Part III: Affinity Functions for Image Segmentation

Charless Fowlkes

joint work with David Martin and Jitendra Malik at University of California at Berkeley

Q: What measurements should we use for constructing the affinities?

Zahn 1971, Urquhart 1982, Scott/Longuet-Higgins 1990, Wu/Leahy 1993, Sarkar/Boyer 1996, Shi/Malik 1997, Felzenszwalb/Huttenlocher 1998, Perona/Freeman 1998, Gdalyahu/Weinshall/Werman 1999, Jermyn/Ishikawa 2001

distance a) Similarity Cues b) region cues (patch similarity) boundary cues (intervening contour) C)

What image measurements allow us to gauge the probability that pixels i and j belong to the same segment?

Learning Pairwise Affinities

 S_{ij} – indicator variable as to whether pixels i and j were marked as belonging to the same group by human subjects.

 W_{ij} – our estimate of the likelihood that pixel i and j belong to the same group conditioned on the image measurements.

- Use the ground truth given by human segmentations to calibrate cues.
- Learn a statistically optimal cue combination strategy in supervised learning framework
- Ecological Statistics: Measure the relative power of different cues for natural scenes

Part III: Affinity Functions for Image Segmentation

Image

- Non-Boundaries -

Am

Boundaries

Individual Gradient Features

- 1976 CIE L*a*b* colorspace
- Brightness Gradient BG(x,y,r,θ)
 Difference of L* distributions
- Color Gradient CG(x,y,r,θ)
 Difference of a*b* distributions
- Texture Gradient $TG(x,y,r,\theta)$
 - Difference of distributions of V1-like filter responses

$$\mathbf{c}^{2}(g,h) = \frac{1}{2} \sum_{i} \frac{(g_{i} - h_{i})^{2}}{g_{i} + h_{i}}$$

Texture Feature

- Texture Gradient TG(x,y,r,θ)
 - $-\chi^2$ difference of texton histograms
 - Textons are vector-quantized filter outputs

What about my favorite edge detector?

- Canny Detector
 - Canny 1986
 - MATLAB implementation
 - With and without hysteresis
- Second Moment Matrix
 - Nitzberg/Mumford/Shiota 1993
 - cf. Förstner and Harris corner detectors
 - Used by Konishi et al. 1999 in learning framework
 - Logistic model trained on full eigenspectrum

P_b Images I

P_b Images II

P_b Images III

Part III: Affinity Functions for Image Segmentation

How good are humans locally?

Off-Boundary | On-Boundary

Algorithm: r = 9, Humans: r = {5,9,18}
Fixation(2s) -> Patch(200ms) -> Mask(1s)

Man versus Machine:

Intervening Contour

...turning a boundary map into Wij

1 - maximum P_b along the line connecting i and j

Part III: Affinity Functions for Image Segmentation

Individual Patch Features

- Use same histogram based representation
- Brightness Similarity
 - Difference of L* distributions
- Color Similarity
 - Difference of a*b* distributions
- Texture Similarity
 - Difference of distributions of V1-like filter responses

$$\mathbf{c}^{2}(g,h) = \frac{1}{2} \sum_{i} \frac{(g_{i} - h_{i})^{2}}{g_{i} + h_{i}}$$

Detail: Clipping Patch Features

• Clip patch support using Pb in order to try and avoid "polluting" histograms.

Part III: Affinity Functions for Image Segmentation

Two Evaluation Measures

Estimate W_{ij}

Groundtruth S_{ij}

- 1. Precision-Recall of same-segment pairs
 - Precision is $\mathbf{P}(\mathbf{S}_{ij}=1 | \mathbf{W}_{ij} > t)$
 - Recall is $\mathbf{P}(\mathbf{W}_{ij} > t \mid \mathbf{S}_{ij} = 1)$
- 2. <u>Mutual Information</u> between W and S **?**p(s,w) log [p(s)p(w) / p(s,w)]

Individual Features

Clipping patch support improves W_{ij} estimate

Cue Combination Models

- Classification Trees
 - Top-down splits to maximize entropy, error bounded
- Density Estimation
 - Adaptive bins using k-means
- Logistic Regression, 3 variants
 - Linear and quadratic terms
 - Confidence-rated generalization of AdaBoost (Schapire&Singer)
- Hierarchical Mixtures of Experts (Jordan&Jacobs)
 - Up to 8 experts, initialized top-down, fit with EM
- Support Vector Machines (libsvm, Chang&Lin)
 - Gaussian kernel, v-parameterization
- Logistic with quadratic terms is sufficient (performs as well as any classifier we tried

Combining Cues

Findings:

- 1. <u>Common Wisdom</u>: Use patches only / Use edges only <u>Finding</u> : Use both in pairwise affinity framework.
- 2. <u>Common Wisdom</u> : Must use patches for texture <u>Finding</u> : Not true. Possible to detect texture boundaries
- 3. <u>Common Wisdom</u> : Color is a powerful grouping cue <u>Finding</u> : True, but texture is better
- 4. <u>Common Wisdom</u> : Brightness patches are a poor cue <u>Finding</u> : True (shadows and shading)
- 5. <u>Common Wisdom</u> : Proximity is a (Gestalt) grouping cue <u>Finding</u> : Proximity is a result, not a cause of grouping

Affinity Model vs. Human Segmentation

Part III: Affinity Functions for Image Segmentation

Extract Pb

Compute Eigenvectors

Evaluating the power of "globalization"

http://www.cs.berkeley.edu/~fowlkes/BSE/ 35