Vision and Learning

CIS680 Review Jianbo Shi Spring 2004

Topics

Texture synthesis/analysis Fixed body object detection/recognition

Flexible body object detection/recognition

Image segmentation Image translation

Image Shape modeling

Human activity recognition

Texture synthesis/analysis

- Image features
 - Filter bank, filter histogram, nth order correlation
- Learning formulation
 - MRF, Max. Entropy, Max. Likelihood
- Techniques
 - Sampling, MCMC; Direct gradient decent; celver copying

Texture synthesis/analysis

- An practical solution: Efros et. al.
- Texture similarity: Martin&Fowlkes&Malik, Rubner&Tomasi&Guibas, Puzicha et. al.
- Texture synthesis statistical: Zhu&Wu&Mumford
- Texture synthesis Energy: Portilla&Simoncelli

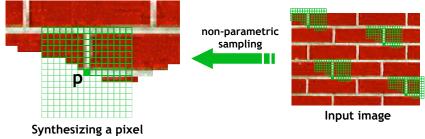
Texture Synthesis

[Efros,Leung '99]

parmesan

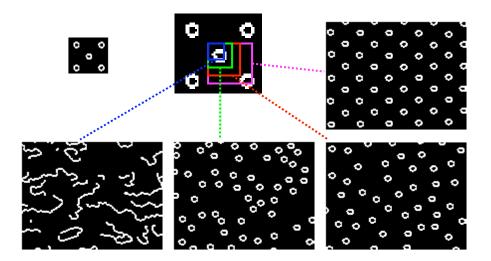
rice

Efros & Leung '99



- Assuming Markov property, compute P(**p**|N(**p**))
 - Building explicit probability tables infeasible
 - Instead, let's *search the input image* for all similar neighborhoods that's our histogram for p
- To synthesize **p**, just pick one match at random

Randomness Parameter

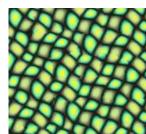


Input texture

Random placement of blocks

Neighboring blocks constrained by overlap

block



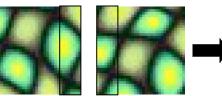
Minimal error

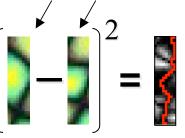
boundary cut

Β1

B2

Minimal error boundary overlapping blocks vertical boundary





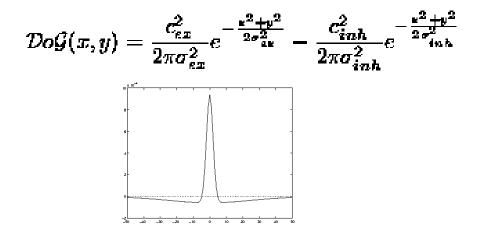
overlap error

min. error boundary

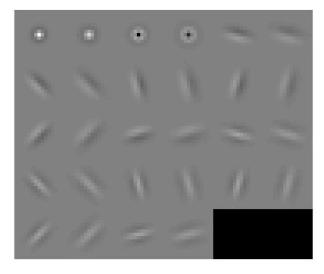
Texture similarity measure

476 260 35 FAFRADA V J >>+ × + × 1767××+× 7717××+× 44004474 0000K777 TYL **+X PADEVET ADDDDDAF VAF JXXXX LJ 77+X+ VVVAKNAA 2547000A HUHYTYLA 2711+X+X VAVAVAV (Plus-ell) (Tri-arr) (Ti-ell)

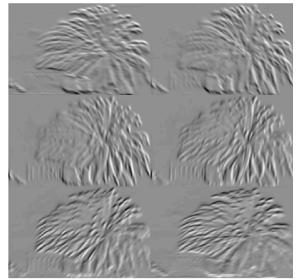
Difference of Gaussian (DOG)



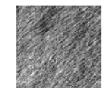
Filter Banks

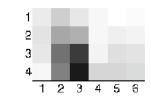


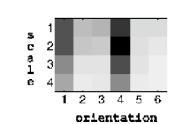
Odd symmetric fitler outputs



Similarity using ave. filter bank response







Texture histogram

$$f^{r}(i;I) = \left| \left\{ \vec{x} : t^{r}_{i-1} < I^{r}(\vec{x}) \le t^{r}_{i} \right\} \right| .$$

(i) The *Minkowski-form distance* \mathcal{L}_p is defined by:

$$D(I,J) = \left(\sum_{i} |f(i;I) - f(i;J)|^{p}\right)^{1/p}$$

The χ^2 -statistic is given by

$$D(I,J) = \sum_{i} \frac{\left(f(i;I) - \hat{f}(i)\right)^2}{\hat{f}(i)},$$

Perceptual similarity

$$D(I,J) = \sqrt{(\vec{f}_I - \vec{f}_J)^T \mathbf{A} (\vec{f}_I - \vec{f}_J)} ,$$

Earth Moving Distance

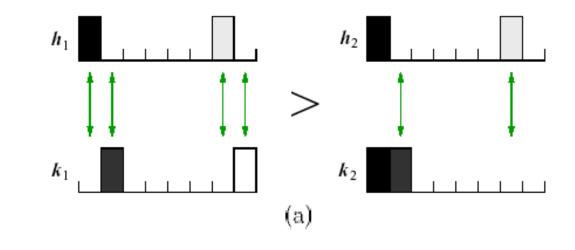


Image similarity with L1 distance



Image similarity w. chi-sqr statistics

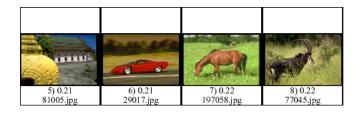
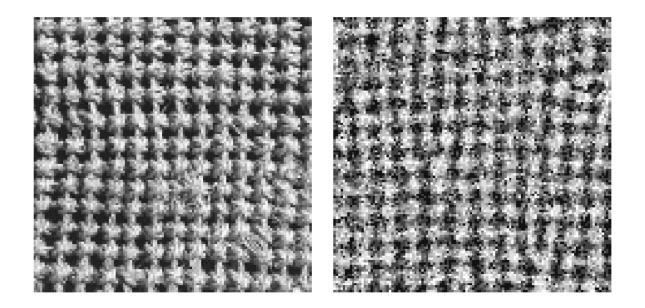


Image similarity w. quadratic-form

Image similarity with Earth Moving Distance(EMD)

Models of P(I)



Markov Random Field(MRF)

- Sites, v
- Neighbourbood, N(v)
- MRF distribution:

$$p(\mathbf{I}(v)|\mathbf{I}(-v)) = p(\mathbf{I}(v)|\mathbf{I}(N_v))$$

• Gibbs distribution:

$$p(\mathbf{I}) = \frac{1}{Z} e^{-\sum_{c \in C} \lambda_C(\mathbf{I}(C))}$$

Hammersley-Clifford Theorem

- For a given N, p(I) is an MRF distribution iff p(I) is a Gibbs distribution
- This equivalence allows us to specify MRF through the definition of clique energy

$$p(\mathbf{I}) = \frac{1}{Z} \exp\{\sum_{\vec{v}} g(\mathbf{I}(\vec{v})) + \sum_{\vec{u},\vec{v}} \beta_{\vec{u}-\vec{v}} \mathbf{I}(\vec{u}) \mathbf{I}(\vec{v})\},\$$

Maximum Entropy Formulation

• Find a probability distribution p(x) s.t.

$$p^*(x) = \arg \max\{-\int p(x) \log p(x) dx\},$$
$$E_p[\phi_n(x)] = \int \phi_n(x) p(x) dx = \mu_n, \quad n = 1, ..., N,$$
$$\int p(x) dx = 1.$$

Monte Carlo Samplings

- $P(x) = a \exp(-E(x)/T);$
- Metropolis
 - A proposed update distribution q(y|x) = q(x|y)
 - Take a update y, accept with min(1,p(y)/p(x))
- Metropolis Hasting
 - Accept with $\min(1, [q(x|y)p(y)] / [q(y|x)p(x)])$
- Gibbs sampler:
 - Sample from the distribution itself, and sample one component at time
 - q(y(k)|x(k), x(-k)) = p(y(k) | x(-k)

M.E. solution

$$p(x;\Lambda) = \frac{1}{Z(\Lambda)} \exp\{-\sum_{n=1}^{N} \lambda_n \phi_n(x)\},\$$

$$Z(\Lambda) = \int \exp\{-\sum_{n=1}^{N} \lambda_n \phi_n(x)\} dx$$

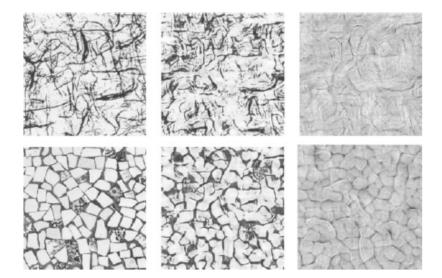
$$\frac{d\lambda_n}{dt} = E_{p(I;\Lambda)}[\phi_n(x)] - \mu_n,$$

Generating images from P(I)

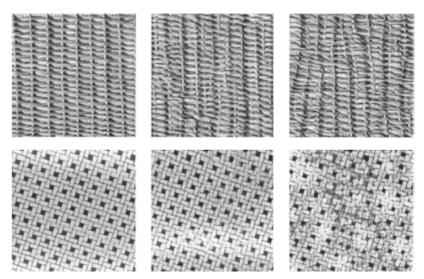
- Basic ideas on generating the right images:
 - Starting from a random image
 - Compute the filter output, and filter histogram(H)
 - Use H as an est. of $E_{p(\mathbf{I};\Lambda_K,S_K)}(H^{(\alpha)})$ $\frac{d\lambda^{(\alpha)}}{dt} = E_{p(\mathbf{I};\Lambda_K,S_K)}[H^{(\alpha)}] - H^{obs(\alpha)}$
 - Use Gibbs sampling to flip I according to the new

P(I)
$$= \frac{1}{Z(\Lambda_K)} \exp\{-\sum_{\alpha=1}^K < \lambda^{(\alpha)}, \ H^{(\alpha)} > \}.$$

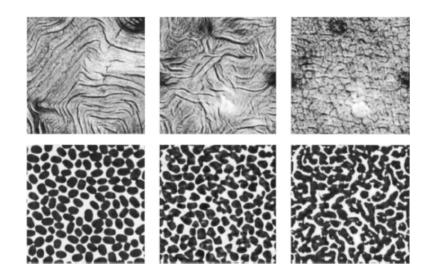
Image Intensity histogram



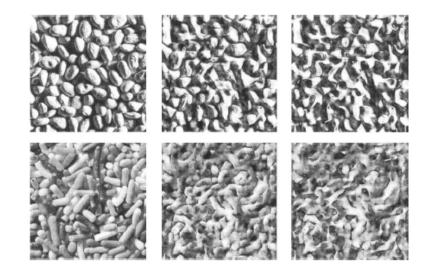
Spatial correlation



Orientation-Scale correlation



Filter phase correlation

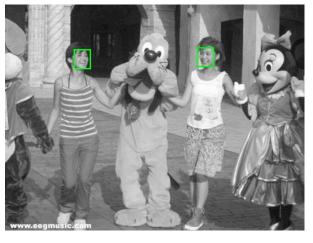


Fixed Body object detection

- Image features:
 - Pixel value, Edge map, Filter-bank, Viola-Jones facial parts, Shape-Context
- Formulation:
 - Naive Bayesian, discriminative classifier, function approximation
- Technique for training,
 - Boosting, SVM, Neural Network, Nearest neighbour

Fixed Body object detection

- Face detection: Scheinderman&Kanade, Viola&Jones
- Digit Recognition: LeCun et.al.
- SVM:Vapnik et. al.



CIS700-002, Lecture5

Jianbo Shi

The infeasible or ideal classification table

(1,1)	(1,2)	 (20,20)	Classification
0	0	 0	Non-object
0	0	 1	Non-object
35	45	 28	Object
255	255	 255	Non-object

 $256^{400} = 10^{964}$ entries for 20 x 20 images

p = 1e10; y = 100; d = 356; h = 24; m = 60; s = 60; f = 30;

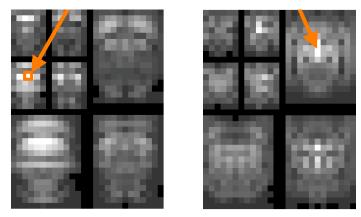
#images the entire population see in our life time = 10^{19}

CIS700-002, Lecture5

Jianbo Shi

Deposition to parts

• pixel values on the face are correlated



CIS700-002, Lecture5

Jianbo Shi

4

D

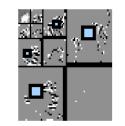
Scheinderman&Kanade

Intra-subband

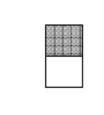


Inter-orientation

Inter-frequency



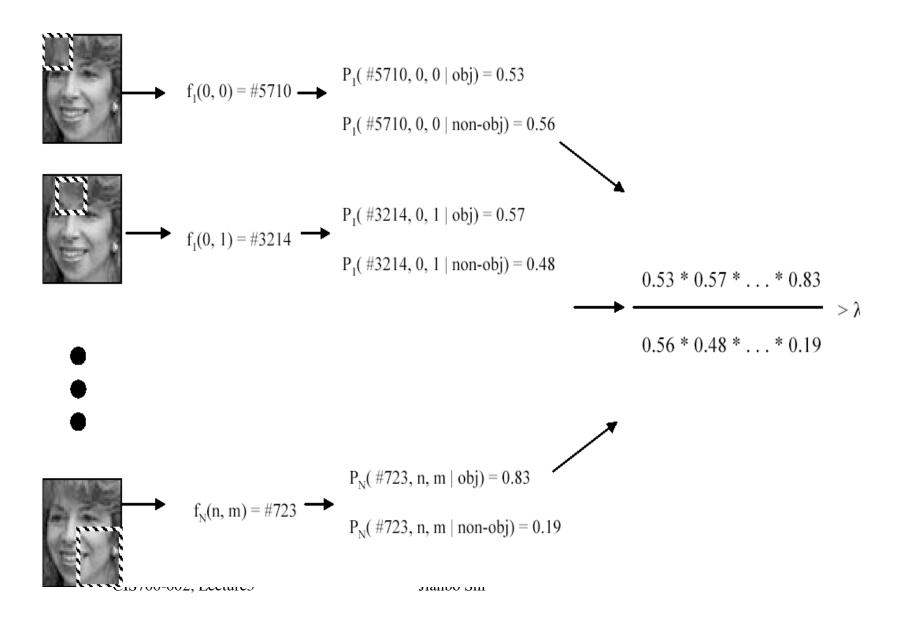
Inter-frequency/ Inter-orientation



0.000	

в

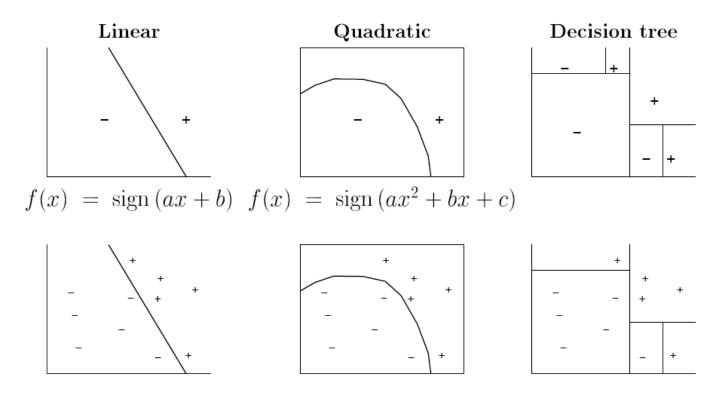
Naive Bayes



Classification

Input $x \in X$ Label $y = \pm 1$ Classifier $f : X -; \longrightarrow \{+1, -1\}$ Data set (training set) $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots (x_N, y_N)\}$ Learning algorithm \mathcal{D} learning classifier $f \in \mathcal{F}$ We will be averaging several $f \in \mathcal{F}$. Hence, we call \mathcal{F} the base classifier family.

types of classifier



Cost of errors C(y, f(x)) = 1

Averaging: $F(x) = \operatorname{sign} \Sigma_{k=1}^{M} c_k f_k(x)$

Averaging Classifiers

- can reduce variance
- can reduce bias
- can compensate for local optima (a form of bias)
- if f_1, f_2, \ldots, f_M make independent errors, averaging reduces error

Averaging is not always the same thing.

Depending how we choose \mathcal{F} , $f_1, f_2, \ldots f_M$ and $c_1, c_2, \ldots c_M$, we can obtain very different effects.

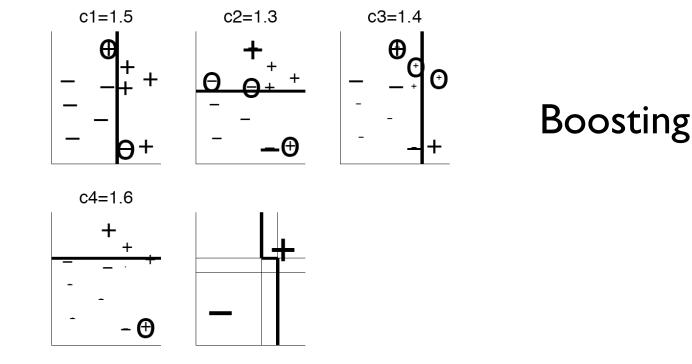
Bagging, Boosting, Bayes

Before seeing data $P_0(f)$ After seeing $\mathcal{D} = P(f|\mathcal{D})$ Bayes formula $P(f|\mathcal{D}) =$

prior distribution over
$$f$$

posterior distribution over f
= $\frac{P_0(f)P(\mathcal{D}|f)}{\sum_{f'\in\mathcal{F}}P_0(f')P(\mathcal{D}|f')}$

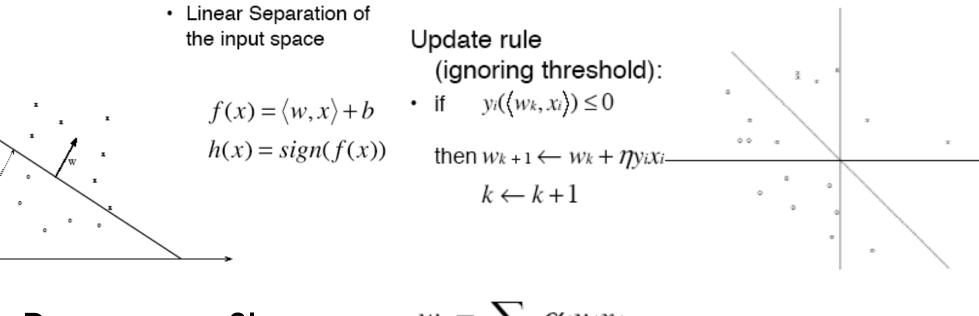
$$F(x) = \sum_{f \in \mathcal{F}} f(x) P(f|\mathcal{D})$$



Input M, labeled training set \mathcal{D} **Initialize** F = 0 $w_i^1 = \frac{1}{N}$ weight of datapoint x_i **for** k = 1, 2, ..., Mlearn classifier for \mathcal{D} with weights $w^k \Rightarrow f_k$ compute $e_k = \operatorname{Err}(f_k) = \sum_{i=1}^N w_i^k \mathbf{1}_{f(x_i) \neq y_i} < \frac{1}{2}$ compute coefficient of f_k : $c_k = \log \frac{1-e_k}{e_k} > 0$ compute new weights $w_i^{k+1} = \begin{cases} w_i^k & \text{if } f_k(x_i) = y_i \\ w_i^k e^{c_k} & \text{if } f_k(x_i) \neq y_i \end{cases}$ **Output** $F(x) = \sum_{k=1}^M c_k f_k(x)$

Perceptron

Perceptron Algorithm



Perceptron filter:

 $w = \sum \alpha_i y_i x_i$ $\alpha_i \ge 0$

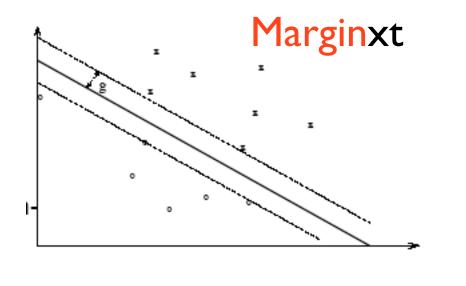
Dual representation:

$$f(x) = \langle w, x \rangle + b = \sum \alpha y_i \langle x_i, x \rangle + b$$
$$w = \sum \alpha_i y_i x_i$$

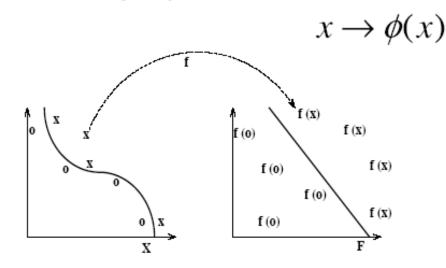
Dual update rule:

$$y_i \sum_{j} \alpha_j y_j \langle x_j, x_i \rangle + b \le 0$$

$$\alpha_i \leftarrow \alpha_i + \eta$$



 Map data into a feature space where they are linearly separable

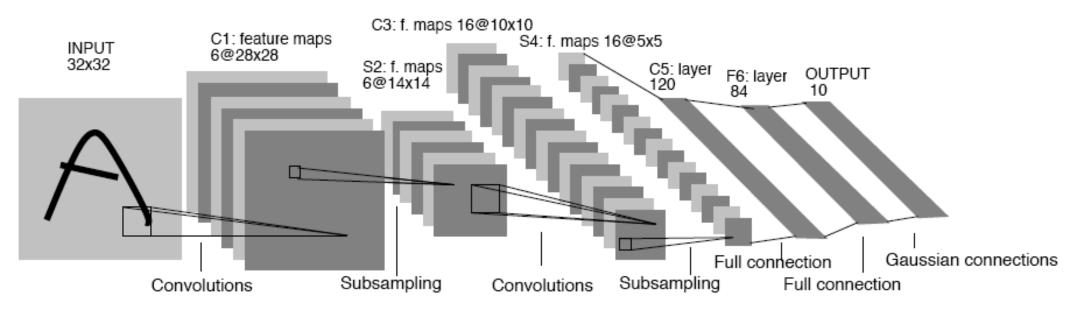


Kernels

 One can use LLMs in a feature space by simply rewriting it in dual representation and replacing dot products with kernels:

$$\langle x_1, x_2 \rangle \leftarrow K(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle$$

Convolutional Network:



$$X_n = \dot{F}_n(W_n, X_{n-1}),$$

Back-propagation rule:

$$\frac{\partial E^p}{\partial W_n} = \frac{\partial F}{\partial W} (W_n, X_{n-1}) \frac{\partial E^p}{\partial X_n}$$
$$\frac{\partial E^p}{\partial X_{n-1}} = \frac{\partial F}{\partial X} (W_n, X_{n-1}) \frac{\partial E^p}{\partial X_n}$$

Flexible Multiple class object Recognition

- Image features:
 - Interests points, image patch (parts)
- Formulation:
 - Graphical model: HMM, (mixture) Tree, MRF; Decision (alternating) tree
- Learning Inference Technique:
 - Dynamic prog., EM, Variational Approach,

Flexible Multiple class object Recognition

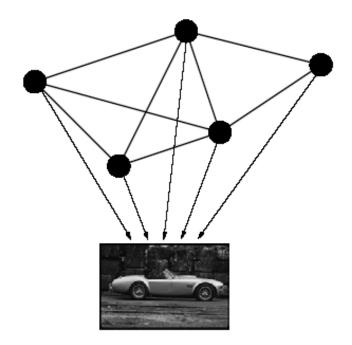
- mixture of tree: loffe&Forsyth
- Tree structured MRF: Felzenszwalb&Huttenlocher
- General Graphical model: Fergus&Perona&Zisserman
- Multiple class: Mahamud&Hebert&Lafferty

Image Likelihood $p(I|L, \theta)$ Posterior $p(L|I, \theta)$

MAP estimation: find the most likely L

Sampling: find other good matches

Model estimation: find the theta that fits



$$p(L|I,\theta) \propto p(I|L,\theta)p(L|\theta),$$

$$p(I|L, u) \propto \prod_{i=1}^{n} p(I|l_i, u_i).$$

$$p(L|E,c) = \prod_{(v_i,v_j)\in E} p(l_i, l_j|c_{ij}).$$

Model learning: $p(I^1, \ldots, I^m, L^1, \ldots, L^m | \theta) = \prod_{k=1}^m p(I^k, L^k | \theta),$

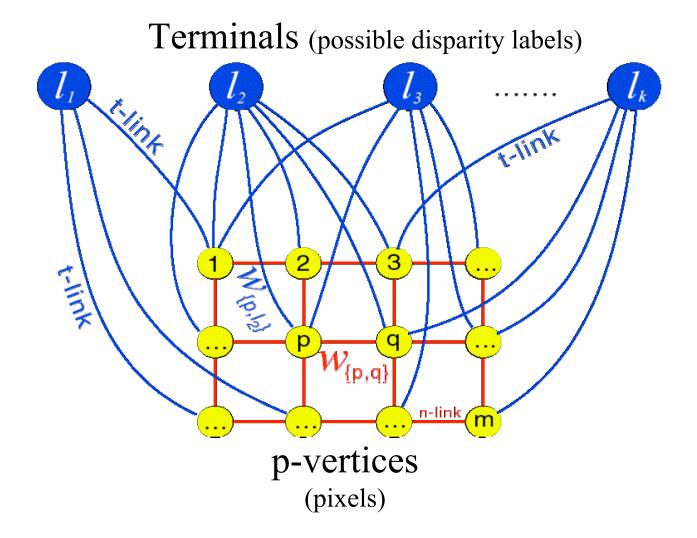
$$p(I, L|\theta) = p(I|L, \theta)p(L|\theta)$$
$$\theta^* = \arg\max_{\theta} \prod_{k=1}^m p(I^k|L^k, \theta) \prod_{k=1}^m p(L^k|\theta).$$

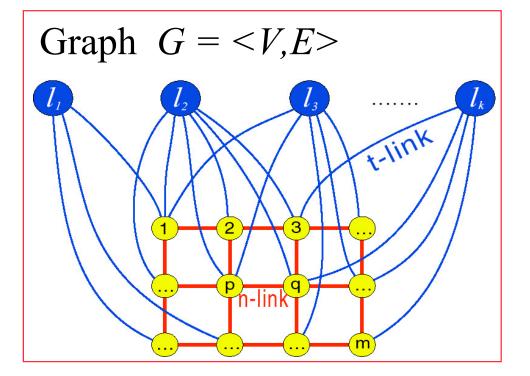
Finding max. likelihood:

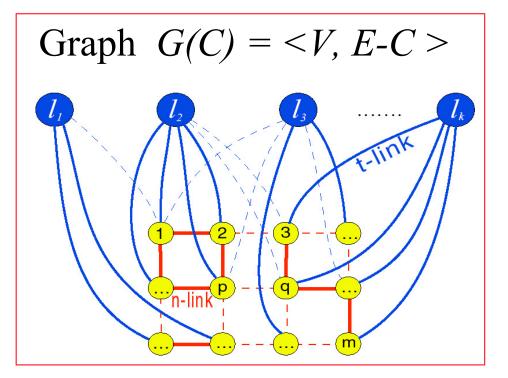
$$\begin{split} L^* &= \arg \max_L p(L|I, \theta) = \arg \max_L p(I|L, \theta) p(L|\theta). \\ L^* &= \arg \max_L \left(\prod_{i=1}^n p(I|l_i, u_i) \prod_{(v_i, v_j) \in E} p(l_i, l_j|c_{ij}) \right) \\ L^* &= \arg \min_L \left(\sum_{i=1}^n m_i(l_i) + \sum_{i \in E} d_{ij}(l_i, l_j) \right) \end{split}$$

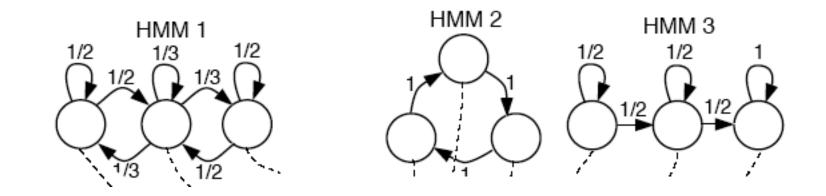
This is the a MRF, we are home!

$$L^* = \arg\min_{L} \left(\sum_{i=1}^{n} m_i(l_i) + \sum_{(v_i, v_j) \in E} d_{ij}(l_i, l_j) \right)$$









Number of States, number of observation A set of State transition: Initial State distribution:

 $a_{ij} = p\{q_{t+1} = j | q_t = i\}, \quad 1 \le i, j \le N,$ A probability distribution $b_j(k) = p\{o_t = v_k | q_t = j\}, 1 \le j \le N, 1 \le k \le M$ $\pi_i = p\{q_1 = i\}, \quad 1 \le i \le N$

$$\boldsymbol{O}=\boldsymbol{o}_1,\boldsymbol{o}_2,\ldots,\boldsymbol{o}_T$$

(1) Evaluation Problem

Given an HMM λ and a sequence of observations O, what is the probability that the observations are generated by the model, $p\{O|\lambda\}$?

(2) The Decoding Problem

Given a model and a sequence of observations , what is the most likely state sequence in the model that produced the observations?

(3)The Learning Problem

Given a model and a sequence of observations , how should we adjust the model parameters $\{A, B, \pi\}$ in order to maximize $p\{O|\lambda\}$.

Evaluation:

$$\alpha_{t}(i) = p\{o_{1}, o_{2}, \dots, o_{t}, q_{t} = i | \lambda\}$$

$$\alpha_{t+1}(j) = b_{j}(o_{t+1}) \sum_{i=1}^{N} \alpha_{t}(i) a_{ij}, \ 1 \le j \le N, \ 1 \le t \le T - 1$$
(1.2)

$$\alpha_{1}(j) = \pi_{j} b_{j}(o_{1}), \ 1 \le j \le N$$

Forward equation:
$$p\{O|\lambda\} = \sum_{i=1}^{N} \alpha_T(i).$$
 (1.3)

$$\beta_{t}(i) = p\{o_{t+1}, o_{t+2}, \dots, o_{T} | q_{t} = i, \lambda\}$$

$$\beta_{t}(i) = \sum_{j=1}^{N} \beta_{t+1}(j) a_{ij} b_{j}(o_{t+1}), \quad 1 \le i \le N, \quad 1 \le t \le T - 1$$

$$\beta_{T}(i) = 1, \quad 1 \le i \le N$$

$$(1.4)$$

Decoding

In this case We want to find the most likely state sequence for a given sequence of observations

$$\delta_{t}(i) = \max_{q_{1}q_{2}\dots q_{t-1}} p\{q_{1}, q_{2}, \dots, q_{t-1}, q_{t} = i, o_{1}, o_{2}, \dots, o_{t-1} | \lambda \},$$

$$\delta_{t+1}(j) = b_{j}(o_{t+1}) \left[\max_{1 \le i \le N} \delta_{t}(i) a_{ij} \right], \quad 1 \le i \le N, \quad 1 \le t \le T - 1$$
(1.8)

 $\delta_1(j) = \pi_j b_j(o_1), \ 1 \le j \le N$

$$j^* = \arg \max_{1 \le j \le N} \delta_T(j),$$

Learning the parameters: Maximum Likelihood(ML)

In ML we try to maximize the probability of a given sequence of observations , belonging to a given class w, given the HMM of the class w, wrt the parameters of the model . This probability is the total likelihood of the observations and can be expressed mathematically as

$$L_{tot} = p\{oldsymbol{O}^{\mathbf{w}}|\lambda_w\}$$

However since we consider only one class w at a time we can drop the subscript and superscript 'w's. Then the ML criterion can be given as,

$$L_{tot} = p\{oldsymbol{O}|oldsymbol{\lambda}\}$$

there is no known way to analytically solve for the model \lambda , which maximize the quantity Ltot . But we can choose model parameters such that it is locally maximized, using an iterative procedure, like Baum-Welch method

EM algorithm:
$$Q(\lambda, \bar{\lambda}) = \sum_{q} p\{q | O, \lambda\} \log[p\{O, q, \bar{\lambda}\}]$$

EM for HMM case:

$$\begin{split} Q(\lambda,\lambda') &= \sum_{q \in \mathcal{Q}} \log P(O,q|\lambda) P(O,q|\lambda') \qquad \lambda = \left(A, B, \pi\right) \\ \text{HMM pdf:} \\ P(O,q|\lambda) &= \pi_{q_0} \prod_{t=1}^{T} a_{q_{t-1}q_t} b_{q_t}(o_t) \\ Q(\lambda,\lambda') &= \sum_{q \in \mathcal{Q}} \log \pi_{q_0} P(O,q|\lambda') + \\ &= \sum_{q \in \mathcal{Q}} \left(\sum_{t=1}^{T} \log a_{q_{t-1}q_t}\right) p(O,q|\lambda') + \\ &= \sum_{q \in \mathcal{Q}} \left(\sum_{t=1}^{T} \log b_{q_t}(o_t)\right) P(O,q|\lambda') \end{split}$$

HMM case:

First Term:
$$\sum_{q \in \mathcal{Q}} \log \pi_{q_0} P(O, q | \lambda') = \sum_{i=1}^N \log \pi_i p(O, q_0 = i | \lambda')$$

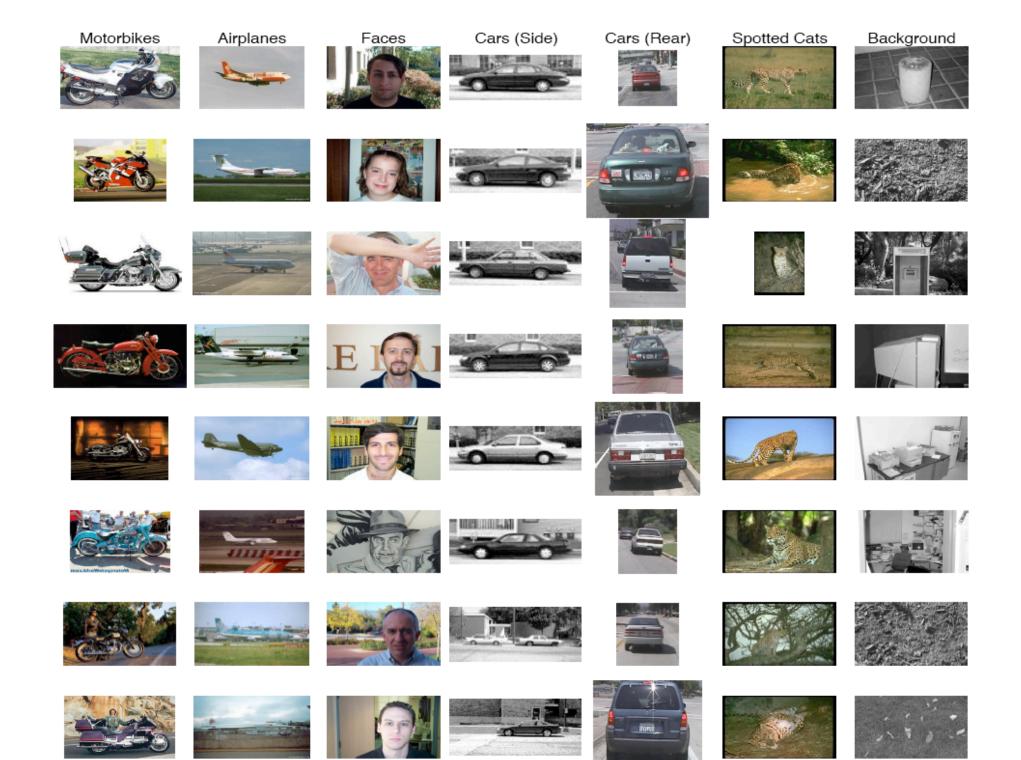
Optimal solution:
$$\frac{\partial}{\partial \pi_i} \left(\sum_{i=1}^N \log \pi_i p(O, q_0 = i | \lambda') + \gamma(\sum_{i=1}^N \pi_i - 1) \right) = 0$$

$$= > \qquad \pi_i = \frac{P(O, q_0 = i | \lambda')}{P(O | \lambda')}$$

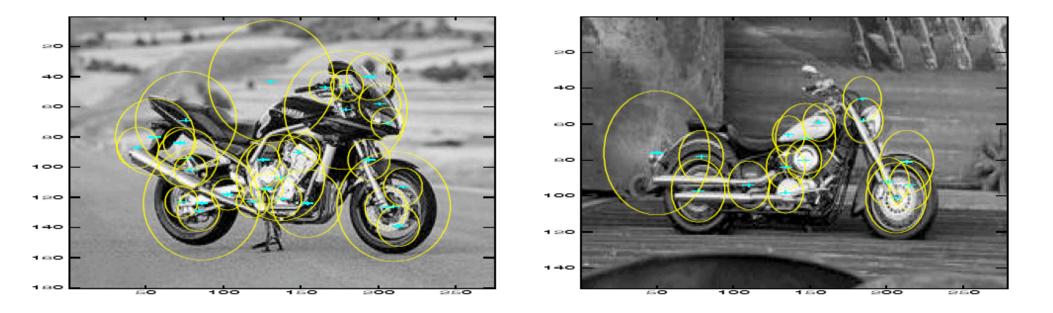
Second Term:

$$\sum_{q \in \mathcal{Q}} \left(\sum_{t=1}^{T} \log a_{q_{t-1}q_t} \right) p(O, q | \lambda') = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{N} \log a_{ij} P(O, q_{t-1} = i, q_t = j | \lambda')$$

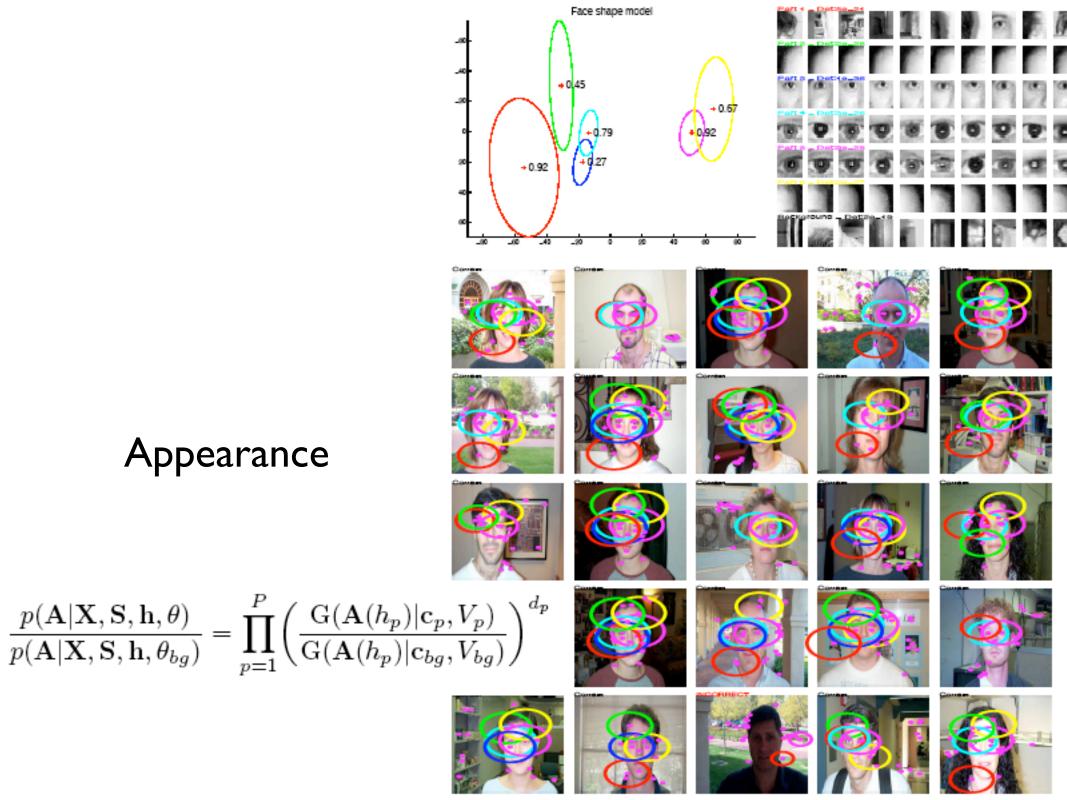
$$\Rightarrow \qquad a_{ij} = \frac{\sum_{t=1}^{T} P(O, q_{t-1} = i, q_t = j | \lambda')}{\sum_{t=1}^{T} P(O, q_{t-1} = i | \lambda')}$$

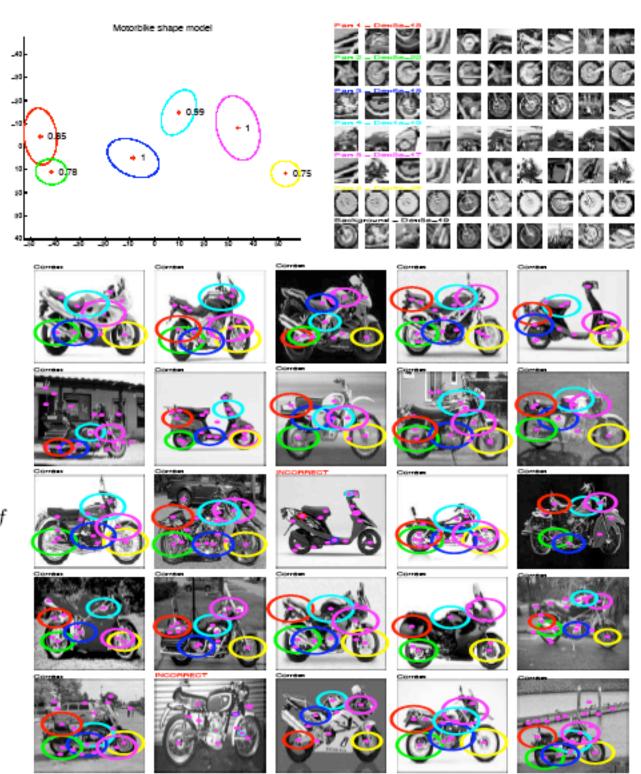


h: mapping parts to feature: P: -> N(x,s,a)



$$p(\mathbf{X}, \mathbf{S}, \mathbf{A} | \theta) = \sum_{\mathbf{h} \in H} p(\mathbf{X}, \mathbf{S}, \mathbf{A}, \mathbf{h} | \theta) = \sum_{\mathbf{h} \in H} \underbrace{p(\mathbf{A} | \mathbf{X}, \mathbf{S}, \mathbf{h}, \theta)}_{Appearance} \underbrace{p(\mathbf{X} | \mathbf{S}, \mathbf{h}, \theta)}_{Shape} \underbrace{p(\mathbf{S} | \mathbf{h}, \theta)}_{Rel. Scale} \underbrace{p(\mathbf{h} | \theta)}_{Other}$$





Shape

$$\frac{p(\mathbf{X}|\mathbf{S}, \mathbf{h}, \theta)}{p(\mathbf{X}|\mathbf{S}, \mathbf{h}, \theta_{bg})} = \mathbf{G}(\mathbf{X}(\mathbf{h})|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \, \alpha^{2}$$

$$\theta = \{\mu, \Sigma, \mathbf{c}, V, M, p(\mathbf{d}|\theta), t, U\}$$

$$\hat{\theta}_{ML} = \arg \max_{\theta} p(\mathbf{X}, \mathbf{S}, \mathbf{A}|\theta).$$
Need to use EM

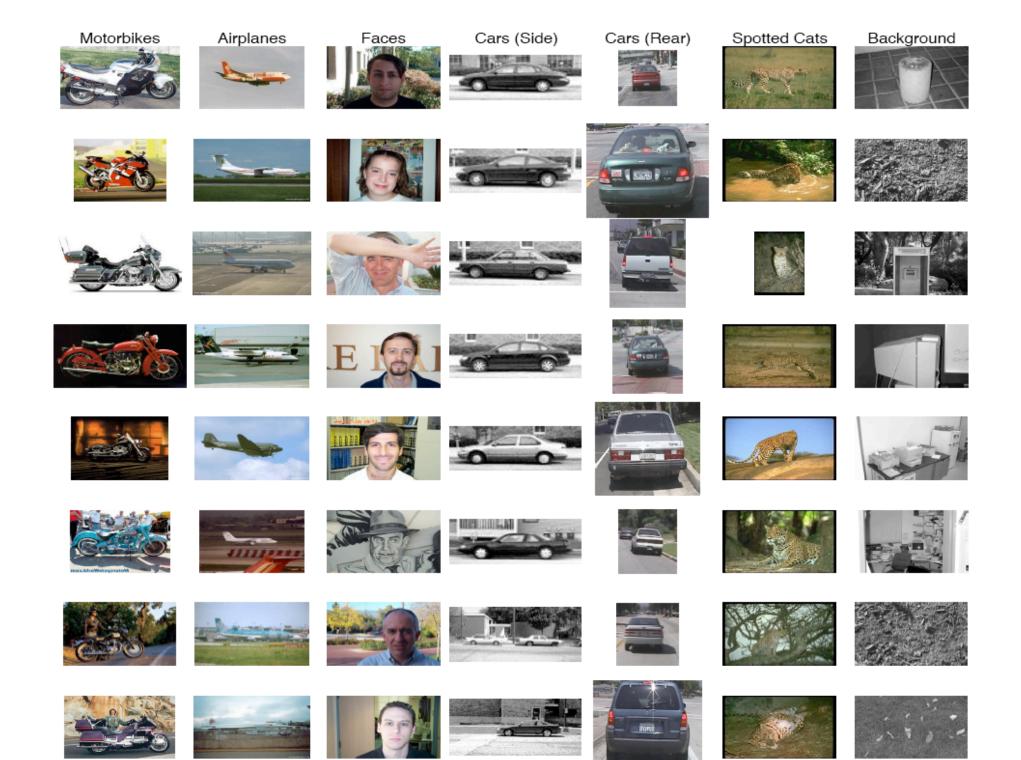


Image Segmentation

- Image features
 - Pixel value, local filter/texture/motion features
- Formulation
 - Graph Cuts, MRF/min-cut, Random Walk, Information Bottleneck
- Inference Technique
 - Spectral graph method, Min-cut, deterministic annealing, variation approach

Image Segmentation

- Segmentation with graph cuts
- Segmentation and labeling with MRF, min-cut
- Segmentation with (semi) supervision
- clustering image and words
- Information Bottleneck

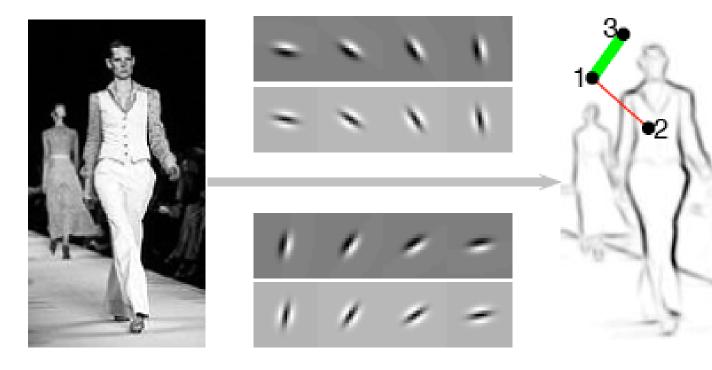
Image segmentation by pairwise similarities

- Image = { pixels }
- Segmentation = partition of image into segments
- Similarity between pixels i and j

 $S_{ij} = S_{ji} \quad 0$

• Objective: "similar pixels should be in the same segment, dissimilar pixels should be in different segments"

Pixel Similarity based on Intensity Edges



image

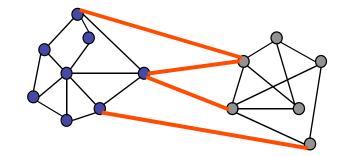
oriented filter pairs

edge magnitudes

Cuts in a graph

- (edge) cut = set of edges whose removal makes a graph disconnected
- weight of a cut

cut(A,B) =
$$\Sigma_{i \in A, j \in B} S_{ij}$$



• the normalized cut NCut(A,B) = cut(A,B)($\frac{1}{\text{vol }A} + \frac{1}{\text{vol }B}$)

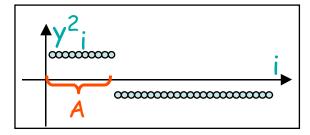
Normalized Cut As Generalized Eigenvalue problem

$$Ncut(A,B) = \frac{cut(A,B)}{Vol(A)} + \frac{cut(A,B)}{Vol(B)}$$

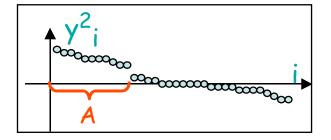
= $\frac{(1+x)^{T}(D-W)(1+x)}{k1^{T}D1} + \frac{(1-x)^{T}(D-W)(1-x)}{(1-k)1^{T}D1}; \ k = \frac{\sum_{x_{i}>0} D(i,i)}{\sum_{i} D(i,i)}$
= ...

• after simplification, we get

$$Ncut(A,B) = \frac{y^T (D-W)y}{y^T Dy}, \text{ with } y_i \in \{1,-b\}, y^T D1 = 0.$$



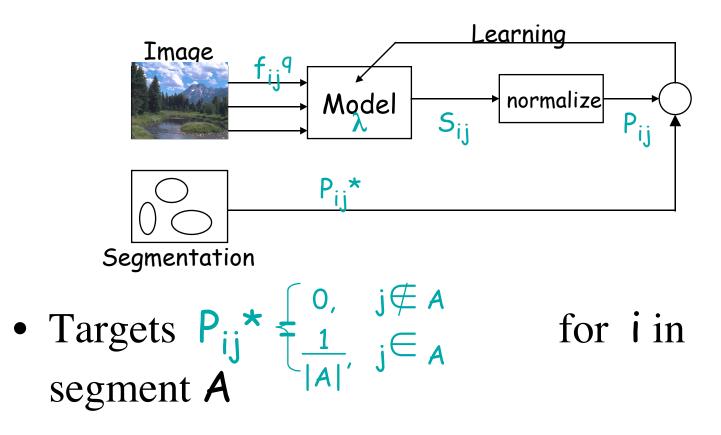
$$(D-W)x = \lambda Dx$$



Current result

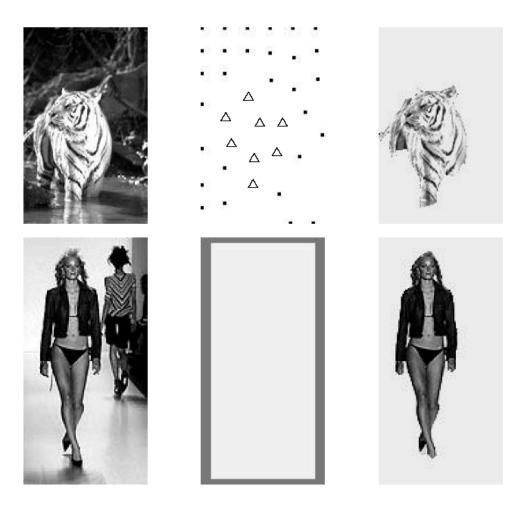
[Folkless et.al. 03]

Learning image segmentation

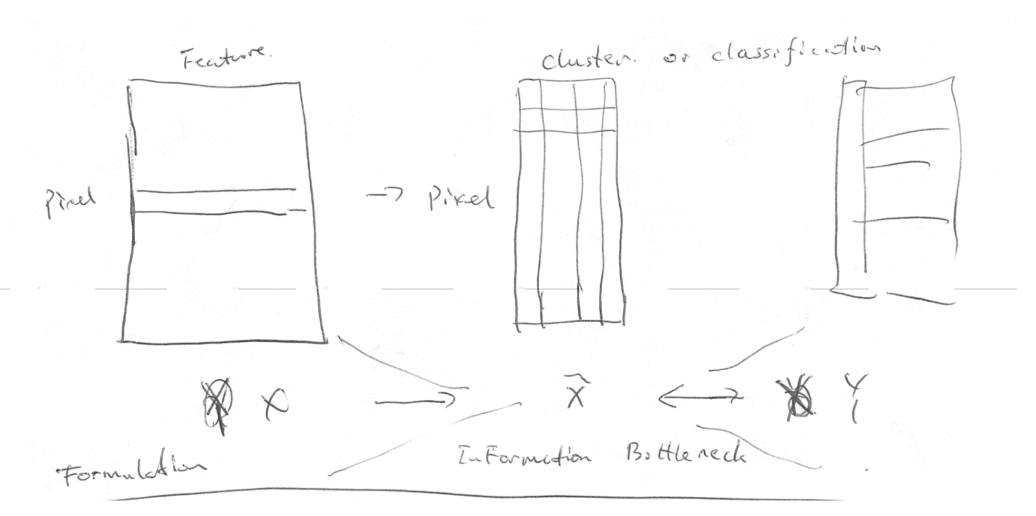


• Model
$$S_{ij} = \exp(\Sigma_q \lambda_q f^q_{ij})$$

Guide Grouping: Partial Grouping Cues



Information bottleneck

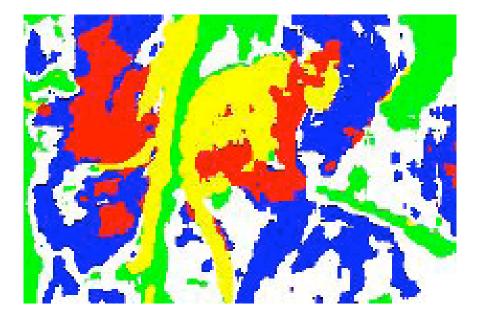


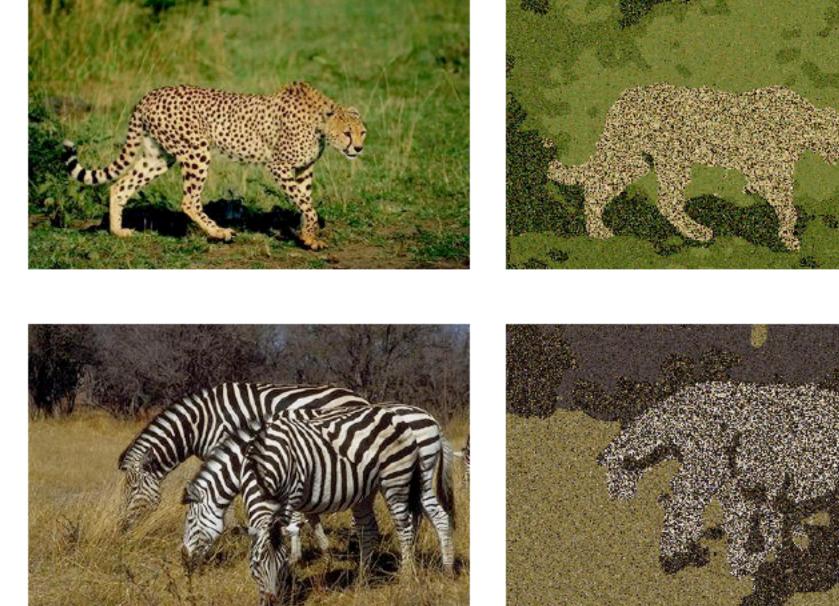
 $F[P(\hat{x}|x)] = \tilde{\iota}(x;\hat{x}) + \beta \langle d(x,\hat{x}) \rangle_{P(x;\hat{x})}$

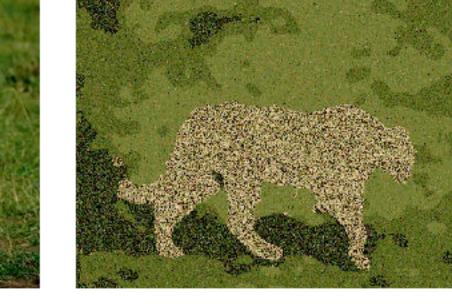
μ in $I(x; \hat{x}) - \lambda I(\hat{x}; \hat{x})$

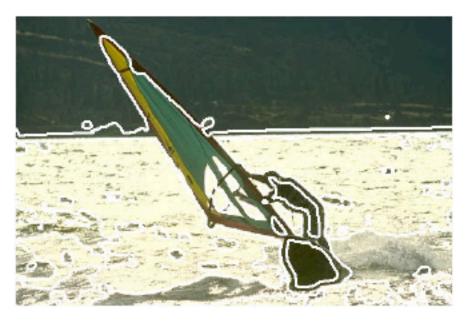
Total: $I(X; \bar{X}) - \chi I(\bar{X}; \bar{X}) =$

$$= \frac{1}{\sqrt{2}} \sum_{V=1}^{k} M_{iV} \left[\log P_V + \lambda \sum_{j < m} \frac{M_{ij}}{n_i} \log \left(\sum_{d=1}^{k} P_{d}(u) G_{d}(j) \right) \right]$$







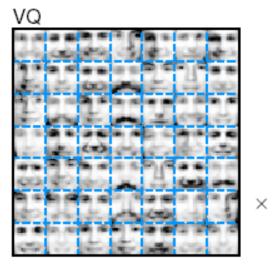


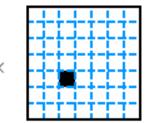
upcoming topics

- Image Shape (geometric) features
- Human activity recognition

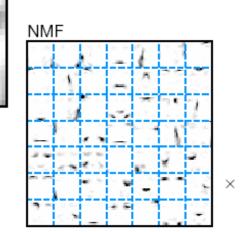
Image features/Shape

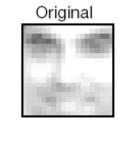
- Models of features
 - linear features/filters: PCA, ICA, Non-negative
- Geometrical:
 - Shape-context

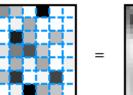




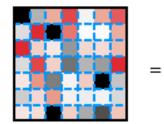
=



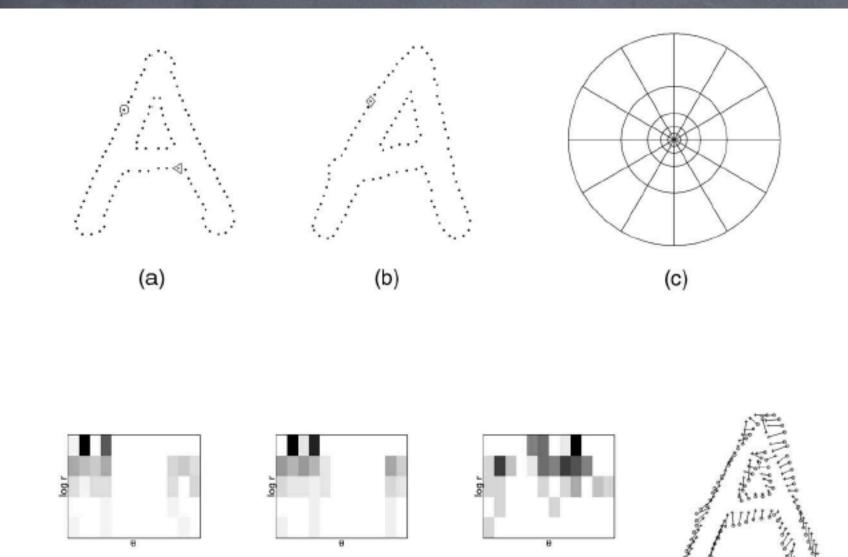


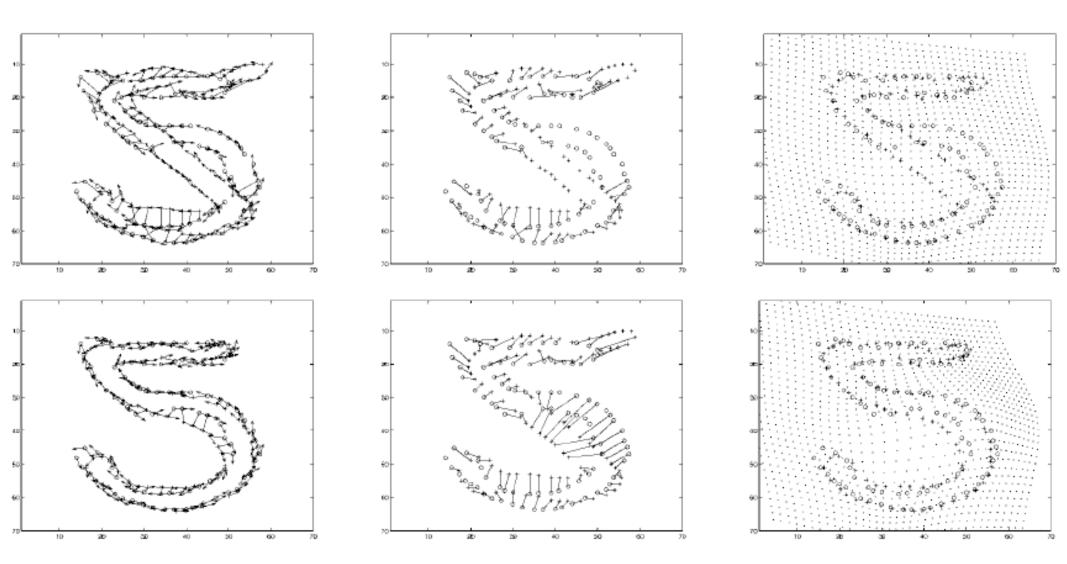


 \times

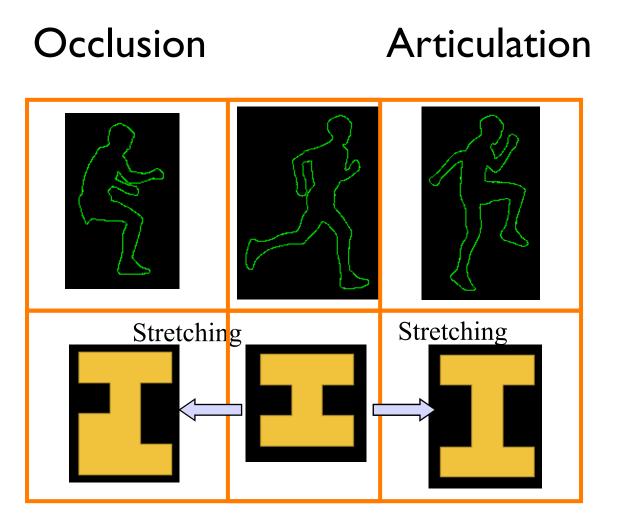


Shape context





Shape matching and similarity



3 tasks:

Correspondence

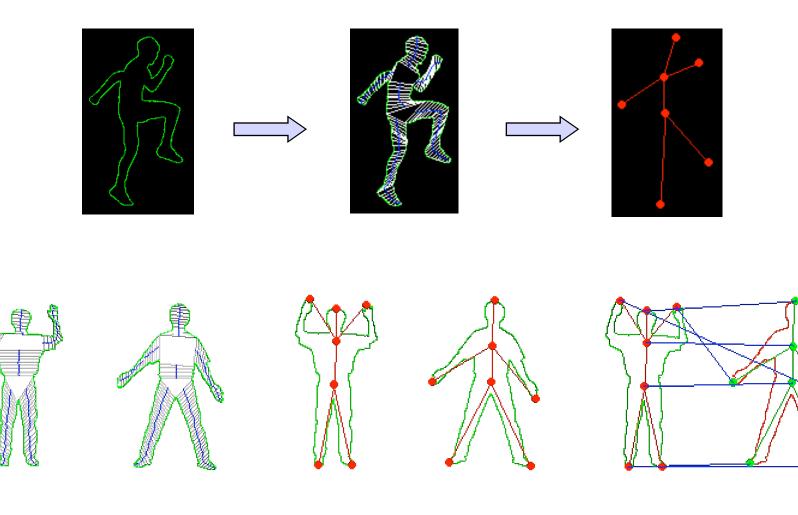
alignment transform

error + distortion magnitude

Shape representation

Silhouette

Ø



Hausdoff Distance

Distance transform

Alignment

Hash table

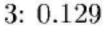
Decision tree

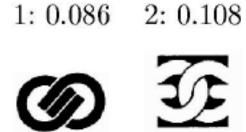
3: 0.109

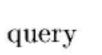
1: 0.117

query

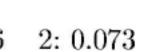
2: 0.121







1: 0.066

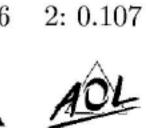


3: 0.077

query

1: 0.096

query



query 3: 0.114

query

1: 0.046

2: 0.107

3: 0.114

query

1: 0.078

1: 0.0922: 0.10

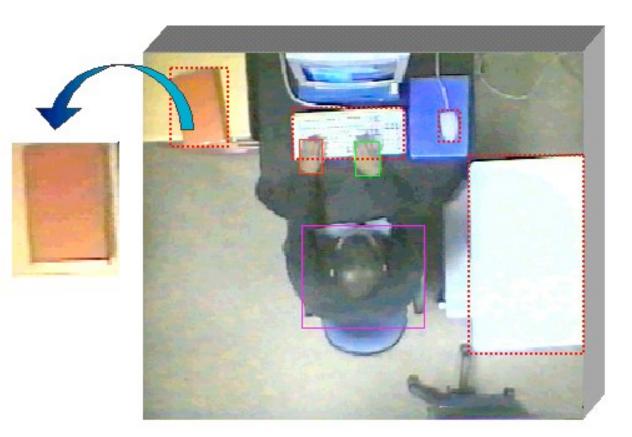
3: 0.102

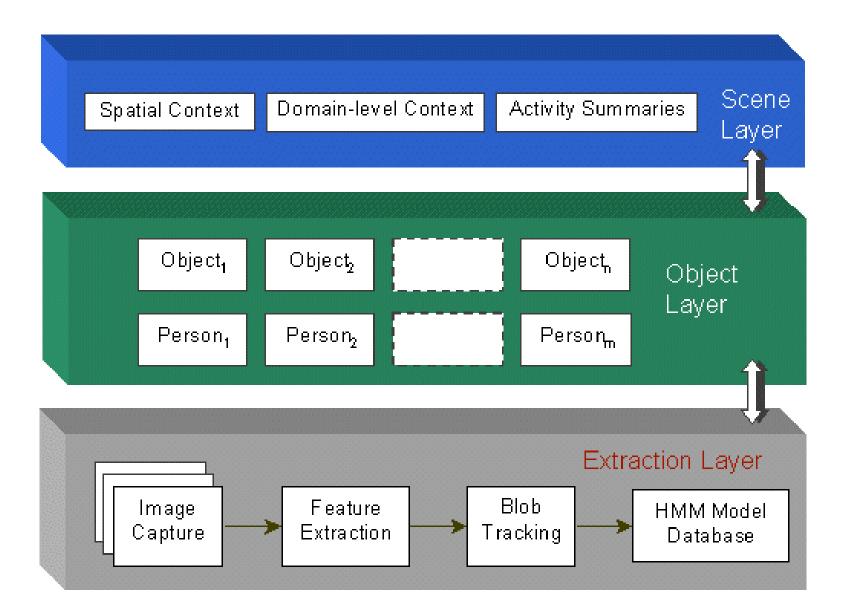
2: 0.116

3: 0.122

Activity Recognition

- Object tracking, and detection
 - blob detector/tracker, condensation tracking
- short time, single actor, action event classification
 - HMM, Dynamic models
- Extended time, multiple actor, activity
 - Context free grammar





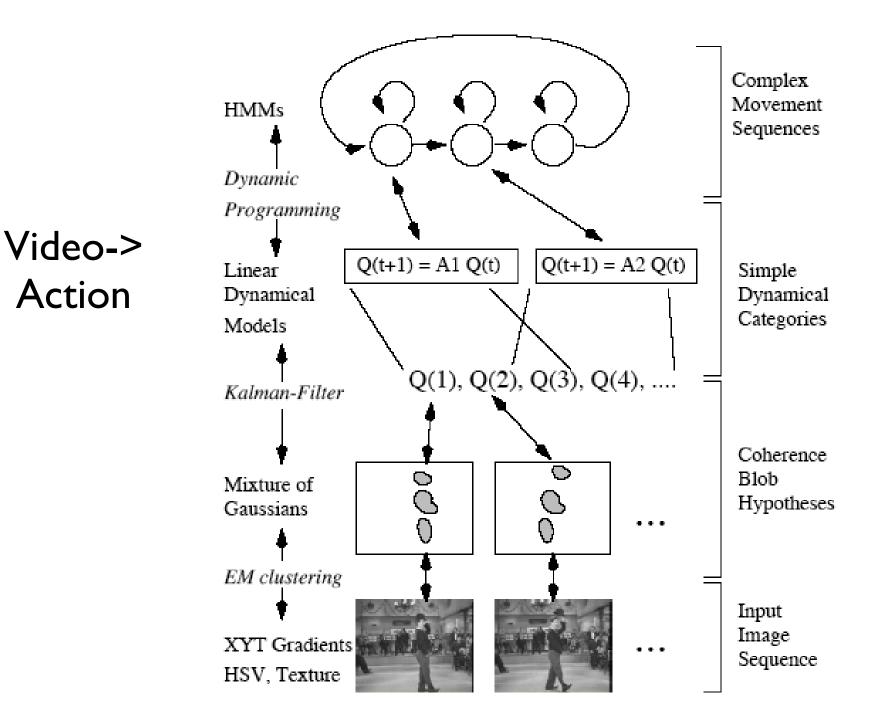
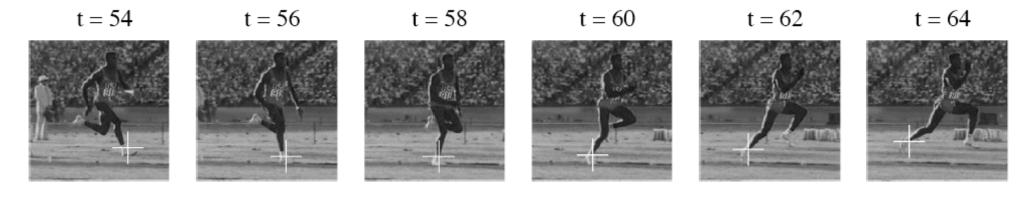


Figure 1: 4 level decomposition of human dynamics.

t = 39

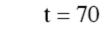
support layer for blob #49

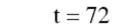
support layer for blob #53



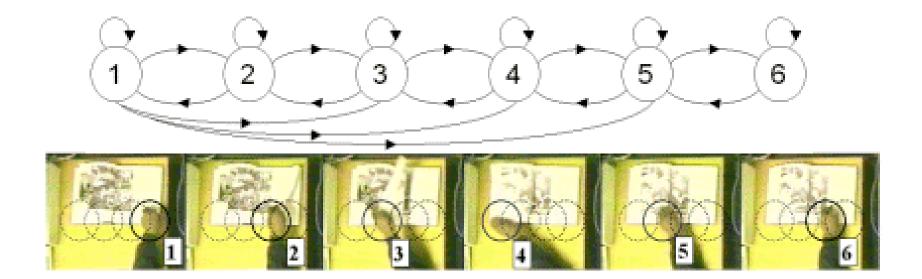
t = 66

t = 68





Action Recognition



Action-> Activity

Specifying Grammar

Devision Devision Devision the

Parsing Tree

Production Rules taken from "rules" of Activity

Built from Production Rules

	P	Production Rules		Description		
Blackjack	S	$\rightarrow AB$	[1.0]	Blackjack \rightarrow "play game" "determine winner"		
	A	$\rightarrow CD$	[1.0]		game" "implement strategy"	
Play game Determine Winner		$\rightarrow EF$	[1.0]	determine winner \rightarrow "evaluate strategy" "cleanup"		
		\rightarrow HI	[1.0]	setup game \rightarrow "place bets" "deal card pairs"		
\wedge		$\rightarrow GK$	[1.0]	implement strategy \rightarrow "player strategy"		
		$\rightarrow LKM$	[0.6]	evaluate strategy \rightarrow "flip dlr down-card" "dlr hits" "flip plyr down-card"		
		$\rightarrow LM$	[0.4]		"flip dealer down-card" "flip player down-card"	
Setup Implement Evaluate Clean	F	$\rightarrow NO$	[0.5]	cleanup \rightarrow "settle be		
Game Strategy Strategy Up		$\rightarrow ON$	[0.5]		card" "settle bet"	
	G	$\rightarrow J$	[0.8]	player strategy \rightarrow "E		
		\rightarrow Hf	[0.1]	\rightarrow "Splitting Pair"		
		$\rightarrow bfffH$	[0.1]		Doubling Down"	
	H	$\rightarrow l$	[0.5]	place bets	Symbol Domain-Specific Events	
Dealer /		$\rightarrow lH$	[0.5]		a dealer removed card from house	
Place Deal Flip Dealer Hits	Ι	$\rightarrow ffI$	[0.5]	deal card pairs	b dealer removed card from player	
Down Card		$\rightarrow ee$	[0.5]		c player removed card from house	
	J	$\rightarrow f$	[0.8]	Basic strategy	d player removed card from player	
	or	$\rightarrow fJ$	[0.2]		e dealer added card to house	
Dealei	- n	$\rightarrow e$	[0.6]	house hits	f dealer dealt card to player	
	-	$\rightarrow eK$	[0.4]		g player added card to house	
Strategy Card 🗸	$L \\ M$	$\rightarrow ae$	[1.0]	Dealer downcard	h player added card to player	
Settle Basic Bets		$\rightarrow dh$	[1.0]	Player downcard	<i>i</i> dealer removed chip	
		$\rightarrow k$	[0.16]	settle bet	j player removed chip	
		$\rightarrow kN$	[0.16]		k dealer pays player chip	
		$\rightarrow j$	[0.16]		<i>l</i> player bets chip	
Strategy / 🎽		$\rightarrow jN$	[0.16]			
Split		$\rightarrow i$	[0.18]			
✓ Pair	_	$\rightarrow iN$	[0.18]			
Doubling	0	$\rightarrow a$	[0.25]	recover card		
Down		$\rightarrow aO$	[0.25]			
		$\rightarrow b$	[0.25]			
		$\rightarrow bO$	[0.25]			

Production Rules		ules	Description						
S	\rightarrow	AB	[1.0]	Blackjack → "play game" "determine winner"					
A	\rightarrow	CD	[1.0]	play game \rightarrow "setup game" "implement strategy"					
B	\rightarrow	EF	[1.0]	determine winner \rightarrow "evaluate strategy" "cleanup"					
C	\rightarrow	HI	[1.0]	setup game \rightarrow "place bets" "deal card pairs"					
D	\rightarrow	GK	[1.0]	implement strategy \rightarrow "player strategy"					
E	\rightarrow	LKM	[0.6]	evaluate strategy \rightarrow "flip dlr down-card" "dlr hits" "flip plyr down-card					
	\rightarrow	LM	[0.4]	evaluate strategy \rightarrow "flip dealer down-card" "flip player down-card"					
F	\rightarrow	NO	[0.5]	cleanup \rightarrow "settle bet" "recover card"					
	\rightarrow	ON	[0.5]	\rightarrow "recover card" "settle bet"					
G	\rightarrow	J	[0.8]	player strategy \rightarrow "Basic Strategy"					
	\rightarrow	Hf	[0.1]	\rightarrow "Splitting Pair"					
	\rightarrow	bfffH	[0.1]	\rightarrow "Doubling Down"					
H	\rightarrow	l	[0.5]	place bets	Symbol	Domain-Specific Events			
	\rightarrow	lH	[0.5]		a	dealer removed card from house			
Ι	\rightarrow	ffI	[0.5]	deal card pairs	b	dealer removed card from player			
		ee	[0.5]		c	player removed card from house			
J		f	[0.8]	Basic strategy	d	player removed card from player			
	\rightarrow	fJ	[0.2]		e	dealer added card to house			
K	\rightarrow		[0.6]	house hits	f	dealer dealt card to player			
		eK	[0.4]		g	player added card to house			
L		ae	[1.0]	Dealer downcard	h	player added card to player			
M		dh	[1.0]	Player downcard	i	dealer removed chip			
N		k	[0.16]	settle bet	j	player removed chip			
		kN	[0.16]		k	dealer pays player chip			
		j	[0.16]		l	player bets chip			
	\rightarrow	jN	[0.16]						
	\rightarrow	+	[0.18]						
		iN	[0.18]						
O	\rightarrow		[0.25]	recover card					
	\rightarrow	aO	[0.25]						
	\rightarrow	b	[0.25]						
	\rightarrow	bO	[0.25]						

Table 6.3: SCFG G_{21} for Blackjack/"21" card game: Production rules, probabilities, and descriptions. Detectable domain-specific events make up the terminal alphabet V_T of G_{21} .

Topics

Texture synthesis/analysis Fixed body object detection/recognition

Flexible body object detection/recognition

Image segmentation Image translation

Image Shape modeling

Human activity recognition