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Abstract

Recognizing humans, estimating their pose and segment-
ing their body parts are key to high-level image understand-
ing. Because humans are highly articulated, the range of
deformations they undergo makes this task extremely chal-
lenging. Previous methods have focused largely on heuris-
tics or pairwise part models in approaching this problem.
We propose a bottom-up parsing of increasingly more com-
plete partial body masks guided by a parse tree. At each
level of the parsing process, we evaluate the partial body
masks directly via shape matching with exemplars, without
regard to how the parses are formed. The body is evalu-
ated as a whole, not the sum of its constituent parses, unlike
previous approaches. Multiple image segmentations are in-
cluded at each of the levels of the parsing, to augment ex-
isting parses or to introduce ones. Our method yields both
a pose estimate as well as a segmentation of the human.
We demonstrate competitive results on this challenging task
with relatively few training examples on a dataset of base-
ball players with wide pose variation. Our method is com-
paratively simple and could be easily extended to other ob-
jects.

1. Introduction
Recognition, pose estimation and segmentation of hu-

mans and their body parts remain important unsolved prob-
lems in high-level vision. Action understanding and image
search and retrieval are just a few of the areas that would
benefit enormously from this task. There has been good
previous work on this topic, but significant challenges re-
main ahead. We divide the previous literature on this topic
into three main areas:

Top-down approaches: [4] developed the well-known
pictorial structures (PS) method and applied it to human
pose estimation. In the original formulation, PS does proba-
blistic inference in a tree-structured graphical model, where
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the overall cost function for a pose decomposes across the
edges and nodes of the tree, usually with the torso as the
root. PS recovers locations, scales and orientations of rigid
rectangular part templates that represent a body. Pairwise
potentials were limited to simple geometric relations (rela-
tive position and angle), while unary potentials were based
on image gradients or edge detections. The tree structure is
a limitation since many cues (e.g., symmetry of appearance
of right and left legs) cannot be encoded. [10] extended
the original model to encode the fact that symmetric limb
pairs have similar color, and that parts have consistent color
or colors in general, but how to incorporate more general
cues seems unclear. [11] track people by repeatedly detect-
ing them with a top-down PS method. [14] introduced a
non-parametric belief propagation method with occlusion
reasoning to determine the pose. All these approaches esti-
mate pose, and do not provide an underlying segmentation
of the image. Their ability to utilize more sophisticated cues
beyond pixel-level cues and geometric constraints between
parts is limited.

Search approaches: [9] utilized heuristic-guided
search, starting from limbs detected as segments from Nor-
malized Cuts (NCut) ([3]), and extending the limbs into
a full-body pose and segmentation estimate. A follow
up to this, [8], introduced an Markov-Chain Monte Carlo
(MCMC) method for recovering pose and segmentation. [6]
developed an MCMC technique for inferring 3-D body pose
from 2-D images, but used skin and face detection as extra
cues. [15] utilized a combination of top-down, MCMC and
local search to infer 2-D pose.

Bottom-up/Top-down approaches: [12] used bottom-
up detection of parallel lines in the image as part hypothe-
ses, and then combined these hypotheses into a full-body
configuration via an integer quadratic program. [15] also fit
into this category, as they use bottom-up cues such as skin
pixel detection. Similarly, [5] integrated bottom-up skin
color cues with a top-down, non-parametric belief propa-
gation process. [8] use superpixels to guide their search.
While [2] estimate only segmentation and not pose for
horses and humans in upright, running poses, they best
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utilize shape and segmentation information in their frame-
work. [13] use bottom-up part detectors to detect part hy-
potheses, and then piece these hypotheses together using a
simple dynamic programming (DP) procedure in much the
same way as [4].

2. Overview of Our Parsing Method
Our goal is to combine a subset of salient shapes S (in

our case, represented as binary masks, and provided by seg-
menting the image via NCut) detected in an image into a
shape that is similar to that of a human body. Because the
body has a very distinctive shape, we expect that it is very
unlikely for this to occur by chance alone, and therefore
should correspond to the actual human in the scene.

We formulate this as a parsing problem, where we pro-
vide a set of parsing rules that lead to a parse (also repre-
sented by a binary mask) for the body, as see in Figures
1 and 2. A subset of the initial shapes S are then parsed
into a body. The rules are unary or binary, and hence a
non-terminal can create a parse by composing the parses of
one or two children nodes (via the pixel-wise OR operator).
In addition the parses for a node can be formed directly
from a shape from S, in addition to being formed from a
child/children. Traditional parsing methods (DP methods)
that exploit a subtree independence (SI) property in their
scoring of a parse can search over an exponential number of
parses in polynomial time.

We can define a traditional context-free grammar as a
tuple

〈V, T,A, R, S〉 (1)

V are parse non-terminals and T are the terminals, where A
is the root non-terminal,

R = {Ai → Bi, Ci} (2)

is a set of production rules with Ai ∈ V and Bi, Ci ∈
V ∪T (we restrict ourselves to binary rules, and unary rules
by making Ci degenerate), and Si is a score for using rule
Ri. Further, for each image, a terminal Ti ∈ T will have po-
tentially multiple instantiations tji , j = 1, ..., ni each with
its own score uj

i for using Ti → tji in a parse. Each termi-
nal instantiation tji ∈ S, corresponds to an initial shape S
drawn from NCut segmentation. If the root is A ∈ V , then
we can compute the score of the best parse (and therefore
the best parse itself) recursively as

P (A) = max
ri|ri=(A→Bi,Ci)

(Si + P (Bi) + P (Ci)) (3)

However, this subtree independence property greatly re-
stricts the type of parse scoring function (PSF) that can be
used.

By contrast, our approach seeks to maximize a shape
scoring function FA for A that takes as input two specific

child parses bj
i and ck

i (or one, as we allow unary rules) cor-
responding to rule A → Bi, Ci:

P (A) = max
ri=(A→Bi,Ci)

max
j,k

(FA(bj
i , c

k
i )) (4)

Recall that we represent a parse bj
i or tji as a binary mask,

not as the parse rules and terminals that form it. Note that
the exact solution requires all parses for the children as op-
posed to just the best, since the scoring function FA does not
depend on the scores of the child parses. Because the exact
solution is intractable, we instead solve this approximately
by greedily pruning parses to a constant number. However,
we use a richer PSF that has no subtree independence prop-
erty. We can view the differences between the two methods
along two dimensions: proposal and evaluation.

Proposal: DP methods explore all possible parses, and
therefore have a trivial proposal step. Our method recur-
sively groups bottom-up body part parses into increasingly
larger parts of the body until an entire body parse is formed.
For example, a lower body could be formed by grouping
two Legs, or a Thigh+Lower leg and a Lower leg, or taken
directly from S. In the worst case, creating parses from two
children with n parses each could create n2 new parses.
Therefore, pruning occurs at each node to ensure that the
number of parses does not grow exponentially further up
the tree. To prune, we eliminate redundant or low scoring
parses. Because there is pruning, our method does not eval-
uate all possible parses. However, we are still able to pro-
duce high quality parses due to a superior evaluation func-
tion.

Evaluation: On the evaluation side, DP employs evalu-
ation functions with special structure, limiting the types of
evaluation functions that can be used. Usually, this takes the
form of evaluating a parse according to the parse rule used
(chosen from a very limited set of choices) and the scores of
the subparses that compose it, as in Equation (3). However,
this does not allow scoring of the parse in a holistic fashion.
Figure 3 gives an example; two shapes that on their own
are not clearly parts of a disk, but when combined together,
very clearly form a disk. Therefore, we associate with each
node i a scoring function Fi (as in Equation (4)) that scores
parses not based on the scores of their constituent parses or
the parse rule, but simply based on their shape. The scor-
ing function also allows for pruning, as parses can be ranked
and low-scoring parses can be discarded to control the num-
ber of parses. It is important to note that our choice of Fi

does not exhibit an SI property. Because of this, we are pri-
marily interested in the actual result of the parse, a binary
mask, as opposed to how it was generated from child parses
or from S. In contrast to DP methods, a parse is evaluated
irrespective of how it was generated.
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Figure 1. Our body parse tree, shown with an exemplar shape from
our training set for each node; the exemplars are used for shape
scoring. Shape parsing begins at the leaf nodes of thigh and lower
leg and proceeds upwards. Note that in addition to composing
parses from children nodes, parses can always come from the ini-
tial shapes S.

• {Lower leg, Thigh} → Leg

• {Thigh, Thigh} → Thighs

• {Thighs, Lower leg} → Thighs+Lower leg

• {Thighs+Lower leg, Lower leg} → Lower body

• {Leg, Leg} → Lower body

• {Lower body} → Lower body+torso

• {Lower body+torso} → Lower body+torso+head

Figure 2. Our parse rules. We write them in reverse format to
emphasize the bottom-up nature of the parsing.

+ =

Figure 3. The two shapes on the left bear little resemblance to a
disk in isolation. However, when combined, the disk is clear.

2.1. Multiple Segmentations

To initialize our bottom-up parsing, we need a set of in-
tial shapes S. [9] noted that human limbs tend to be salient
regions that NCut segmentation often isolate as a single seg-
ment. To make this initial shape generation method more

Figure 4. Two segmentations of an image, 10 and 40 segments.
Red lines indicate segment boundaries for 10 segments, green lines
indicate boundaries for 40 segments, and yellow indicates bound-
aries common to both segmentations (best viewed in color).

robust, we consider not one segmentation as in [9], but 12
different segmentations provided by NCut. We vary the
number of segments from 5 to 60 in steps of 5, giving a
total of 390 initial shapes per image. This allows us to seg-
ment out large parts of the body that are themselves salient,
e.g. the lower body may appear as a single segment, as
well as smaller parts like individual limbs or the head. Fig-
ure 4 shows for an image 2 of the 12 segmenations with
overlaid boundaries. Segments from different segmenta-
tions can overlap, or be contained within another. In our
system, these segments are all treated equally. These initial
shapes could be generated by other methods besides seg-
mentation, but we found segmentation to be very effective.

2.2. Shape Comparison

For each node i, we have an associated shape scoring
function Fi. For the root node, this ranks the final parses
for us. For all other nodes, Fi ranks parses so that they can
be pruned. All the shape scoring functions operate the same
way: we match the boundary contour of the mask that repre-
sents a parse against boundary contours from a set of exem-
plar shapes using the inner-distance shape context (IDSC)
of [7].

The IDSC is an extension of the original shape context
proposed in [1]. In the original shape context formulation,
given a contour of n points x1, ..., xn, a shape context was
computed for point xi by the histogram

#(xj , j 6= i : xj − xi ∈ bin(k)) (5)

Ordinarily, the inclusion function xj − xi ∈ bin(k) is
based on the Euclidean distance d =‖ xj − xi ‖2 and the
angle acos((xj−xi)/d). However, these measures are very
sensitive to articulation. The IDSC replaces these with an
inner-distance and an inner-angle.

The inner-distance between xi and xj is the shortest path
between the two points traveling through the interior of the
mask. This distance is less sensitive to articulation. The



Figure 5. IDSC Computation. Left: We show: shortest interior
path (green) from start (blue dot) to end (blue cross); bound-
ary contour points (red); contour tangent at start (magenta). The
length of interior path is the inner-distance; the angle between con-
tour tangent and the start of the interior path is the inner-angle.
Center: Lower body mask parse; colored points indicate corre-
spondence established by IDSC matching with exemplar on right.

inner-angle between xi and xj is the angle between the con-
tour tangent at the point xi and tangent at xi of the short-
est path leading from xi to xj . Figure 5 shows the interior
shortest path and contour tangent.

The inner-distances are normalized by the mean inner-
distance between all pairs {(xi, xj)}, i 6= j of points.
This makes the IDSC scale invariant, since angles are also
scale-invariant. The inner-angles and normalized log inner-
distances are binned to form a histogram, the IDSC descrip-
tor. For two shapes with points x1, ..., xn and y1, .., yn, ID-
CSs are computed at all points on both contours. For every
pair of points xi, yj , a matching score between the two as-
sociated IDCSs is found using the Chi-Square score ([1]).
This forms an n-by-n cost matrix, which is used as input
to a standard DP algorithm for string matching, allowing us
to establish correspondence between the points on the two
contours. The algorithm also permits occlusion of matches
with a user-specified penalty. We try the alignment at sev-
eral different, equally spaced starting points on the exem-
plar mask to handle the cyclic nature of the closed contours,
and keep the best scoring alignment (and the score). Be-
cause the DP algorithm minimizes a cost (smaller is better),
we multiply the score it returns by −1 to keep consistent
with our desire to maximize F and all Fi. The complex-
ity of the IDSC computation and matching is dominated by
the matching; with n contour points and s different starting
points, the complexity is O(sn2).

2.3. Parse Rule Application Procedure

Our parsing process consists of five basic steps that can
be used to generate the parses for each node. For a partic-
ular node A, given all the parses for all children nodes, we
perform the following steps:

Algorithm 1: PA = Parse(A,S): for a particular im-
age, given initial segments S and part name A, produce
ranked and pruned parses for A.

Input: Part name A and initial shapes S
Output: PA: set of ranked and pruned parses for A
PA = S; // Include all of S as parse
candidates
foreach rule {Bi, Ci} → A (or Bi → A) do

PBi = Parse(Bi, S); // Recurse
PCi = Parse(Ci, S); // If binary rule,
recurse
PA = PA∪ Group(PBi

, PCi
) (or Extend(PBi

));
// Add to parses of A

end
PA = RankByShapeMatchingScore(PA);
PA = Prune(PA); // Prune redundant/low
scoring parses
return PA; // Return parses

2.3.1 Parse rules

Segment inclusion: applies to all nodes We include by
default all the masks in S as parses for A. This allows us
to cope with an input image that is itself a silhouette, which
would not necessarily be broken into different limbs, for
example. A leg will often appear as a single segment, not
as separate segments for the thigh and lower leg; it is easier
to detect this as a single segment, rather than trying to split
segments into two or more pieces, and then recognize them
separately. For nodes in the parse tree with no children, this
is their only source of masks.

Grouping: {B,C} → A For binary rules, we can com-
pose parses from two children such as grouping two legs
into a lower body, e.g. {Leg, Leg} → Lower body. For
each child, based on the alignment of the best matching ex-
emplar to the child, we can predict which part of the seg-
ment boundary is likely to be adjacent to another part.

A pair of masks, b from B and c from C, are taken if the
two masks are within 30 pixels of each other (approximately
1/10th of the image size in our images), and combined with
the pixel-wise OR operator. Because we need a single con-
nected shape for shape comparison, if the two masks are not
directly adjacent we search for a mask from the segmenta-
tions that is adjacent to both, and choose the smallest such
mask m. m is then combined with b and c into a single
mask with a single connected component. If no such mask
exists, we just keep the larger of a and b. Figure 6 provides
an example of the parse rule, {Leg,Leg} → LowerBody.

Extension: {B} → A For unary rules we generate
parses by projecting an expected location for an additional
part based on correspondence with exemplars. This is use-
ful when bottom-up detection of a part by shape, such as
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Figure 6. Left: parse rule application procedure. For binary rules, all pairs of child parses that are within 10 pixels of each other are
composed via grouping, with hole filling provided by segments if needed. For unary rules, the child parses undergo extension using
projected quadrilaterals and segment proposals. Shape matching is performed on both the original segments as well as the composed
parses. For leaf nodes, shape matching is performed only on the segments. After shape matching, the parses are consolidated, pruned and
ranked. Right: Grouping: two legs, on the left, are grouped into a lower body parse, on the right. Extension: the leftmost image shows a
lower body parse with multiple different torso quadrilaterals projected from exemplars on to the image using the correspondence between
the lower body parse and the lower body exemplars; the center image shows the exemplar with its torso quadrilateral that yielded the best
torso parse, seen in the right image. Shape matching: two examples of shape matching. The lower body on the right was detected directly
from the segments S, underscoring the importance of injecting the shapes from S into all levels of the parse tree.

the torso or head, is difficult due to wide variation of shape,
or lack of distinctive shape. Once we have a large piece of
the body (at least the lower body), it is more reliable to di-
rectly project a position for other parts. Given a parse of
the lower body and its correspondence to a lower body ex-
emplar shape, we can project the exemplar’s quadrilateral
representing the torso on to the parse (we estimate a trans-
form with translation, rotation and scale based on the corre-
spondence of two contour points closest to the two bottom
vertices of the torso quadrilateral).

Similarly, given a mask for the lower body and torso,
and its correspondence to exemplars, we can project quadri-
laterals for the head. With these projected quadrilaterals,
we look for all masks in S which have at least half their
area contained within the quadrilateral, and combine these
with the existing mask to give a new parse. For each
parse/exemplar pair, we compose a new parse.

2.3.2 Complexity Control

Scoring Once parses have been composed, they are scored
by matching to the nearest exemplar with IDSCs and DP.
Correspondence is also established with the exemplar, pro-

viding an estimate of pose.
Pruning Many parses are either low-scoring or redun-

dant or both. We prune away these parses with a simple
greedy technique: we order the parses by their shape score,
from highest to lowest (best to worst). We add the best parse
to a representative set, and eliminate all other parse which
are similar to the just added parse. We then recurse on the
remaining parses until the representative set reaches a fixed
size. For mask similarity we use a simple mask overlap
score O between masks a and b:

O(a, b) =
area(a

⋂
b)

area(a
⋃

b)
(6)

where
⋂

performs pixel-wise AND, and area(m) is
simply the count of pixels with value 1 in the mask. If
O(a, b) is greater than a particular threshold, a and b are
considered to be similar. After this step, we have a pruned
set of parses that can be passed higher in the tree, or to eval-
uate in the end if the node A is the root. Figure 6 illustrates
the stages of the parsing process for generating the parse
for a single node. Also included are examples of grouping,
extension, and shape matching/scoring.

Algorithm 1 sums up the parsing process for a particu-



lar part A, given intial set of shapes S from segmentation.
It recursively generates parses for the children parts, and
therefore to parse the torso+lower body+head (TLBH), we
would call Parse(TLBH, S). Note that if the part is a
child in the parse tree, then no recursion occurs, and only
the shapes S can form parses.

3. Results

We present results on the baseball dataset used in [9] and
[8]. This dataset contains challenging variations in pose and
appearance. We used 15 images to construct shape exem-
plars, and tested on |I| = 39 images. To generate the IDSC
descriptors, we used the code provided by the authors of [7].
Boundary contours of masks were computed and resampled
to have 100 evenly-spaced points. The IDSC histograms
had 5 distance and 12 angle bins (in [0, 2π]). The occlu-
sion penalty for DP matching of contours was 0.6 * (average
match score), and 10 different alignments were used to ini-
tialize contour registration. For pruning, we used a thresh-
old of 0.95 for the overlap score to decide if two masks were
similar (a, b are similar ⇐⇒ O(a, b) ≥ 0.95) for the lower
body+torso and lower body + torso + head, and 0.75 for all
other pruning. In all cases, we pruned to 50 parses.

For parsing via grouping of parses from two different
nodes, we can compose at most 502 = 2500 parses. In prac-
tice, we typically found this to be between 500 and 1500
parses. For parsing via extension, for each of the 50 child
parses, we create 15 new parses, 1 per exemplar, for a to-
tal of 750 parses. For each node, we examine an additional
390 parses from S. Given that there are 8 nodes, 2 extension
relationships, and 5 grouping relationships, this gives an up-
per bound # of 2500∗5+750∗2+390∗8 = 17120 parses.
With 15 exemplars, the number of shape comparisons is at
most 15 ∗ 17120 = 256800.

Because we limit ourselves to shape cues, the best mask
(in terms of segmentation and pose estimate) found by the
parsing process is not always ranked first; although shape
is a very strong cue, it alone is not quite enough to always
yield a good parse. We expect that incorporating other cues
would allow us to rank the best parse at, or very close to, the
top. Our main purpose was to investigate the use of global
shape features over large portions of the body via shape
parsing. We evaluate our results in two different ways: seg-
mentation score and projected joint position error. To the
best of our knowledge, we are the first to present both seg-
mentation and pose estimation results on this task.

3.1. Segmentation Scoring

We present our results in terms of an overlap score for a
mask with a ground truth labeling. Our parsing procedure
results in 50 final masks per image, ranked by their shape
score. We compute the overlap score O(m, g) between each

Figure 7. Top: We plot the average of each image’s maximum
overlap score as a function of the number of final parses retained,
and do this for each region. Bottom: To give greater insight into
the distribution of overlap scores, we focus on the top 10 parses,
and histogram the best overlap score out of the top 10 for each
image and region.

mask m and ground truth mask g. We then compute the
cumulative maximum overlap score through the 50 masks.
For an image i with ranked parses pi

1, ...p
i
n, we compute

overlap scores oi
1, ..., o

i
n. From these scores, we compute

the cumulative maximum Ci(k) = max(oi
1, ..., o

i
k). The

cumulative maximum gives us the best mask score we can
hope to get by taking the top k parses.

To understand the behavior of the cumulative maximum

over the entire dataset, we compute M(k) = 1
|I|

|I|∑
i=1

Ci(k),

or the average of the cumulative maximum over all the test
images for each k = 1, ..., n (n = 50 in our case). This is
the average of the best overlap score we could expect out of
the top k parses for each image. We consider this a mea-
sure of both precision and recall; if our parsing procedure
is good, it will have high scoring masks (recall) when k is
small (precision). On top in Figure 7, we plot M(k) against
k for three different types of masks composed during our
parsing process: lower body, lower body+torso, and lower
body + head + torso. We can see that in the top 10 masks, we
can expect to find a mask that is similar to the ground truth
mask desired, with similarity 0.7 on average. This indicates
that our parsing process does a good job of both generating
parses as well as ranking them.



Figure 8. Top: We plot the average, across all images, of the min-
imum average joint error in the top k parses as a function k, the
number of parses retained. Bottom: Taking the top 10 parses per
image, for each image we compute the minimum average joint er-
ror from these top 10. We then histogram these values to show that
taking 10 parses is likely to lead to recall of a good body parse. We
can see that the vast majority of average errors are roughly 20 pix-
els or less.

While the above plot is informative, we can obtain
greater insight into the overlap scores by examining all
Ci(k), i = 1, ..., |I| for a fixed k = 10. We histogram
the values of Ci(10) on the bottom in Figure 7. We can see
that most of the values are in fact well over 0.5, clustered
mostly around 0.7. This confirms our belief that the parsing
process is effective in both recalling and ranking parses, and
that shape is a useful cue for segmenting human shape.

3.2. Joint Position Scoring

We also examinine the error in joint positions predicted
by the correspondence of a parse to the nearest exemplar.
We take 5 joints: head-torso, torso-left thigh, torso-right
thigh, left thigh-left lower leg, right thigh-right lower leg.
The positions of these joints are marked in the exemplars,
and are mapped to a body parse based on the correspon-
dence between the two shapes. For a joint with position j
in the exemplar, we locate the two closest boundary contour
points p, q in the exemplar that have corresponding points
p′, q′ in the shape mask. We compute a rotation, scaling and
translation that transforms p, q to p′, q′, and apply these to

j to obtain a joint estimate j′ for the parse mask. We com-
pare j′ with the ground truth joint position via Euclidean
distance. For each mask, we compute the average error over
the 5 joints. Given these scores, we can compute statistics
in the same way as the overlap score for segmentation. On
the top in Figure 8 we plot the average cumulative minimum
M(k), which gives the average best-case average joint er-
ror achieveable by keeping the top k masks. We see again
that in the top 10 masks, there is a good chance of finding a
mask with relatively low average joint error. On the bottom
in Figure 8, we again histogram the data when k = 10.

Lastly, we show several example segmenta-
tions/registrations of images in Figure 9. Note that
with the exception of the arms, our results are comparable
to those of [8] (some of the images are the same), and
in some cases our segmentation is better. As noted in
[8], although quantitative measures may seem poor (e.g.,
average joint position error), qualitatively the results seem
good.

4. Conclusion
In summary, we present a shape parsing method that con-

structs and verifies shapes in a bottom-up fashion. In con-
trast to traditional bottom-up parsing, our scoring functions
at each node do not exhibit a SI property; instead, we score
shapes against a set of exemplars using IDSCs, which con-
vey global shape information over both small and large re-
gions of the body. We also infuse the parsing process with
multiple image segmentations as a pool of shape candidates
at all levels, in contrast to typical parsing which only utilizes
local image features at the leaf level.

We demonstrated competitive results on the challeng-
ing task of human pose estimation, on a dataset of baseball
players with substantial pose variation, using only the cue
of shape, while most other works use more cues. To the best
of our knowledge, we are the first to present both quantita-
tive segmentation and pose estimation results on this task.
Note that in general, we need not start parsing with the legs
only; it would be entirely feasible to add other nodes (e.g.
arms) as leaves. A limitation of our method is that we have
a fixed parsing procedure (starting from the lower body and
going up); we will seek to remedy this in future work.

Further, we use larger shapes (composed of multiple
body limbs) than typical pose estimation methods. Unlike
most other related work, shape is our only cue. We ex-
pect that results would be improved with the introduction
of color, texture and other cues. The notion of layers may
also be useful in handling occlusion, as well as describing
the shape relation of arms to the torso, since the arms of-
ten overlap the torso. Better grouping techniques (ones that
introduce fewer parses) are a good idea, since this would
save substantial computation (DP for contour alignment is
expensive).



Figure 9. We present some of our body detection results. The segmentation of the person has been highlighted and the contour drawn as
colored dots, indicating correspondence to the best matching exemplar. All the parses were the top scoring parses for that image (images
are ordered row-major), with the exception of images 4 (2nd best), 8 (3rd best), 6 (3rd best). Some images were cropped and scaled for
display purposes only. Full body overlap scores for each image (images are ordered row-major): 0.83, 0.66, 0.72, 0.74, 0.76, 0.70, 0.44,
0.57 and 0.84. Average joint position errors for each image: 12.28, 28, 27.76, 10.20, 18.87, 17.59, 37.96, 18.15, and 27.79.
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