Solving Markov Random Fields with Spectral Relaxation

Many problems in computer vision and Machine Learning can be formulated using Markov Random Fields
proposed approach:

MRFs and IQP/QP formulation

$\max P(X)=\frac{1}{Z} \prod_{i j \in E} \Psi_{i j}\left(X_{i}, X_{j}\right) \prod_{i} \Phi_{i}\left(X_{i}\right)$
$X_{i} \in\{1, \ldots, k\}$
Proposition: QP is equivalent to IQP
(generalizes a result form Ravikumar \& Lafferty, 2006)
given a solution to IQP, we can construct a solution to QP

Spectral Relaxation to the QP (SQP)

$\max \epsilon_{S}(x)=\frac{x^{\top} W x+V^{\top} x}{x^{\top} x+\beta}$
s.t. $\quad C x=1$
normalization encourages $\|\mathrm{x}\|$ small, and $x \in[0,1]$ affine space Ω_{a}

still non-convex! but solvable

Algorithm

1. Input: clique potentials W, V
2. set $\beta=\hat{\beta}$
3. compute x_{S} from x', first eigenvector of $\quad W_{e q}=P_{C} W^{\prime} P_{C}$
4. Output upper bound $\epsilon^{*} \leq \frac{n+\beta}{x_{S} x_{S}+\beta} \epsilon\left(x_{S}\right)$
5. Discretize using Relaxation Labeling $\Rightarrow x_{d}$
6. Output lower bound $\epsilon^{*} \geq \epsilon\left(x_{d}\right)$

different constraints

different constraint

$$
\text { 6. Output lower bound } \epsilon^{*} \geq \epsilon\left(x_{d}\right)
$$

no restrictions on the pairwise clique potentials complexity O(\#edges \#labels ${ }^{2}$), linear in the description length of the clique potentials
mproved general optimality bounds

IQP formulation
$x_{i a}=1$ iff $X_{i}=a=\begin{aligned} & \epsilon(x)=x^{\top} W x+V^{\top} x \\ & \max \epsilon(x) \\ & \text { s.t. } \\ & \underbrace{C x=1, x \in\{0,1\}^{n k}}_{\text {discrete set } \Omega_{d}}\end{aligned}$
$\max \epsilon(x) \quad$ s.t. $\quad \underbrace{C x=1,0 \leq x \leq 1}$
non-convex ! $\underbrace{}_{\text {simplex } \Omega_{S}}$

Solving Affine Constrained Rayleigh Quotients

Linear Constraint: $\quad C x=0 \quad$ (and $V=0, \beta=0$) Affine Constraint: $\quad C x=b \quad \Longleftrightarrow \quad \sum_{a} x_{i a}=1$ Inequality Constraint? $C x \leq b$

Solution

Data dependent lower bound

$$
M=W+\operatorname{diag}(V)
$$

Experiments

Comparison between SQP, L2QP, BP, ICM, Relaxation Labeling

Previous work

Linear relaxations: LP, SDP, SOCP
QP rewritten as (linear) matrix innter product, approximating rank 1 constraint $x^{\top} W x+V^{\top} x=\left\langle X, W_{e q}\right\rangle$ where $X=[x ; 1][x ; 1]^{\top}$
Quadratic relaxations: L2QP and CQP
CQP: convexification of objective using $(\mathrm{W}, \mathrm{V})=>(\mathrm{W}-$ diag $(\mathrm{D}), \mathrm{V}+\mathrm{D})$
L2QP: $\mathrm{Cx}=1$ relaxed to $\quad \sum_{a} x_{i a}^{2}=1$

