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Abstract. Unsupervised Image Segmentation is one of the central issues
in Computer Vision. From the viewpoint of exploratory data analysis,
segmentation can be formulated as a clustering problem in which pix-
els or small image patches are grouped together based on local feature
information. In this contribution, parametrical distributional clustering
(PDC) is presented as a novel approach to image segmentation. In con-
trast to noise sensitive point measurements, local distributions of image
features provide a statistically robust description of the local image prop-
erties. The segmentation technique is formulated as a generative model in
the maximum likelihood framework. Moreover, there exists an insightful
connection to the novel information theoretic concept of the Informa-
tion Bottleneck (Tishby et al. [17]), which emphasizes the compromise
between efficient coding of an image and preservation of characteristic
information in the measured feature distributions.
The search for good grouping solutions is posed as an optimization prob-
lem, which is solved by deterministic annealing techniques. In order to
further increase the computational efficiency of the resulting segmenta-
tion algorithm, a multi-scale optimization scheme is developed. Finally,
the performance of the novel model is demonstrated by segmentation of
color images from the Corel data base.
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1 Introduction

Image understanding and visual object recognition crucially rely on image seg-
mentation as an intermediate level representation of image content. Approaches
to image segmentation which lack supervision information are often formulated
as data clustering problems. Regardless of the particular nature of the image
primitives in question, these methods share as a common trait that they search
for a partition of pixels or pixel blocks with a high degree of homogeneity. The
specific choice of a clustering algorithm, however, is dependent on the nature
of the given image primitives which might be feature vectors, feature relations
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or feature histograms. In this paper, we advocate to characterize an image site
by the empirical color distributions extracted from its neighborhood, which we
regard as a robust and statistically reliable descriptor of local color properties.

One way to design a clustering technique for this type of data is to apply
a statistical test to the measured histograms. This processing step yields pair-
wise dissimilarity values, for which a multitude of grouping techniques can be
found in the literature (e.g. [7, 13, 16]). Alternatively, feature histograms can be
grouped directly by histogram clustering [10, 12]. The histogram clustering ap-
proach characterizes each cluster by a prototypical feature distribution, and it
assigns feature histograms to the nearest prototype distribution. Closeness is
measured by the Kullback–Leibler–Divergence. As a consequence, this method
retains the efficiency of central clustering approaches like k-means clustering,
but it avoids the restrictive assumption that features are vectors in a Euclidean
space.

Histogram clustering in its original form is invariant to permutations of his-
togram bins. In computer vision where the histogramming process is prone to
noise induced errors, this invariance neglects information about the order of bins
and the distance of bin centers in feature space. We, therefore, suggest to replace
the non-parametric density estimation via histograms by a continuous mixture
model, which no longer suffers from the shortcomings of a non-adaptive discrete
binning process. The resulting statistical model can be interpreted as a genera-
tive model for pixel colors, but we can also establish an interesting connection to
the novel information theoretic concept of the Information Bottleneck principle
[17].

The search for a good grouping solution is posed as a combinatorial optimiza-
tion problem. Due to the fact that the cost landscape may have a very jagged
structure, powerful optimization techniques with regularization or smoothing
behavior should be applied to avoid poor local minima. We use deterministic
annealing which is embedded in a multi-scale framework for additional computa-
tional efficiency. To give an impression of the performance of the new parametric
distributional clustering algorithm, color segmentations of pictures taken from
the Corel gallery are shown in the results section.

2 The Clustering Model

Notation & Model Definition: To stress the generality of the proposed clus-
tering model, the discussion of the cost function is initially detached from the ap-
plication domain of image segmentation. Assume a set of objects oi, i = 1, . . . , n
to be given. These entities are supposed to be clustered in k groups. The cluster
memberships are encoded by Boolean assignment variables Miν , ν = 1, . . . , k
which are summarized in a matrix M ∈ M = {0, 1}n×k. We set Miν = 1, if
object oi is assigned to cluster ν. To avoid multiple group associations, we fur-
thermore enforce

∑
ν≤k Miν = 1. Each object oi is equipped with a set of ni

observations Xi = {xi1, . . . , xini
}, xij ∈ Rd. These observations are assumed to

be drawn according to a particular Gaussian mixture model, which is character-



istic for the respective cluster ν of the object. Thus, the generative model for an
observation x given the group membership of its associated object is defined as

p(x| ν) =
l∑

α=1

pα| νg(x|µα, Σα). (1)

Here, gα(x) = g(x|µα, Σα) denotes a multivariate Gaussian distribution with
mean µα and covariance matrix Σα. In order to achieve parsimonious models,
the Gaussians gα are considered to form a common alphabet from which the
cluster specific distributions are synthesized by a particular choice of mixture
coefficients pα| ν . In order to further limit the number of free parameters, the
covariance matrices Σα, α = 1, . . . , l are not altered after being initialized by
a preprocessing step, i.e. conventional mixture model estimation. Thus, the re-
maining free continuous parameters are the means of the Gaussians, the mixture
coefficients and the probabilities of the various groups pν , ν = 1, . . . , k. Gather-
ing these parameters in the set Θ = {pν , pα| ν , µα|α = 1, . . . , l; ν = 1, . . . k}, the
complete data likelihood P (X ,M|Θ) is given by

p(X ,M|Θ) = p(X|M, Θ) · P (M|Θ) =
∏
i≤n

∑
ν≤k

Miνpνp(Xi| ν, Θ)

=
∏
i≤n

∏
ν≤k

[pνp (Xi| ν,Θ)]Miν . (2)

Replacing the sum by a product in eq. (2) is justified since the binary assignment
variables Miν select one out of k terms.

In the special case of color image segmentation, the abstract objects oi can be
identified with individual pixel positions or sites. The observations X correspond
to locally measured color values. The discrete nature of image data induces a
partition of the color space. Computational reasons suggest to further coarsen
this partition which leads to a discretization of the color space into regions
Rj . Considering the different color channels as being independent, these regions
correspond to one dimensional intervals Ij . In practice, the intervals Ij are chosen
to cover a coherent set of different color values to alleviate the computational
demands. If other image features are available, they can be integrated in this
framework as well. For instance, the application of our method to combined color
and texture segmentation has been studied and will be discussed in a forthcoming
publication. Denote by nij the number of occurrences that an observation at site
i is inside the interval Ij . Inserting in (2) and setting Gα(j) =

∫
Ij

gα(x)dx, the
complete data likelihood is given by

p(X ,M|Θ) =
∏
i≤n

∏
ν≤k

pν

∏
j≤m

∑
α≤l

pα| νGα(j)

nij
Miν

. (3)

Model Identification: Determining the values of the free parameters is the
key problem in model identification for a given data set, which is accomplished



by maximum likelihood estimation. To simplify the subsequent computations
the log-likelihood corresponding to equation 2 is considered:

L(θ| X ,M) = log p(X ,M|Θ)

=
∑

i

∑
ν

Miν

log pν +
∑

j

nij log

(∑
α

pα| νGα(j)

) . (4)

This equation has to be optimized with respect to the following entities: (1) pν ,
(2) pα| ν , (3) the means of the Gaussians µα and (4) the hidden variables M.
The method of choice for these kinds of problems is the well known Expectation–
Maximization–Algorithm (EM) [4]. It proceeds iteratively by computing poste-
rior probabilities P (M|Θold) in the E-step and maximizing the averaged com-
plete data log–likelihood E[L(Θ|M)] with respect to Θ in the M-step. Extending
this interpretation, EM can be viewed as maximizing the following joint function
of the parameters Θ and the hidden states M (see [3, 5, 9]):

F ′ = E [log p(X ,M|Θ) + log p(M)] . (5)

Apart from a difference in the sign, this equation is identical to the generalized
free energy F at temperature T = 1 known from statistical physics. Setting the
corresponding cost function C = −L, the free energy for arbitrary temperatures
T is given by the following expression:

F = E[C]− T ·H. (6)

Here, H denotes the entropy of the distribution over the states M. This for-
mal equivalence provides an interesting link to another well known optimiza-
tion paradigm called Deterministic Annealing (DA) [14]. The key idea of this
approach is to combine the advantages of a temperature controlled stochastic
optimization method with the efficiency of a purely deterministic computational
scheme. A given combinatorial optimization problem over a discrete state space
is relaxed into a family of search problems in the space P(M) of probability
distributions over that space. In this setting, the generalized free energy takes
the role of the objective function. The temperature parameter T controls the in-
fluence of the entropic term, leading to a convex function in the limit of T →∞.
At T = 0 the original problem is recovered. The optimization strategy starts
at high temperature and it tracks local minima of the objective function while
gradually lowering the computational temperature.

Setting qiν = E[Miν ] = p(Miν = 1), the expected costs of a given configura-
tion is given by:

E[C] = −
∑

i

∑
ν

qiν

log pν +
∑

j

nij log

(∑
α

pα| νGα(j)

) . (7)



E-Step–Equations: Maximizing eq. (7) with respect to P (M), which basically
recovers the E-Step of the EM–scheme, requires to evaluate the partial costs
of assigning an object oi to cluster ν. The additive structure of the objective
function allows us to determine these partial costs h as

hiν = − log pν −
∑

j

nij log

(∑
α

pα| νGα(j)

)
. (8)

Utilizing the well known fact from statistical physics that the generalized free
energy at a certain temperature is minimized by the corresponding Gibbs dis-
tribution, one arrives at the update equations for the various qiν :

qiν ∝ exp(− 1
T

hiν) = exp

 1
T

log pν +
∑

j

nij log

(∑
α

pα| νGα(j)

) . (9)

M-Step–Equations: In accordance with [9], the estimates for the class prob-
abilities pν must satisfy

∂

∂pν
F − λ ·

(
k∑

µ=1

pµ − 1

)
= 0 , (10)

where λ is a Lagrange parameter enforcing a proper normalization of pν . Ex-
panding F and solving for pν leads to the M-step formulae

pν =
1
n

n∑
i=1

qiν , ν = 1, . . . , k. (11)

While lacking a closed-form solution for the second set of parameters pα| ν ,
their optimal values can be found by an iterated numerical optimization. Instead
of directly solving

∂

∂pα| ν
F − λ ·

(
L∑

γ=1

pγ| ν − 1

)
= 0 , (12)

which would be the analog to eq. (10), we repeatedly select two Gaussian com-
ponents α1 and α2. Keeping pγ| ν fixed for γ /∈ {α1, α2}, pα2| ν is directly coupled
to pα1| ν via

pα2| ν = 1−
∑

γ /∈{α1,α2}

pγ| ν − pα1| ν , (13)

so that only one free parameter remains. Inserting (13) into (12), we obtain

∂

∂pα1| ν
F (α1, α2) = −

m∑
j=1

(
n∑

i=1

qiνnij

)
Gα1 (j)−Gα2 (j)∑L

γ=1 pγ| νGγ (j)
(14)



and

∂2

∂p2
α1| ν

F (α1, α2) =
m∑

j=1

(
n∑

i=1

qiνnij

)
(Gα1 (j)−Gα2 (j))2(∑L

γ=1 pγ| νGγ (j)
)2 ≥ 0 . (15)

The joint optimization of α1 and α2, therefore, amounts to solving a one-
dimensional convex optimization problem. The optimal value of α1 is either
located on the boundary of the interval

[
0; 1−

∑
γ /∈{α1,α2} pγ| ν

]
, or is equal to

the zero-crossing of (14). In the latter case, it can be determined by the Newton
method or by an interval bisection algorithm, which were both found to achieve
sufficient precision after few optimization steps. The computational demands of
this algorithm are dominated by the evaluation of

∑n
i=1 qiνnij , which is linear

in the number of sites, n. The computation of the remaining parts of (14) scales
with the number of clusters, k, and the number of bins, m, and can thus be done
efficiently.

Some care should also be spent on the selection of α1 and α2. Although the
free energy will monotonously decrease even if α1 and α2 are randomly drawn,
the convergence can be enhanced by choosing, in each iteration, α1 and α2

such that
∥∥∥ ∂

∂pα1| ν
F (α1, α2)

∥∥∥ is maximum. To adjust the mixture distribution
pα| ν for a fixed cluster ν, it is usually sufficient to repeat the selection and
subsequent optimization of pairs (α1, α2) for c · L times, where c is a small
constant (e.g. c = 3). Although the optimization process might not have found
the exact position of the global cost minimum at this time (incomplete M-step),
any further optimization is unlikely to substantially influence the M-step result,
and can thus be skipped.

Finally it is possible to adapt the means µα. To improve the readability,
we restrict our calculations to one-dimensional data (when operating in d di-
mensions, we assume diagonal covariance matrices, so that the estimation of
the d-dimensional vector µα reduces to d one-dimensional optimization prob-
lems). Denote by x	j and x⊕j the boundaries of the interval Ij =

[
x	j ; x⊕j

]
, so

that Gα(j) =
∫ x⊕j

x	j
gα(x)dx. µα can then be determined by gradient or Newton

descent, the first derivative of F being given by

∂

∂µα
F = −

k∑
ν=1

m∑
j=1

(
n∑

i=1

qiνnij

)
pα| ν

gα

(
x	j
)
− gα

(
x⊕j
)∑L

γ=1 pγ| νGγ (j)
. (16)

We observed in color segmentation experiments, that fixed means µα, initialized
by a conventional mixture model procedure, produced satisfactory segmentation
results. Adapting the means, however, can improve the generative performance
of the PDC model.

Multi-Scale Techniques: If the number of objects is large, e.g. in the case of
large images, the proposed approach is computationally demanding, even if com-
paratively efficient optimization techniques like DA are used. In order to arrive



at improved running times for the PDC algorithm, a multi-scale optimization
scheme [6] [11] is applied. The idea of multi-scale optimization is to lower the
computational complexity by decreasing the number of considered entities in
the object space. In most application domains for image segmentation it is a
natural assumption, that neighboring image sites contain identical, or at least
similar, feature histograms. This domain–inherent structure is exploited to cre-
ate a pyramid of coarsened data and configuration spaces by tying neighboring
assignment variables.

It is a well known fact that the reliable estimation of a given number of
clusters requires a sufficient amount of data. Since the multi-scale optimization
greatly reduces the cardinality of the configuration spaces at coarser levels, the
splitting strategy and the coarse to fine optimization have to be brought in
line. The inherent splitting behavior of DA optimization supports the coarse to
fine hierarchy. Clusters degenerate at high temperatures, leaving only a reduced
effective number kT of groups visible. While the computational temperature is
continously lowered during optimization, clusters successively split at phase tran-
sitions [14]. Therefore, a scheme known as multi-scale annealing [11] is applied,
which couples the splitting strategy and the annealing process.

3 Relation to the Information Bottleneck Framework

The Information Bottleneck principle has recently been proposed as a general
information theoretical framework for describing clustering problems [17]. Es-
sentially, it formalizes the idea that a given input signal X has to be efficiently
encoded by a cluster variable X̃, and that on the other hand the relevant in-
formation about a context variable Y should be preserved as well as possible.
This tradeoff is made explicit by the difference between two mutual information
terms

I
(
X; X̃

)
− λI

(
X̃;Y

)
, (17)

which has to be minimized to determine the optimal cluster variables X̃. The
quantity I (A;B) := H(A) − H(A|B) is the mutual information between two
random variables A,B [2]. H(A) and H(A|B) are the entropy of A and the
conditional entropy of A given B, respectively. λ > 0 is a control parameter that
adjusts the tradeoff between good compression on the one hand and the level of
information preservation on the other hand.

The application of this general framework to our generative model is de-
picted in fig. 1. In our case, the signal X can be identified with the decision
to select a single object i ∈ {1, . . . , n}. We can assume that objects are drawn
according to a uniform distribution, i.e. pi = 1/n . The object i is then encoded
by mapping it to a cluster ν ∈ {1, . . . , k}, which corresponds to a cluster vari-
able X̃ in the Information Bottleneck framework. As we assume deterministic,
unique assignment of objects to clusters, the probability of cluster ν given the
object i is a Boolean variable p (ν| i) = Miν . Accordingly, the conditional entropy
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Fig. 1. The generative model and its relation to the Information Bottleneck principle.

H(X̃|X) = −
∑

i pi

∑
ν Miν log Miν = 0 vanishes, which implies

I(X; X̃) = H(X̃) = −
∑
ν≤k

pν log pν . (18)

As the next step, it is necessary to define the context variable Y , which in the
Information Bottleneck framework is used to measure the relevant information
preserved by X̃. As it is desirable to retain the information by which typical
observations of an object i is characterized, it is the natural choice to let Y encode
the observed bin indices j. ni denotes the number of observations for object i,
so that the relative frequencies nij/ni, j ∈ {1, . . . ,m}, form an object-specific
normalized histogram. Furthermore, let pj denote the marginal probability that
an observation is attributed to bin j. The conditional entropy between Y and
X̃ can be rewritten using the Markov dependency between X, X̃ and Y , i.e.
p(X̃|X, Y ) = p(X̃|X):

H(Y |X̃) = −
∑
X̃,Y

p(Y, X̃) log p(Y |X̃) = −
∑
X̃,Y

∑
X

p(Y, X̃,X) log p(Y |X̃)

= −
∑

X,X̃,Y

p(X̃|X)P (Y |X)
1
n

log p(Y |X̃) . (19)

Inserting these terms and replacing I
(
X̃;Y

)
= H (Y ) − H

(
Y | X̃

)
yields the

bottleneck functional

I
(
X; X̃

)
− λI

(
X̃;Y

)
= H(X̃)− λ

∑
X,X̃,Y

p(X̃|X)P (Y |X)
1
n

log p(Y |X̃)− λH(Y )

= − 1
n

n∑
i=1

k∑
ν=1

Miν

log pν + λ
∑
j≤m

nij

ni
log

∑
α≤L

pα| νGα (j)

+ λH(Y ) . (20)

The entropy of Y is a constant and does not influence the search for optimal
x̃ parameters. We can, therefore, subtract λH(Y ) from (20) and multiply the



equation by n without changing the minimum w.r.t. Miνandpα| ν . This operation
yields the function

CIB = −
n∑

i=1

k∑
ν=1

Miν

log pν +
λ

ni

m∑
j=1

nij log

(
L∑

α=1

pα| νGα (j)

) . (21)

Compared to (4), it is equipped with an additional weighting factor λ, that
explicitly controls the influence of the cluster probabilities pν . If the number of
observations is identical for each site i, i.e. ni = const ∀i ∈ {1, . . . , n}, we can
set λ = ni to obtain our original cost function C = − logL. This calculation
proves that the generative model introduced in this paper is equivalent to the
Information Bottleneck framework suggested in [17].

4 Experimental Results

Implementation Details: Although the proposed approach to clustering his-
togram data is of general applicability, our primary interest is in the domain
of image segmentation. In this contribution, we put a focus on segmentation
according to color features. In this setting, the basic measurements are given by
the three-dimensional color vectors. The objects oi, i = 1, . . . , n correspond to
image sites located on a rectangular grid. In each dimension, the color values are
discretized into 32 bins. For all sites, marginal feature histograms are computed
in a local neighborhood. In order to determine initial values for the involved
Gaussian distributions, a mixture model estimation step is performed prior to
the PDC model optimization.

The Generative Model: One of the essential properties of our model is given
by its generative nature. It is, therefore, reasonable to evaluate its quality by
generating a new image from the learned statistics, i.e., we conducted experi-
ments in which a learned model was used to re-generate its input by sampling.
Two examples of this procedure are depicted in fig. 2. These results demonstrate,
that the color content of the original image is well represented in its generated
counterpart. However, the spatial relationships between the pixels, and thus the
texture characteristics, are lost. This effect is due to the histogramming process
which destroys these relations. Consequently, they cannot be taken into account
by our generative model.

Evolution of Cluster-Assignments: a) The Multi-Scale Framework. In
order to give some intuition about the dynamics of the multi-scale optimization,
we produced a set of snapshots of the group assignments at various stages of
the multi-scale pyramid (fig. 3). Cluster memberships are encoded by color/grey
values. The series of images starts in the top left with a grouping at the coars-
est stage, continuing to finer levels in a left-to-right and top-to-bottom fashion.
For reference, the corresponding input image is also depicted. The interplay of
the coarse to fine optimization and the splitting strategy is clearly visible. At



(a) (b)

Fig. 2. Sampling from the learned model : a) original image b) sampled image with
four segments.

the coarsest stage, the grouping starts with two clusters. Then, groups are suc-
cessively split as long as there is sufficient data for a reliable estimation. Upon
convergence, results are mapped to the next finer level, at which the group-
ing cost function, i.e. the generalized free energy resulting from the complete
data log-likelihood, is further minimized. These steps are repeated, until final
convergence is reached.

Evolution of Cluster-Assignments: b) Phase Transitions in DA. An-
other interesting phenomenon in the development of assignments in the frame-
work of deterministic annealing is the occurrence of phase transitions. To illus-
trate that point, we visualized a set of group assignments at various stages of
the annealing process (fig. 4). For a better exposition of that particular point we
dispensed with multi-scale optimization in these examples. Again, group mem-
berships are visualized by different colors / grey levels. At high computational
temperatures, the entropic term of the free energy dominates, leading to ran-
dom cluster assignments. As the temperature parameter is gradually lowered, the
most prominent structural properties of the data begin to emerge in the form



Fig. 3. Evolution of group assignments in the multi-scale framework.

of stable group memberships. This process continues with the lesser pronounced
characteristics of the data manifesting themselves, until a grouping solution with
the predefined number of five clusters is reached at low temperatures. A theo-
retical investigation of the critical temperatures for phase transitions in the case
of K-Means clustering is given by Rose et al. in [15]. It is shown, that the first
split is determined by the variance along the first principal axis of the data. The
critical temperature for further phase transitions is more difficult to compute
due to inter cluster influences. Because of the structural analogies of our method
to K-Means, comparable results are expected to hold for PDC.

Comparative Evaluation: Judging the quality of a given segmentation is
difficult due to the fact that ground truth is unavailable in most cases. Further-
more the segmentation is often only one item in a large context of processing
steps. In those cases it is only natural, as Borra and Sakar point out [1], to
judge the segmentation quality with respect to the overall task. In contrast to
this view, Malik et al. examined human image segmentation [8] experimentally.
Their results indicate a remarkable consistency in the segmentation of given
images among different human observers. This finding motivates their current
effort to construct a database of human segmented images from the Corel col-
lection for evaluation purposes, which is publicly available. This set of images
has been chosen as our testbed, making a direct comparison between our novel
segmentation model and human performance possible. Figures 5 and 6 depict
the best (w.r.t. PDC) human segmentation in comparison to the segmentation
results achieved by parametric distributional clustering for four segments. Seg-
ment boundaries for both human and machine segmentation are given by thick
white lines. It is obvious that segmentations which require high-level sematic
knowledge like shadows cannot be reproduced by our method but segmentations
based on low level color information are reliably inferred.



Fig. 4. Evolution of group assignments in deterministic annealing.

5 Conclusion

In this contribution, a novel model for unsupervised image segmentation has
been proposed. It is based on robust measurements of local image characteris-
tics given by feature histograms. As one of the main contributions, it contains a
continuous model for the group-specific distributions. In contrast to existing ap-
proaches, our method thus explicitly models the noise-induced errors in the his-
togramming of image content. Being based on the theoretically sound maximum
likelihood framework, our approach makes all modeling assumptions explicit in
the cost function of the corresponding generative model. Moreover, there exists
an informative connection to information theoretic concepts. The Information
Bottleneck model offers an alternative interpretation of our method as a way to
construct a simplified representation of a given image while preserving as much
of its relevant information as possible. Finally, the results demonstrate the good
performance of our model, often yielding close to human segmentation quality
on the testbed.
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(a) (b)

Fig. 5. Segmentation results: a) human segmentation, b) PDC segmentation.



(a) (b)

Fig. 6. Segmentation results: a) human segmentation, b) PDC segmentation.


