint ? Theorem: this is NP HARDInequality Constraint ?                                      MRF d IQP/QP f l ti Theorem: this is NP-HARDq yMRFs and IQP/QP formulation IQP f l iMRFs and IQP/QP formulation IQP formulationIQP formulation

S l tiSolutionSolution
th1 rewrite as then1. rewrite as then

di t t 2 i t ddiscrete set 2. introduce Efficient computation with
discrete set 2. introduce Efficient computation with 

Sh M i f lShermann-Morrison formulaQP relaxationProposition: QP is equivalent to IQP QP relaxationProposition: QP is equivalent to IQP 
3 solve3. solve

(generalizes a result form Ravikumar & Lafferty 2006)(generalizes a result form Ravikumar & Lafferty, 2006)
i l i IQP l i QP C l it ( i l it ti )given a solution to IQP, we can construct a solution to QP simplexnon convex ! Complexity (per eigensolver iteration):g Q , Q simplexnon-convex ! Complexity (per eigensolver iteration):p

S t l R l ti t th QP (SQP) E i t/l b dSpectral Relaxation to the QP (SQP) Experimentsupper/lower boundsSpectral Relaxation to the QP (SQP) Experimentsupper/lower boundsp ( ) ppp
General upper/lower bounds Comparison between SQP L2QP BP ICM Relaxation LabelingGeneral upper/lower bounds Comparison between SQP, L2QP, BP, ICM, Relaxation Labeling 

d MRF bl ith t ll d t
pp

on random MRF problems with controlled parametersp p

energy after
affine space

energy after 
affine spacenormalization encourages ||x|| small and discretisationpnormalization encourages ||x|| small, and discretisation

!!! till !! still non-convex ! but solvable! still non convex !   but solvable

diff t t i tdifferent constraintsdifferent constraints

f il f b d j tif iFrom IQP QP and the above we get: family of upper bounds justifying From IQP QP and the above, we get: y pp j y g
heuristic:heuristic:

l b d density of connections density of connectionslower bounds on density of connections density of connectionslower bounds on
n=50 k=10 n=20 k=20n=50, k=10 n=20, k=20

Previous workPrevious worke ous o
Data dependent lower boundData dependent lower boundAlgorithm Li l ti LP SDP SOCP

pAlgorithm Linear relaxations: LP, SDP, SOCPAlgorithm Linear relaxations: LP, SDP, SOCP
QP rewritten as (linear) matrix innter product approximating rank 1 constraintQP rewritten as (linear) matrix innter product, approximating rank 1 constraint

1 I t li t ti l W V
( ) p , pp g

1. Input: clique potentials W,Vp q p

2 S2. Set 
Quadratic relaxations: L2QP and CQPQuadratic relaxations: L2QP and CQP

3 Compute from x’ first eigenvector of3. Compute           from  x , first eigenvector of

CQP: convexification of objective using (W V)=> (W diag(D) V+D)CQP: convexification of objective using (W,V)=> (W-diag(D),V+D)4 Output upper bound p: the largest element in [0 1] with j g ( , ) ( g( ), )4. Output upper bound p: the largest element in [0, 1] with

(peakedness )
L2QP C 1 l d t

(peakedness )
L2QP: Cx=1 relaxed toL2QP: Cx 1 relaxed to 

5 Discretize using Relaxation Labeling5. Discretize using Relaxation Labeling pp

6 Output lower bound d t d d t l b d6. Output lower bound data-dependent lower bounds onp
as function of p: peakedness of potentialsas function of p: peakedness of potentials


