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Chapter 1

Complex Algebraic Varieties;
Elementary Local And Global Theory

1.1 What is Geometry & What is Complex Algebraic Geometry?

The presumption is that we study systems of polynomial equations





f1(X1, . . . , Xq) = 0
...

...
...

fp(X1, . . . , Xq) = 0

(†)

where the fj are polynomials in C[X1, . . . , Xq].

Fact: Solving a system of equations of arbitrary degrees reduces to solving a system of quadratic equations
(no restriction on the number of variables) (DX).

What is geometry?

Experience shows that we need

(1) A topological space, X .

(2) There exist (at least locally defined) functions on X .

(3) More experience shows that the “correct bookkeeping scheme” for encompassing (2) is a “sheaf” of
functions on X ; notation OX .

Aside on Presheaves and Sheaves.

(1) A presheaf , P , on X is determined by the following data:

(i) For every open U ⊆ X , a set (or group, or ring, or space), P(U), is given.

(ii) If V ⊆ U (where U, V are open in X) then there is a map ρVU : P(U) → P(V ) (restriction) such that
ρUU = idU and

ρWU = ρWV ◦ ρVU , for all open subsets U, V,W with W ⊆ V ⊆ U.

(2) A sheaf , F , on X is just a presheaf satisfying the following (patching) conditions:

7
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(i) For every open U ⊆ X and for every open cover {Uα}α of U (which means that U =
⋃
α Uα, notation

{Uα → U}), if f, g ∈ F(U) so that f ↾ Uα = g ↾ Uα, for all α, then f = g.

(ii) For all α, if we are given fα ∈ F(Uα) and if for all α, β we have

ρ
Uα∩Uβ

Uα
(fα) = ρ

Uα∩Uβ

Uβ
(fβ),

(the fα agree on overlaps), then there exists f ∈ F(U) so that ρUα

U (f) = fα, all α.

Our OX is a sheaf of rings , i.e, OX(U) is a commutative ring, for all U . We have (X,OX), a topological
space and a sheaf of rings.

Moreover, our functions are always (at least) continuous. Pick some x ∈ X and look at all opens, U ⊆ X ,
where x ∈ U . If a small U ∋ x is given and f, g ∈ OX(U), we say that f and g are equivalent, denoted
f ∼ g, iff there is some open V ⊆ U with x ∈ V so that f ↾ V = g ↾ V . This is an equivalence relation and
[f ] = the equivalence class of f is the germ of f at x.

Check (DX) that

lim−→
U∋x

OX(U) = collection of germs at x.

The left hand side is called the stalk of OX at x, denoted OX,x. By continuity, OX,x is a local ring with
maximal ideal mx = germs vanishing at x. In this case, OX is called a sheaf of local rings .

In summary, a geometric object yields a pair (X,OX), where OX is a sheaf of local rings. Such a pair,
(X,OX), is called a local ringed space (LRS).

LRS’s would be useless without a notion of morphism from one LRS to another, Φ: (X,OX)→ (Y,OY ).
(A) We need a continuous map ϕ : X → Y and whatever a morphism does on OX ,OY , taking a clue

from the case where OX and OY are sets of functions, we need something “OY −→ OX .”

Given a map ϕ : X → Y with OX on X , we can make ϕ∗OX(= direct image of OX), a sheaf on Y , as
follows: For any open U ⊆ Y , consider the open ϕ−1(U) ⊆ X , and set

(ϕ∗OX)(U) = OX(ϕ−1(U)).

This is a sheaf on Y (DX).

Alternatively, we have OY on Y (and the map ϕ : X → Y ) and we can try making a sheaf on X : Pick
x ∈ X and make the stalk of “something” at x. Given x, we make ϕ(x) ∈ Y , we make OY,ϕ(x) and define
ϕ∗OY so that

(ϕ∗(OY ))x = OY,ϕ(x).
More precisely, we define the presheaf ϕPOY on X by

ϕPOY (U) = lim−→
V⊇ϕ(U)

OY (V ),

where V ranges over open subsets of Y containing ϕ(U). Unfortunately, this is not always a sheaf and we
need to “sheafify” it to get ϕ∗OY , the inverse image of OY . For details, consult the Appendix on sheaves
and ringed spaces. We now have everything we need to define morphisms of LRS’s.

(B) A map of sheaves, ϕ̃ : OY → ϕ∗OX , on Y , is also given.

It turns out that this is equivalent to giving a map of sheaves, ˜̃ϕ : ϕ∗OY → OX , on X (This is because
ϕ∗ and ϕ∗ are adjoint functors, again, see the Appendix on sheaves.)
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In conclusion, a morphism (X,OX) −→ (Y,OY ) is a pair (ϕ, ϕ̃) (or a pair (ϕ, ˜̃ϕ)), as above.
When we look at the “trivial case”’ (of functions) we see that we want ϕ̃ to satisfy

ϕ̃(mϕ(x)) ⊆ mx, for all x ∈ X.

This condition says that ϕ̃ is a local morphism. We get a category LRS.
After all these generalities, we show how most geometric objects of interest arise are special kinds of

LRS’s. The key idea is to introduce “standard” models and to define a corresponding geometric objects,
X , to be an LRS that is “locally isomorphic” to a standard model. First, observe that given any open
subset U ⊆ X , we can form the restriction of the sheaf OX to U , denoted OX ↾ U or (OU ) and we get an
LRS (U,OX ↾ U). Now, if we also have a collection of LRS’s (the standard models), we consider LRS’s,
(X,OX), such that (X,OX) is locally isomorphic to a standard model. This means that we can cover X by
opens and that for every open U ⊆ X in this cover, there is a standard model (W,OW ) and an isomorphism
(U,OX ↾ U) ∼= (W,OW ), as LRS’s.

Some Standard Models.

(1) Let U be an open ball in Rn or Cn, and let OU be the sheaf of germs of continuous functions on U
(this means, the sheaf such that for every open V ⊆ U , OU (V ) = the restrictions to V of the continuous
functions on U). If (X,O) is locally isomorphic to a standard, we get a topological manifold.

(2) Let U be an open as in (1) and let OU be the sheaf of germs of Ck-functions on U , with 1 ≤ k ≤ ∞. If
(X,O) is locally isomorphic to a standard, we get a Ck-manifold (when k =∞, call these smooth manifolds).

(3) Let U be an open ball in Rn and let OU be the sheaf of germs of real-valued Cω-functions on U (i.e.,
real analytic functions). If (X,O) is locally isomorphic to a standard, we get a real analytic manifold.

(4) Let U be an open ball in Cn and let OU be the sheaf of germs of complex-valued Cω-functions on U
(i.e., complex analytic functions). If (X,O) is locally isomorphic to a standard, we get a complex analytic
manifold.

(5) Consider an LRS as in (2), with k ≥ 2. For every x ∈ X , we have the tangent space, TX,x, at x.
Say we also have Qx, a positive definite quadratic form on TX,x, varying C

k as x varies. If (X,O) is locally
isomorphic to a standard, we get a Riemannian manifold .

(6) Suppose W is open in Cn. Look at some subset V ⊆W and assume that V is defined as follows: For
any v ∈ V , there is an open ball B(v, ǫ) = Bǫ and there are some functions f1, . . . , fp holomorphic on Bǫ, so
that

V ∩B(v, ǫ) = {(z1, . . . , zq) ∈ Bǫ | f1(z1, . . . , zq) = · · · = fp(z1, . . . , zq) = 0}.
The question is, what should be OV ?

We need only find out that what is OV ∩Bǫ (DX). We set OV ∩Bǫ = the sheaf of germs of holomorphic
functions on Bǫ modulo the ideal (f1, . . . , fp), and then restrict to V . Such a pair (V,OV ) is a complex
analytic space chunk . An algebraic function on V is a ratio P/Q of polynomials with Q 6= 0 everywhere
on V . If we replace the term “holomorphic” everywhere in the above, we obtain a complex algebraic space
chunk .

Actually, the definition of a manifold requires that the underlying space is Hausdorff. The spaces that
we have defined in (1)–(6) above are only locally Hausdorff and are “generalized manifolds”.

Examples.

(1) Take W = Cq, pick some polynomials f1, . . . , fp in C[Z1, . . . , Zq] and let V be cut out by
f1 = · · · = fp = 0; so, we can pick B(v, ǫ) = Cq. This shows that the example (†) is a complex algebraic
variety (in fact, a chunk). This is what we call an affine variety.
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Remark: (to be proved later) If V is a complex algebraic variety and V ⊆ Cn, then V is affine.

This remark implies that a complex algebraic variety is locally just given by equations of type (†).

(2) The manifolds of type (4) are among the complex analytic spaces (of (6)). Take W = B(v, ǫ) and no
equations for V , so that V ∩B(v, ǫ) = B(v, ǫ).

Say (X,OX) is a complex algebraic variety. On a chunk, V ⊆ W and a ball B(v, ǫ), we can replace
the algebraic functions heretofore defining OX by holomorphic functions. We get a complex analytic chunk
and thus, X gives us a special kind of complex analytic variety, denoted Xan, which is locally cut out by
polynomials but with holomorphic functions. We get a functor

X  Xan

from complex algebraic varieties to complex analytic spaces. A complex space of the form Xan for some
complex algebraic variety, X , is called an algebraizable complex analytic space.

Take n+ 1 copies of Cn (Cn with either its sheaf of algebraic functions or holomorphic functions). Call
the j-copy Uj , where j = 0, . . . , n. In Uj , we have coordinates

〈Z(0)
j , Z

(1)
j , . . . , Ẑ

(j)
j , . . . , Z

(n)
j 〉

(Here, as usual, the hat over an expression means that the corresponding item is omitted.) For all i 6= j, we

have the open, U
(i)
j ⊆ Uj , namely the set {ξ ∈ Uj | (ith coord.) ξ

(i)
j 6= 0}. We are going to glue U

(i)
j to U

(j)
i

as follows: Define the map from U
(i)
j to U

(j)
i by

Z
(0)
i =

Z
(0)
j

Z
(i)
j

, . . . , Z
(i−1)
i =

Z
(i−1)
j

Z
(i)
j

, . . . , Z
(i+1)
i =

Z
(i+1)
j

Z
(i)
j

, . . . , Z
(j)
i =

1

Z
(i)
j

, . . . , Z
(n)
i =

Z
(n)
j

Z
(i)
j

,

with the corresponding map on functions. Observe that the inverse of the above map is obtained by replacing

Z
(i)
j with Z

(j)
i . However, to continue glueing, we need a consistency requirement. Here is the abstract

requirement.

Proposition 1.1 (Glueing Lemma) Given a collection (Uα,OUα) of LRS’, suppose for all α, β, there exists
an open Uβα ⊆ Uα, with Uαα = Uα, and say there exist isomorphisms of LRS’s,
ϕβα : (U

β
α ,OUα ↾ U

β
α )→ (Uαβ ,OUβ

↾ Uαβ ), satisfying

(0) ϕαα = id, for all α,

(1) ϕβα = (ϕαβ )
−1, for all α, β and

(2) For all α, β, γ, we have ϕβα(U
β
α ∩ Uγα) = Uαβ ∩ Uγβ and

ϕγα = ϕγβ ◦ ϕβα (glueing condition or cocycle condition).

Then, there exists an LRS (X,OX) so that X is covered by opens, Xα, and there are isomomorphisms of
LRS’s, ϕα : (Uα,OUα)→ (Xα,OX ↾ Xα), in such a way that

(a) ϕα(U
β
α ) = Xα ∩Xβ (⊆ Xα) and

(b) ϕα ↾ U
β
α “is” the isomorphism ϕβα, i.e., ϕα ↾ U

β
α = ϕβ ↾ U

α
β ◦ ϕβα.
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Proof . (DX)

In Example (3), the consitency conditions hold (DX). Therefore, we get an algebraic (or analytic) variety.
In fact, it turns our that in the analytic case, it is a manifold—this is CPn, also denoted PnC in algebraic
geometry (complex projective space of dimension n).

It should be noted that “bad glueing” can produce non-Hausdorff spaces, as the following simple example
shows. Take two copies of C1, consider the two open U = C1 − {0} in the first copy and V = C1 − {0} in
the second and use the coordinate z in the first copy and w in the second. Now, glue U and V by w = z.
The result is a space consisting of a punctured line plus two points “above and below” the punctured line
(as shown in Figure 1.1) and these points cannot be separated by any open.

b
b

Figure 1.1: A non-Hausdorff space obtained by “bad gluing”.

Miracle: Say X is a closed analytic subvariety of PnC (analytic or algebraic). Then, X is algebraizable
(Chow’s theorem).

What are some of the topics that we would like to study in algebraic geometry?

(1) Algebraic varieties

(2) Maps between them.

(3) Structures to be superimposed on (1).

(4) Local and global invariants of (1).

(5) Classifications of (1).

(6) Constructions of (1).

But then, one might ask, why consider such general objects as algebraic varieties and why not just study
affine varieties defined by equations of type (†)?

The reason is that affine varieties are just not enough. For example, classification problems generally
cannot be tackled using only affine varieties; more general varieties come up naturally. The following example
will illustrate this point.

Look at (5) and takeX = Cn. The general problem of classifying all subvarieties of Cn (in some geometric
fashion) is very difficult, so we consider the easier problem of classifying all linear subvarieties through the
origin of Cn. In this case, there is a discrete invariant, namely, the dimension of the linear subspace, say d.
Thus, we let

G(n, d) = {all d-dimensional linear subspaces of Cn}.
By duality, there is a bijection between G(n, d) and G(n, n − d). Also, G(n, 0) = G(n, n) = one point. We
have the classification

⋃n
d=0G(n, d). Let’s examine G(n, 1) more closely.

Let Σ be the unit sphere in Cn,

Σ =
{
(z1, . . . , zn) |

n∑

i=1

|zi|2 = 1
}

=
{
(x1, . . . , xn, y1, . . . , yn) | xi, yi ∈ R,

n∑

i=1

(x2i + y2i ) = 1
}
.
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We see that Σ is isomorphic to the real sphere S2n−1, a compact space. Let L (∈ G(n, 1)) be any line
through the origin. This line is given parametrically by the equations

zj = αjt,

where α1, . . . , αn are fixed elements of C, not all zero, and t ∈ C is arbitrary. It follows that

L ∩ Σ =
{
t ∈ C |

n∑

i=1

|αi|2|t|2 = 1
}

=

{
t ∈ C

∣∣∣∣∣ |t| =
1√∑n
i=1 |αi|2

}
∼= S1.

Therefore, L∩Σ is a circle. Since a (complex) line is determined by two points and the origin is one of these
points, we deduce that

L = L̃ iff (L ∩ Σ) ∩ (L̃ ∩ Σ) 6= ∅.
Therefore, as a topological space, G(n, 1) ∼= S2n−1/S1, a compact space.

Claim: No affine algebraic variety has a compact underlying space, unless it is a discrete space.

Given a variety V in Cn (algebraic or analytic), call V irreducible iff V 6= W ∪ Z, for any two properly
contained closed (algebraic or analytic) varieties, W,Z ⊂ V . It is well-known that each variety is an
irredundant finite union of irreducible varieties and that a variety V is irreducible iff the (radical) ideal,
I(V ), associated with V is a prime ideal. Thus, we are reduced to proving that no irreducible affine is
compact. Now, as I(V ) is prime (because V is irreducible), the ring C[Z1, . . . , Zn]/I(V ), called the affine
coordinate ring of V and denoted C[V ] or A[V ], is an integral domain, so K = Frac(C[Z1, . . . , Zn]/I(V )) is
a field that contains C. By definition, the transcendence degree, tr.dCK, of K is the dimension of V , where
0 ≤ dimV ≤ n. If we let zi be the image of Zi under the projection C[Z1, . . . , Zn] −→ C[Z1, . . . , Zn]/I(V ),
then C[Z1, . . . , Zn]/I(V ) = C[z1, . . . , zn]. To prove our above claim, we will make use of a famous theorem
of Emmy Noether:

Theorem 1.2 (Noether Normalization Theorem) Say V ⊆ Cn is an irreducible affine variety and dim(V ) =
r (≤ n). Then, if C[V ] = C[z1, . . . , zn], there are some elements y1, . . . , yr ∈ C[z1, . . . , zn] so that each
yi is a linear combination of the zj’s and the ring C[z1, . . . , zn] is an integral extension of C[y1, . . . , yr].
Geometrically, this means that the projection of Cn = Cr×Cn−r onto Cr yields a surjective map (an integral
morphism)

V →֒ Cn
pr−→ Cr

that is a branched covering (the fibres are finite). Furthermore, if C[V ] = C[z1, . . . , zn] is separably gen-
erated over C, then C[z1, . . . , zn] is a separable extension of C[y1, . . . , yr] (with {y1, . . . , yr} a separating
transcendence basis over C).

Proof . If r = dim(V ) = n, then we will prove later that V = Cn and we can take yi = zi, for i = 1, . . . , n.
Otherwise, r < n, and we use induction on n. The case n = 1, r = 0, is trivial. Owing to the transitivity
of integral dependence and separability, we only have to prove: If C[z1, . . . , zn] is an integral domain of
transcendence degree r ≤ n− 1, then there exist n− 1 linear combinations y1, . . . , yn−1 or the zj’s such that
C[z1, . . . , zn] is integral over C[y1, . . . , yn−1] (and such that C[z1, . . . , zn] is separable over C[y1, . . . , yn−1] if
C[z1, . . . , zn] is separably generated over C).

By renumbering the zi’s if necessary, we may assume that z1 is algebraically dependent over z2, . . . , zn,
and in the separable case, we pick a separating transcendence base (by MacLane’s theorem). Write the
minimal polynomial for z1 over k(z2, . . . , zn) as

P (U, z2, . . . , zn) = 0.
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We can assume that the coefficients of P (U, z2, . . . , zn) are in C[z2, . . . , zn], so that the polynomial
P (U, z2, . . . , zn) is the result of substituting U, z2, . . . , zn for X1, X2, . . . , Xn in some non-zero polynomial
P (X1, . . . , Xn) with coefficients in C. Perform the linear change of variables

yj = zj − ajz1, for j = 2, . . . , n, (†)

and where a2, . . . , an ∈ C will be determined later. Since zj = yj + ajz1, it is sufficient to prove that z1
is integral (and separable in the separable case) over C[y2, . . . , yn]. The minimal equation P (z1, z) = 0
(abbreviating P (z1, z2, . . . , zn) by P (z1, z)) becomes

P (z1, y2 + a2z1, . . . , yn + anz1) = 0,

which can be written as

P (z1, y) = zq1f(1, a2, . . . , an) +Q(z1, y2, . . . , yn) = 0, (∗∗)

where f(X1, X2, . . . , Xn) is the highest degree form of P (X1, . . . , Xn) and q its degree, and Q contains terms
of degree lower than q in z1. If we can find some aj ’s such that f(1, a2, . . . , an) 6= 0, then we have an
integral dependence of z1 on y2, . . . , yn; thus, the zj’s are integrally dependent on y2, . . . , yn, and we finish
by induction. In the separable case, we need the minimal polynomial for z1 to have a simple root, i.e.,

dP

dz1
(z1, y) 6= 0.

We have
dP

dz1
(z1, y) =

∂P

∂z1
(z1, z) + a2

∂P

∂z2
(z1, z) + · · ·+ an

∂P

∂zn
(z1, z).

But this is a linear form in the aj ’s which is not identically zero, since it takes for a2 = · · · = an = 0 the
value

∂P

∂z1
(z1, z) 6= 0,

z1 being separable over C(z2, . . . , zn). Thus, the equation

∂P

∂x1
(z1, z) + a2

∂P

∂z2
(z1, z) + · · ·+ an

∂P

∂zn
(z1, z) = 0

defines an affine hyperplane, i.e., the translate of a (linear) hyperplane. But then,

dP

dz1
(z1, z) 6= 0

on the complement of a hyperplane, that is, an infinite open subset of Cn−1, since C is infinite. On this
infinite set where dP

dz1
(z1, z) 6= 0, we can find a2, . . . , an so that f(1, a2, . . . , an) 6= 0, which concludes the

proof.

Now, we know that our G(n, 1) cannot be affine (i.e., of the form (†)) as it is compact
(G(n, 1) ∼= S2n−1/S1). However, were G(n, 1) affine, Noether’s theorem would imply that Cr is compact, a
contradiction. Therefore, G(n, 1) is not an affine variety.

However, observe that G(n, 1) is locally affine, i.e., it is an algebraic variety. Indeed a line, L, corresponds
to a tuple (α1, . . . , αn) ∈ Cn with not all αj = 0. So, we can multiply by any λ ∈ C∗ and not change the
line. Look at

Uj = {(α1, . . . , αn) ∈ Cn | αj 6= 0}.
We have G(n, 1) =

⋃n
n=1 Uj . On Uj , if we use λ = 1/αj as a multiplier, we get

(
α1

αj
, . . . ,

αj−1

αj
, 1,

αj+1

αj
, . . . ,

αn
αj

)
,
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so we see that Uj is canonically Cn−1. The patching on the overlaps is the previous glueing which gave Pn−1
C

(with its functions). Therefore, we have
G(n, 1) = Pn−1

C .

1.2 Local Structure of Complex Varieties; Implicit Function The-
orems and Tangent Spaces

We have the three rings
C[Z1, . . . , Zn] ⊆ C{Z1, . . . , Zn} ⊆ C[[Z1, . . . , Zn]],

where C{Z1, . . . , Zn} is the ring of convergent powers series, which means that for every power series in
C{Z1, . . . , Zn} there is some open ball Bǫ containing the origin so that f ↾ Bǫ converges, and C[[Z1, . . . , Zn]]
is the ring of all power series, i.e., the ring of formal power series.

Remarks: (on (formal) power series).

Say A is a commutative ring (say, one of C{Z1, . . . , Zn} or C[[Z1, . . . , Zn]]) and look at A[[X1, . . . , Xn]] =
B.

(1) f ∈ B is a unit (in B) iff f(0, . . . , 0) is a unit of A.

(2) B is a local ring iff A is a local ring, in which case the unique maximal ideal of B is
mB = {f ∈ B | f(0, . . . , 0) ∈ mA}.

(3) B is noetherian iff A is noetherian (OK for us).

(4) If A is a domain then B is a domain.

(5) If B is a local ring, write B̂ = lim←−
n

B/mnB, the completion of B. We know that B has the m-adic

topology, where a basis of opens at 0 is given by the miB, with i ≥ 0. The topology in B̂ is given by

the mnBB̂ and the topology in B and B̂ is Hausdorff iff
⋂∞
n=0 m

n
B = (0), which holds in the noetherian

case, by Krull’s theorem.

The fundamental results in this case are all essentially easy corollaries of the following lemma:

Lemma 1.3 Let O be a complete Hausdorff local domain with respect to the m-adic topology, and let
f ∈ O[[X ]]. Assume that

(a) f(0) ∈ m.

(b)
(
df
dX

)
(0) is a unit of O.

Then, there exist unique elements α ∈ m and u(X) ∈ O[[X ]], so that

(1) u(X) is a unit of O[[X ]].

(2) f(X) = u(X)(X − α).

Proof . We get u(X) and α by successive approximations as follows. Refer to equation (2) by (†) in what
follows. We compute the unknown coefficients of u(X) and the element α by successive approximations.
Write u(X) =

∑∞
j=0 ujX

j and f(X) =
∑∞

j=0 ajX
j; reduce the coefficients modulo m in (†); then, since

α ∈ m, (†) becomes
f(X) = Xu(X),
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which implies that
∞∑

j=0

ajX
j =

∞∑

j=0

ujX
j+1.

Since a0 = 0, we have a0 ∈ m and uj = aj+1. Thus,

uj = aj+1 (modm).

Note that

u0 = a1 =
∂f

∂X
(0) 6= 0

in κ = O/m, which implies that if u(X) exists at all, then it is a unit. Write

uj = aj+1 + ξ
(1)
j ,

where ξ
(1)
j ∈ m, j ≥ 0. Remember that α ∈ m; so, upon reducing (†) modulo m2, we get

f(X) = u(X)(X − α).

This implies that

∞∑

j=0

ajX
j =

∞∑

j=0

ujX
j(X − α)

=

∞∑

j=0

ujX
j+1 −

∞∑

j=0

uj αX
j

=

∞∑

j=0

(
aj+1 + ξ

(1)
j

)
Xj+1 −

∞∑

j=0

(
aj+1 + ξ

(1)
j

)
αXj

=

∞∑

j=0

aj+1X
j+1 +

∞∑

j=0

ξ
(1)
j Xj+1 −

∞∑

j=0

aj+1 αX
j.

Equating the constant coefficients, we get

a0 = −a1 α.

Since a1 is a unit, α exists. Now, looking at the coefficient of Xj+1, we get

aj+1 = aj+1 + ξ
(1)
j − aj+2α,

which implies that

ξ
(1)
j = aj+2α,

and ξ
(1)
j exists.

We now proceed by induction. Assume that we know the coefficients u
(t)
j ∈ O of the t-th approximation

to u(X) and that u(X) using these coefficients (mod mt+1) works in (†), and further that the u
(t)
l ’s are

consistent for l ≤ t. Also, assume α(t) ∈ m, that α(t) (mod mt+1) works in (†), and that the α(l) are

consistent for l ≤ t. Look at u
(t)
j + ξ

(t+1)
j , α(t) + η(t+1), where ξ

(t+1)
j , η(t+1) ∈ mt+1. We want to determine
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ξ
(t+1)
j and η(t+1), so that (†) will work for these modulo mt+2. For simplicity, write bar as a superscript to

denote reduction modulo mt+2. Then, reducing (†) modulo mt+2, we get

∞∑

j=0

ajX
j =

∞∑

j=0

ujX
j(X − α)

=

∞∑

j=0

ujX
j+1 −

∞∑

j=0

uj αX
j

=

∞∑

j=0

(
u
(t)
j + ξ

(t+1)
j

)
Xj+1 −

∞∑

j=0

(
u
(t)
j + ξ

(t+1)
j

)(
α(t) + η(t+1)

)
Xj

=

∞∑

j=0

u
(t)
j Xj+1 +

∞∑

j=0

ξ
(t+1)
j Xj+1 −

∞∑

j=0

u
(t)
j α(t)Xj −

∞∑

j=0

u
(t)
j η(t+1)Xj.

Equating the constant coefficients, we get

a0 = −u(t)0 α(t) − u(t)0 η(t+1).

But u
(t)
0 is a unit, and so, η(t+1) exists. Now, look at the coefficient of Xj+1, we have

aj+1 = u
(t)
j + ξ

(t+1)
j − u(t)j+1 α

(t) − u(t)j+1 η
(t+1).

But u
(t)
j+1 α

(t) and u
(t)
j+1 η

(t+1) are now known and in mt+1 modulo mt+2, and thus,

ξ
(t+1)
j = aj+1 − u(t)j + u

(t)
j+1 α

(t) + u
(t)
j+1 η

(t+1)

exists and the induction step goes through. As a consequence

u(X) ∈ lim
←−
t

(O/mt)[[X ]]

and
α ∈ lim

←−
t

(m/mt)[[X ]]

exist; and so, u(X) ∈ Ô[[X ]] = O[[X ]], and α ∈ m̂ = m.

We still have to prove the uniqueness of u(X) and α. Assume that

f = u(X − α) = ũ(X − α̃).
Since ũ is a unit,

ũ−1u(X − α) = X − α̃.
Thus, we may assume that ũ = 1. Since α ∈ m, we can plug α into the power series which defines u, and
get convergence in the m-adic topology of O. We get

u(α)(α− α) = α− α̃,
so that α = α̃. Then,

u(X − α) = X − α,
and since we assumed that O is a domain, so is O[[X ]], and thus, u = 1.

Suppose that instead of df
dX (0) being a unit, we have f(0), . . . , d

r−1f
dXr−1 (0) ∈ m, but drf

dXr (0) is a unit. We

can apply the fundamental lemma to f̃ = dr−1f
dXr−1 and then, we can apply (a rather obvious) induction and

get the general form of the fundamental lemma:
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Lemma 1.4 Let O be a complete Hausdorff local domain with respect to the m-adic topology, and let
f ∈ O[[X ]]. Assume that

(a) f(0), . . . , d
r−1f

dXr−1 (0) ∈ m and

(b) drf
drX (0) is a unit of O (r ≥ 1).

Then, there exist unique elements α1, . . . , αr ∈ m and a unique power series u(X) ∈ O[[X ]], so that

f(X) = u(X)(Xr + α1X
r−1 + · · ·+ αr−1X + αr)

and u(X) is a unit of O[[X ]].

From the above, we get

Theorem 1.5 (Formal Weierstrass Preparation Theorem) Given f ∈ C[[Z1, . . . , Zn]], suppose

f(0, . . . , 0) =
∂f

∂Z1
(0) = · · · = ∂r−1f

∂Zr−1
1

(0) = 0, yet
∂rf

∂Zr1
(0) 6= 0.

Then, there exist unique power series, u(Z1, . . . , Zn), gj(Z2, . . . , Zn), with 1 ≤ j ≤ r, so that

(1) u(Z1, . . . , Zn) is a unit

(2) gj(0, . . . , 0) = 0, where 1 ≤ j ≤ r and

(3) f(Z1, . . . , Zn) = u(Z1, . . . , Zn)(Z
r
1 + g1(Z2, . . . , Zn)Z

r−1
1 + · · ·+ gr(Z2, . . . , Zn)).

Proof . Let O = C[[Z2, . . . , Zn]], then O[[Z1]] = C[[Z1, . . . , Zn]] and we have

df

dZ1
=

∂f

∂Z1
.

Thus, d
jf

dZj
1

(0) = 0 for j = 0, . . . , r − 1, so djf

dZj
1

(0) is a non-unit in O[[Z1]] for j = 0, . . . , r − 1, yet drf
dZr

1
(0) is a

unit. If we let αj of the fundamental lemma be gj(Z2, . . . , Zn), then each gj(Z2, . . . , Zn) vanishes at 0 (else
αj /∈ m) and the rest is obvious.

Theorem 1.6 (First form of the implicit function theorem) Given f ∈ C[[Z1, . . . , Zn]], if

f(0, . . . , 0) = 0 and
∂f

∂Z1
(0) 6= 0,

then there exist unique power series u(Z1, . . . , Zn) and g(Z2, . . . , Zn) so that u(Z1, . . . , Zn) is a unit,
g(0, . . . , 0) = 0, and f(Z1, . . . , Zn) factors as

f(Z1, . . . , Zn) = u(Z1, . . . , Zn)(Z1 − g(Z2, . . . , Zn)). (∗)
Moreover, every power series h(Z1, . . . , Zn) factors uniquely as

h(Z1, . . . , Zn) = f(Z1, . . . , Zn)q(Z1, . . . , Zn) + r(Z2, . . . , Zn).

Hence, there is a canonical isomorphism

C[[Z1, . . . , Zn]]/(f) ∼= C[[Z2, . . . , Zn]],

so that the following diagram commutes

C[[Z1, . . . , Zn] // C[[Z1, . . . , Zn]]/(f)

C[[Z2, . . . , Zn]

hhQQQQQQQQQQQQ

55llllllllllllll
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Proof . Observe that equation (∗) (the Weierstrass preparation theorem) implies the second statement. For,
assume (∗); then, u is a unit, so there is v such that vu = 1. Consequently,

vf = Z1 − g(Z2, . . . , Zn),

and the ideal (f) equals the ideal (vf), because v is a unit. So,

C[[Z1, . . . , Zn]]/(f) = C[[Z1, . . . , Zn]]/(vf),

and we get the residue ring by setting Z1 equal to g(Z2, . . . , Zn). It follows that the canonical isomorphism

C[[Z1, . . . , Zn]]/(f) ∼= C[[Z2, . . . , Zn]]

is given as follows: In h(Z1, . . . , Zn), replace every occurrence of Z1 by g(Z2, . . . , Zn); we obtain

h(Z2, . . . , Zn) = h(g(Z2, . . . , Zn), Z2, . . . , Zn),

and the diagram obviously commutes. Write r(Z2, . . . , Zn) instead of h(Z2, . . . , Zn). Then,

h(Z1, . . . , Zn)− r(Z2, . . . , Zn) = fq

for some q(Z1, . . . , Zn). We still have to show uniqueness. Assume that

h(Z1, . . . , Zn) = fq + r = f q̃ + r̃.

Since g(0, . . . , 0) = 0, we have g ∈ m; thus, we can plug in Z1 = g(Z2, . . . , Zn) and get m-adic convergence.
By (∗), f goes to 0, and the commutative diagram shows r (mod f) = r and r̃ (mod f) = r̃. Hence, we get

r = r̃,

so that
fq − f q̃ = 0.

Now, C[[Z1, . . . , Zn]] is a domain, so q = q̃.

We can now apply induction to get the second version of the formal implicit function theorem, or FIFT .

Theorem 1.7 (Second form of the formal implicit function theorem)
Given f1, . . . , fr ∈ C[[Z1, . . . , Zn]], if fj(0, . . . , 0) = 0 for j = 1, . . . , r and

rk

(
∂fi
∂Zj

(0)

)
= r

(so that n ≥ r), then we can reorder the variables so that

rk

(
∂fi
∂Zj

(0)

)
= r, where 1 ≤ i, j ≤ r,

and there is a canonical isomorphism

C[[Z1, . . . , Zn]]/(f1, . . . , fr) ∼= C[[Zr+1, . . . , Zn]],

which makes the following diagram commute

C[[Z1, . . . , Zn]] // C[[Z1, . . . , Zn]]/(f1, . . . , fr)

C[[Zr+1, . . . , Zn]]

iiRRRRRRRRRRRRR

44iiiiiiiiiiiiiiii
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Proof . The proof of this statement is quite simple (using induction) from the previous theorem (DX).

What becomes of these results for the convergent case? They hold because we can make estimates
showing all processes converge for C. However, these arguments are tricky and messy (they can be found
in Zariski and Samuel, Volume II [15]). In our case, we can use complex analysis. For any ξ ∈ Cn and any
ǫ > 0, we define the polydisc of radius ǫ about ξ, PD(ξ, ǫ), by

PD(ξ, ǫ) = {(z1, . . . , zn) ∈ Cn | |zi − ξi| < ǫ, for every i, 1 ≤ i ≤ n}.

Say f(Z1, . . . , Zn) is holomorphic near the origin and suppose f(0, . . . , 0) = ∂f
∂Z1

(0) = · · · = ∂r−1f

∂Zr−1
1

(0) = 0

and ∂rf
∂Zr

1
(0) 6= 0, Consider f as a function of Z1, with ‖(Z2, . . . , Zn)‖ < ǫ, for some ǫ > 0. Then, f will have

r zeros, each as a function of Z2, . . . , Zn in the ǫ-disc. Now, we know (by one-dimensional Cauchy theory)
that

ηq1 + · · ·+ ηqr =
1

2πi

∫

|ξ|=R

ξq ∂f
∂Z1

(ξ, Z2, . . . , Zn)

f(ξ, Z2, . . . , Zn)
dξ,

where η1, . . . , ηr are the roots (as functions of Z2, . . . , Zn) and q is any integer ≥ 0. Therefore, the power
sums of the roots are holomorphic functions of Z2, . . . , Zn. By Newton’s identities, the elementary symmetric
functions σj(η1, . . . , ηr), for j = 1, . . . , r, are polynomials in the power sums, call these elementary symmetric
functions g1(Z2, . . . , Zn), . . . , gr(Z2, . . . , Zn). Then, the polynomial

w(Z1, . . . , Zn) = Zr1 − g1(Z2, . . . , Zn)Z
r−1
1 + · · ·+ (−1)rgr(Z2, . . . , Zn)

vanishes exactly where f vanishes. Look at f(Z1, . . . , Zn)/w(Z1, . . . , Zn) off the zeros. Then, the latter as
a function of Z1 has only removable singularities. Thus, by Riemann’s theorem, this function extends to a
holomorphic function in Z1 on the whole disc. As f/w is holomorphic in Z1, by the Cauchy integral formula,
we get

u(Z1, . . . , Zn) =
f(Z1, . . . , Zn)

w(Z1, . . . , Zn)
=

1

2πi

∫

|ξ|=R

u(ξ, Z2, . . . , Zn)

ξ − Z1
dξ.

Yet, the right hand side is holomorphic in Z2, . . . , Zn, which means that u(Z1, . . . , Zn) is holomorphic in
a polydisc and as we let the Zj go to 0, the function u(Z1, . . . , Zn) does not vanish as the zeros cancel.
Consequently, we have

f(Z1, . . . , Zn) = u(Z1, . . . , Zn)(Z
r
1 + g1(Z2, . . . , Zn)Z

r−1
1 + · · ·+ gr(Z2, . . . , Zn)).

Theorem 1.8 (Weierstrass Preparation Theorem (Convergent Case)) Given f ∈ C{Z1, . . . , Zn}, suppose

f(0, . . . , 0) =
∂f

∂Z1
(0) = · · · = ∂r−1f

∂Zr−1
1

(0) = 0, yet
∂rf

∂Zr1
(0) 6= 0.

Then, there exist unique power series, u(Z1, . . . , Zn), gj(Z2, . . . , Zn) in C{Z1, . . . , Zn}, with 1 ≤ j ≤ r, and
some ǫ > 0, so that

(1) u(Z1, . . . , Zn) is a unit

(2) gj(0, . . . , 0) = 0, where 1 ≤ j ≤ r and

(3) f(Z1, . . . , Zn) = u(Z1, . . . , Zn)(Z
r
1 + g1(Z2, . . . , Zn)Z

r−1
1 + · · ·+ gr(Z2, . . . , Zn)), in some polydisc

PD(0, ǫ).

Proof . Existence has already been proved. If more than one solution exists, read in C[[Z1, . . . , Zn]] and
apply uniqueness there.

As a consequence, we obtain the implicit function theorem and the inverse function theorem in the
convergent case.



20 CHAPTER 1. COMPLEX ALGEBRAIC VARIETIES; ELEMENTARY THEORY

Theorem 1.9 (Implicit Function Theorem (First Form–Convergent Case)) Let f ∈ C{Z1, . . . , Zn} and
suppose that f(0, . . . , 0) = 0, but

∂f

∂Z1
(0, . . . , 0) 6= 0.

Then, there exists a unique power series g(Z2, . . . , Zn) ∈ C{Z2 . . . , Zn} and there is some ǫ > 0, so that in
the polydisc PD(0, ǫ), we have f(Z1, . . . , Zn) = 0 if and only if Z1 = g(Z2, . . . , Zn). Furthermore, the map

h 7→ h̃ = h(g(Z2, . . . , Zn), Z2, . . . , Zn) gives rise to the commutative diagram

C{Z1, . . . , Zn} // C{Z1, . . . , Zn}/(f)

C{Z2, . . . , Zn}

hhQQQQQQQQQQQQQ

55llllllllllllll

Proof . (DX).

An easy induction yields

Theorem 1.10 (Convergent implicit function theorem) Let f1, . . . , fr ∈ C{Z1, . . . , Zn}. If fj(0, . . . , 0) = 0
for j = 1, . . . , r and

rk

(
∂fi
∂Zj

(0)

)
= r

(so that n ≥ r), then there is a permutation of the variables so that

rk

(
∂fi
∂Zj

(0)

)
= r, where 1 ≤ i, j ≤ r

and there exist r unique power series gj(Zr+1, . . . , Zn) ∈ C{Zr+1 . . . , Zn} (1 ≤ j ≤ r) and an ǫ > 0, so that
in the polydisc PD(0, ǫ), we have

f1(ξ) = · · · = fr(ξ) = 0 iff ξj = gj(ξr+1, . . . , ξn), for j = 1, . . . , r.

Moreover
C{Z1, . . . , Zn}/(f1, . . . , fr) ∼= C{Zr+1, . . . , Zn}

and the following diagram commutes:

C{Z1, . . . , Zn} // C{Z1, . . . , Zn}/(f1, . . . , fr)

C{Zr+1, . . . , Zn}

hhRRRRRRRRRRRRR

44iiiiiiiiiiiiiiii

When r = n, we have another form of the convergent implicit function theorem also called the inverse
function theorem.

Theorem 1.11 (Inverse function theorem) Let f1, . . . , fn ∈ C{Z1, . . . , Zn} and suppose that fj(0, . . . , 0) = 0
for j = 1, . . . , n, but

rk

(
∂fi
∂Zj

(0, . . . , 0)

)
= n.

Then, there exist n unique power series gj(W1, . . . ,Wn) ∈ C{W1 . . . ,Wn} (1 ≤ j ≤ n) and there are some
open neighborhoods of (0, . . . , 0) (in the Z’s and in the W ’s), call them U and V , so that the holomorphic
maps

(Z1, . . . , Zn) 7→ (W1 = f1(Z1, . . . , Zn), . . . ,Wn = fn(Z1, . . . , Zn)) : U → V

(W1, . . . ,Wn) 7→ (Z1 = g1(W1, . . . ,Wn), . . . , Zn = gn(W1, . . . ,Wn)) : V → U

are inverse isomorphisms.
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In order to use these theorems, we need a linear analysis via some kind of “tangent space.” Recall that
a variety, V , is a union of affine opens

V =
⋃

α

Vα.

Take ξ ∈ V , then there is some α (perhaps many) so that ξ ∈ Vα. Therefore, assume at first that V is affine
and say V ⊆ Cn and is cut out by the radical ideal A = I(V ) = (f1, . . . , fp). Pick any f ∈ A and write the
Taylor expansion for f at ξ ∈ Cn:

f(Z1, . . . , Zn) = f(ξ) +

n∑

j=1

(
∂f

∂Zj

)

ξ

(Zj − ξj) +O(quadratic).

Since ξ ∈ V , we have f(ξ) = 0. This suggests looking at the linear form

lf,ξ(λ1, . . . , λn) =

n∑

j=1

(
∂f

∂Zj

)

ξ

λj , where λj = Zj − ξj .

Examine the linear subspace

⋂

f∈A

Ker lf,ξ =



(λ1, . . . , λn) ∈ Cn

∣∣∣∣∣∣
(∀f ∈ A)




n∑

j=1

(
∂f

∂Zj

)

ξ

λj = 0





 . (∗)

Note that as f =
∑t
i=1 hifi, where hi ∈ C[Z1, . . . , Zn], we get

∂f

∂Zj
=

t∑

i=1

(
hi
∂fi
∂Zj

+ fi
∂hi
∂Zj

)
,

and, since fi(ξ) = 0,
(
∂f

∂Zj

)

ξ

=
t∑

i=1

hi(ξ)

(
∂fi
∂Zj

)

ξ

.

The equation in (∗) becomes
n∑

j=1

t∑

i=1

(
hi(ξ)

(
∂fi
∂Zj

)

ξ

)
(Zj − ξj) = 0,

which yields
t∑

i=1

hi(ξ)




n∑

j=1

(
∂fi
∂Zj

)

ξ

(Zj − ξj)


 = 0.

Hence, the vector space defined by (∗) is also defined by

n∑

j=1

(
∂fi
∂Zj

)

ξ

(Zj − ξj) = 0, for i = 1, . . . , t. (∗∗)

Definition 1.1 The linear space at ξ ∈ V defined by (∗∗) is called the Zariski tangent space at ξ of V . It
is denoted by TV,ξ.

Note that Definition 1.1 is an extrinsic definition. It depends on the embedding of V in Cn, but assume
for the moment that it is independent of the embedding. We have the following proposition:
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Proposition 1.12 Let V be an irreducible complex variety. The function

ξ 7→ dimCTV,ξ

is upper-semicontinuous on V , i.e.,

Sl = {ξ ∈ V | dimCTV,ξ ≥ l}

is Z-closed in V , and furthermore, Sl+1 ⊆ Sl and it is Z-closed in Sl.

Proof . Since we are assuming that TV,ξ is independent of the particular affine patch where ξ finds itself, we
may assume that V is affine. So, TV,ξ is the vector space given by the set of (λ1, . . . , λn) ∈ Cn such that

n∑

j=1

(
∂fi
∂Zj

)

ξ

λj = 0, for i = 1, . . . ,m,

where f1, . . . , fm generate the ideal A = I(V ). Hence, TV,ξ is the kernel of the linear map from Cn to Cm

given by the m× n matrix ((
∂fi
∂Zj

)

ξ

)
.

It follows that

dimCTV,ξ = n− rk

((
∂fi
∂Zj

)

ξ

)
.

Consequently, dimCTV,ξ ≥ l iff

rk

((
∂fi
∂Zj

)

ξ

)
≤ n− l;

and this holds iff the (n− l + 1)× (n− l + 1) minors are all singular at ξ. But the latter is true when and
only when the corresponding determinants vanish at ξ. These give additional equations on V at ξ in order
that ξ ∈ Sl and this implies that Sl is Z-closed in V . That Sl+1 ⊆ Sl is obvious and since Sl+1 is given by
more equations, Sl+1 is Z-closed in Sl.

We now go back to the question: Is the definition of the tangent space intrinsic?

It is possible to give an intrinsic definition. For this, we review the notion of C-derivation. Let M be a
C-module and recall that A[V ] = C[Z1, . . . , Zn]/I(V ), the affine coordinate ring of V .

Definition 1.2 A C-derivation of A[V ] with values in M centered at ξ consists of the following data:

(1) A C-linear map D : A[V ]→M . (values in M)

(2) D(fg) = f(ξ)Dg + g(ξ)Df (Leibnitz rule) (centered at ξ)

(3) D(λ) = 0 for all λ ∈ C. (C-derivation)

The set of such derivations is denoted by DerC(A[V ],M ; ξ).

The composition

C[Z1, . . . , Zn] −→ A[V ]
D−→M

is again a C-derivation (on the polynomial ring) centered at ξ with values in M . Note that a C-derivation
on the polynomial ring (call it D again) factors as above iff D ↾ I(V ) = 0. This shows that

DerC(A[V ],M ; ξ) = {D ∈ DerC(C[Z1, . . . , Zn],M ; ξ) | D ↾ I(V ) = 0}.
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However, a C-derivation D ∈ DerC(C[Z1, . . . , Zn],M ; ξ) is determined by its values D(Zj) = λj at the
variables Zj . Clearly (DX),

D(f(Z1, . . . , Zn)) =

n∑

j=1

(
∂f

∂Zj

)

ξ

D(Zj).

But, observe that for any (λ1, . . . , λn), the restriction of D to I(V ) vanishes iff

n∑

j=1

(
∂f

∂Zj

)

ξ

λj = 0, for every f ∈ I(V ),

that is, iff
n∑

j=1

(
∂fi
∂Zj

)

ξ

λj = 0, for every i = 1, . . . ,m,

where f1, . . . , fm generate the ideal I(V ). Letting ηj = λj + ξj ∈ M (with ξi ∈ M), we have a bijection
between
DerC(A[V ],M ; ξ) and



(η1, . . . , ηn) ∈Mn

∣∣∣∣∣∣

n∑

j=1

(
∂fi
∂Zj

)

ξ

λj = 0, 1 ≤ i ≤ m



 .

It is given by the map

D 7→ (η1, . . . , ηn),

with ηj = D(Zj) + ξj . This gives the isomorphism

TV,ξ ∼= DerC(A[V ],C; ξ).

We conclude that TV,ξ is independent of the embedding of V into Cn, up to isomorphism.

Take V to be irreducible to avoid complications. Then, A[V ] is an integral domain (as I(V ) is a prime
ideal) and so, OV,ξ = A[V ]I(ξ), the localization of A[V ] at the prime ideal I(ξ) consisting of all g ∈ A[V ]
where g(ξ) = 0. This is because elements of the local ring OV,ξ are equivalence classes of ratios f/g, where

f, g ∈ A[V ] with g(ξ) 6= 0 (where g is zero is Z-closed and so, the latter is Z-open), with f/g ∼ f̃/g̃ iff f/g

and f̃ /g̃ agree on a small neighborhood of ξ. On the Z-open where gg̃ 6= 0, we get f g̃− gf̃ = 0 iff f/g ∼ f̃ /g̃.
By analytic continuation, we get f g̃ − gf̃ = 0 in A[V ]. Therefore, OV,ξ = A[V ]I(ξ).

It follows that

OV,ξ =
{[

f

g

] ∣∣∣∣ f, g ∈ A[V ], g /∈ I(ξ)

}
=

{[
f

g

] ∣∣∣∣ f, g ∈ A[V ], g(ξ) 6= 0

}
.

Any C-derivation D ∈ DerC(A[V ],M ; ξ) is uniquely extendable to OV,ξ via

D

(
f

g

)
=
g(ξ)Df − f(ξ)Dg

g(ξ)2
.

Therefore,

DerC(A[V ],C; ξ) = DerC(OV,ξ,C; ξ).

There are some difficulties when V is reducible. As an example in C3, consider the union of a plane and
an algebraic curve piercing that plane, with ξ any point of intersection.
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Remark: Since the Sl manifestly form a nonincreasing chain as l increases, there is a largest l for which
Sl = V . The set Sl+1 is closed in V , and its complement {ξ | dimCTV,ξ = l} is Z-open. This gives us the
tangent space stratification (a disjoint union) by locally closed sets (a locally closed set is the intersection of
an open set with a closed set)

V = U0 ∪· U1 ∪· · · · ∪· Ut,
where U0 = {ξ | dimC TV,ξ = l} is open, and Ui = {ξ | dimC TV,ξ = l + i}. We have U1 open in
V − U0 = Sl+1, etc.

Now, we have the first main result.

Theorem 1.13 Say V is a complex variety and suppose dimCV = supα dimCVα <∞, where Vα is an affine
open in V ), e.g., V is quasi-compact (which means that V is a finite union of open affines). Then, there is
a nonempty open (in fact, Z-open), U , in V so that for all ξ ∈ U ,

dimC TV,ξ = dimC V.

Moreover, for all ξ ∈ V , if V is irreducible, then dimC TV,ξ ≥ dimC V .

Proof . We have V =
⋃
α Vα, where each Vα is affine open and dimC V = supα dimC Vα ≤ ∞ so that

dimC V = dimC Vα, for some α and if the first statement of the theorem is true for Vα, then there is some
open, U ⊆ Vα, and as Vα is open itself, U is an open in V with the desired property. So, we may assume
that V is affine. Let

V = V1 ∪ · · · ∪ Vt
be an irredundant decomposition into irreducible components. At least one of the Vj ’s has dimension dim(V ).
Say it is j = 1. Look at V1 ∩ Vj , j = 2, . . . , t. Each V1 ∩ Vj is a closed set, and so

W = V −
t⋃

j=2

V1 ∩ Vj

is Z-open. Also, W ∩V1 is Z-open in V1 because it is the complement of all the closed sets V1∩Vj with j ≥ 2.

Take any open subset, U , of V −⋃tj=2 Vj for which U is a good open in V1, that is, where dimCTV,ξ = dimCV1
whenever ξ ∈ U . Then, U ∩W also has the right property. Hence, we may assume that V is affine and
irreducible.

Write A[V ] for the coordinate ring C[Z1, . . . , Zn]/I(V ), where I(V ) is a prime ideal. Then, A[V ] is a
domain and write K = Frac(A[V ]). I claim that

dimK DerC(K,K) = dimC V. (∗)

We know dim V = tr.dCK = tr.dCA[V ]. Pick a transcendence basis ζ1, . . . , ζr for A[V ], then A[V ] is
algebraic over C[ζ1, . . . , ζr]; therefore, A[V ] is separable over C[ζ1, . . . , ζr] (C has characteristic zero). We
have the isomorphism

DerC(C[ζ1, . . . , ζr],K) −̃→ Kr,

and if α ∈ A[V ], then α satisfies an irreducible polynomial

ξ0α
m + ξ1α

m−1 + · · ·+ ξm = 0,

where ξj ∈ C[ζ1, . . . , ζr] and α is a simple root. Let f(T ) =
∑m

i=0 ξiT
m−i, where T is some indeterminate.

We have f(α) = 0 and f ′(α) 6= 0. For any D ∈ DerC(C[ζ1, . . . , ζr],K), we have

0 = D(f(α)) = f ′(α)D(α) +

m∑

i=0

αm−iDξi,
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and as f ′(α) 6= 0, we see that D(α) exists and is uniquely determined. Therefore,

DerC(C[ζ1, . . . , ζr],K) ∼= DerC(A[V ],K)

which proves (∗).
Now, we have I(V ) = (f1, . . . , fp) and as we observed earlier

DerC(A[V ],K) ∼=



(λ1, . . . , λn) ∈ Kn

∣∣∣∣∣∣

n∑

j=1

(
∂fi
∂Zj

)
λj = 0, 1 ≤ i ≤ p



 .

Therefore,

dimC V = dimK Der(A[V ],K) = n− rk

((
∂fi
∂xj

))
.

Let

s = rk

((
∂fi
∂xj

))

where the above matrix has entries in K. By linear algebra, there are matrices A,B (with entries in K) so
that

A

(
∂fi
∂xj

)
B =

(
Ir 0
0 0

)
.

Let α(X1, . . . , Xn) and β(X1, . . . , Xn) be the common denominators of entries in A and B, respectively. So,

A = (1/α)Ã and B = (1/β)B̃, and the entries in Ã and B̃ are in A[V ]. Let U be the open set where the

polynomial αβ det(Ã) det(B̃) is nonzero. Then, as

1

αβ
Ã

(
∂fi
∂xj

)
B̃ =

(
Is 0
0 0

)
in K,

for any ξ ∈ U , we have

1

α(ξ)β(ξ)
Ã(ξ)

((
∂fi
∂xj

)

ξ

)
B̃(ξ) =

(
Ir 0
0 0

)
,

and ((
∂fi
∂xj

)

ξ

)

has rank s, a constant.

Now, if V is irreducible, we must have a big open subset U0 of V where dimTV,ξ is equal to the minimum

it takes on V . Also, we have an open, Ũ0, where dim TV,ξ = dim(V ). Since these opens are dense, we find

U0 ∩ Ũ0 6= ∅.

Therefore, we must have
U0 = Ũ0,

and the minimum value taken by the dimension of the Zariski tangent space is just dim(V ). In summary,
the set

U0 = {ξ ∈ V | dim TV,ξ = dim(V )} = min
ξ∈V

dim TV,ξ

is a Z-open dense subset of V .

Remark: Say Vi and Vj are irreducible in some irredundant decomposition of V . If ξ ∈ Vi ∩ Vj (i 6= j),
check (DX) that dim TV,ξ ≥ dim TVi,ξ + dim TVj ,ξ.
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V

Figure 1.2: Example of A Surface with Singularites

Definition 1.3 If V is an irreducible variety, a point ξ ∈ V is nonsingular if

dimC TV,ξ = dimC(V ).

Otherwise, we say that ξ is singular . If V is quasi-compact but not irreducible and ξ ∈ Vi ∩ Vj for two
distinct irreducible (irredundant) components of V , we also say that ξ is singular . The singular locus of V
is denoted by Sing(V ).

Remark: In the interest of brevity, from now on, we will assume that a complex variety is a quasi-compact
(in the Z-topology) complex algebraic variety. A generalized complex variety is a complex variety that is
Hausdorff but not necessarily quasi-compact.

From previous observations, the singular locus, Sing(V ), of V is a Z-closed set, so it is a complex variety.
This leads to the Zariski stratification. Let U0 be the set of nonsingular points in V , write V1 = Sing(V ) =
V − U0, and let U1 be the set of nonsingular points in V1. We can set V2 = V1 − U1, and so on. Then, we
obtain the Zariski-stratification of V into disjoint locally closed strata

V = U0 ∪· U1 ∪· · · · ∪· Ut,

where each Ui is a nonsingular variety and U0 is the open subset of nonsingular points in V .

Example 1.1 In this example (see Figure 1.2), Sing(V ) consists of a line with a bad point on it (the origin).
V1 is that line, and V2 = Sing(V1) is the bad point.



1.2. LOCAL STRUCTURE OF COMPLEX VARIETIES 27

Let us take a closer look at the tangent space TV,ξ.

Pick, ξ, a point of an irreducible variety V . We know that

TV,ξ = DerC(OV,ξ,C; ξ)

and OV,ξ = A[W ]p, where W is an affine open with ξ ∈W and p is the prime ideal of A[W ] consisting of all
g so that g(ξ) = 0. We have

C →֒ OV,ξ −→ OV,ξ/mξ = C.

Therefore, we can write

OV,ξ = C
∐

mξ,

where the multiplication in the ring OV,ξ is given by

(λ,m)(λ′,m′) = (λλ′, (λm′ + λ′m+mm′)).

Given a derivation D ∈ DerC(OV,ξ,C; ξ), we have D(λ) = 0, so D ↾ mξ determines D. I claim that the
restriction D ↾ mξ of D to mξ has the property that D ↾ m2

ξ = 0. Indeed,

D

(∑

i

aibi

)
=
∑

i

D(aibi) = ai(ξ)Dbi + bi(ξ)Dai.

Since ai, bi ∈ mξ, we have ai(ξ) = bi(ξ) = 0, and so, D (
∑

i aibi) = 0, which proves that D ↾ m2
ξ = 0. As a

consequence, D is a C-linear map from mξ/m
2
ξ to C.

Conversely, given a C-linear map L : mξ/m
2
ξ → C how do we make a derivation D inducing L?

Define D on OV,ξ via

D(λ,m) = L(m (modm2
ξ)).

We need to check that it is a derivation. Letting f = (λ,m) and g = (λ′,m′), we have

D(fg) = D(λλ′, (λm′ + λ′m+mm′))

= L(λm′ + λ′m+mm′ (modm2
ξ))

= L(λm′ + λ′m (modm2
ξ))

= λL(m′) + λ′L(m)

= f(ξ)D(g) + g(ξ)D(f).

If we recall that m̂ξ/m̂
2
ξ
∼= mξ/m

2
ξ, we get

DerC(OV,ξ,C; ξ) ∼= (mξ/m
2
ξ)
D

∼= (m̂ξ/m̂
2
ξ)
D

∼= DerC(ÔV,ξ,C; ξ).

Finally, we get our intrinsic definition of the Zariski tangent space.

Definition 1.4 If V is a (generalized) complex variety, then the Zariski tangent space to V at ξ, TV,ξ, is
just the vector space (mξ/m

2
ξ)
D. The vector space mξ/m

2
ξ is the Zariski cotangent space to V at ξ.



28 CHAPTER 1. COMPLEX ALGEBRAIC VARIETIES; ELEMENTARY THEORY

1.3 Local Structure of Complex Varieties, II; Dimension and Use

of the Implicit Function Theorem

Let V be an irreducible variety. For any ξ ∈ V , we have mξ, the maximal ideal of the local ring OV,ξ.
Examine maximal chains of prime ideals of OV,ξ

mξ > p1 > · · · > pd = (0). (†)

Such chains exist and end with (0) since OV,ξ is a noetherian local domain. The length, d, of this chain is
the height of mξ. The Krull dimension of OV,ξ is the height of mξ (denoted dim OV,ξ). Since V is locally
affine, every ξ ∈ V belongs to some affine open, so we may assume that V is affine, V ⊆ Cn and V is given
by a prime ideal I(V ). Thus, A[V ] = C[Z1, . . . , Zn]/I(V ) and OV,ξ = A[V ]P, where

P = {g ∈ A[V ] | g(ξ) = 0}.

Our chain (†) corresponds to a maximal chain of prime ideals

P > P1 > · · · > Pd = (0)

of A[V ] and the latter chain corresponds to a chain of irreducible subvarieties

{ξ} < V1 < · · · < Vd = V.

Therefore, the length d of our chains is on one hand the Krull dimension of OV,ξ and on the other hand it
is the combinatorial dimension of V at ξ. Therefore,

htmξ = dimOX,ξ = combinatorial dim. of V at ξ.

Nomenclature. Say V and W are affine and we have a morphism ϕ : V → W . This gives a map of

C-algebras, A[W ]
Γ(ϕ)−→ A[V ]. Now, we say that

(1) ϕ is an integral morphism if Γ(ϕ) makes A[V ] a ring integral over A[W ].

(2) ϕ is a finite morphism if A[V ] a finitely generated A[W ]-module.

(3) If V and W are not necessarily affine and ϕ : V →W is a morphism, then ϕ is an affine morphism iff
there is an open cover of W by affines, Wα, so that ϕ−1(Wα) is again affine as a variety. Then, we can
carry over (1) and (2) to the general case via: A morphism ϕ is integral (resp. finite) iff

(a) ϕ is affine

(b) For every α, the morphism ϕ ↾ ϕ−1(Wα) −→Wα is integral (resp. finite).

An irreducible variety, V , is a normal variety iff it has an open covering, V =
⋃
α Vα, so that A[Vα] is

integrally closed in its fraction field.

Proposition 1.14 Let V,W be irreducible complex varieties, with W normal. If dim(W ) = d and ϕ : V →
W is a finite surjective morphism, then dim(V ) = d and ϕ establishes a surjective map from the collection
of closed Z-irreducible subvarieties of V to those of W , so that

(1) maximal irreducible subvarieties of V map to maximal irreducible subvarieties of W

(2) inclusion relations are preserved

(3) dimensions are preserved
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(4) no irreducible subvariety of V , except V itself, maps onto W .

Proof . Let Wα be an affine open in W , then so is Vα = ϕ−1(Wα) in V , because ϕ is affine, since it is a finite
morphism. If Z is an irreducible closed variety in V , then Zα = Z ∩Vα is irreducible in Vα since Zα is dense
in Z. Thus, we may assume that V and W are affine. Let A = A[W ] and B = A[V ]. Since ϕ is finite and
surjective, we see that Γ(ϕ) is an injection, so B is a finite A-module. Both A,B are integral domains, both
are Noetherian, A is integrally closed, and no nonzero element of A is a zero divisor in B. These are the
conditions for applying the Cohen-Seidenberg theorems I, II, and III. As A[V ] is integral, therefore algebraic
over A[W ], we have

d = dimW = tr.dCA[W ] = tr.dCA[V ] = dim V,

which shows that dimW = dim V .

By Cohen-Seidenberg I (Zariski and Samuel [14], Theorem 3, Chapter V, Section 2, or Atiyah and
Macdonald [1], Chapter 5), there is a surjective correspondence

P 7→ P ∩ A

between prime ideals of B and prime ideals of A, and thus, there is a surjective correspondence between
irreducible subvarieties of V and their images in W .

Consider a maximal irreducible variety Z in V . Then, its corresponding ideal is a minimal prime ideal
P. Let p = P∩A, the ideal corresponding to ϕ(Z). If ϕ(Z) is not a maximal irreducible variety in W , then
p is not a minimal prime, and thus, there is some prime ideal q of A such that

q ⊂ p,

where the inclusion is strict. By Cohen-Seidenberg III (Zariski and Samuel [14], Theorem 6, Chapter V,
Section 3, or Atiyah and Macdonald [1], Chapter 5), there is some prime ideal Q in B such that

Q ⊂ P

and q = Q ∩ A, contradicting the fact that P is minimal. Thus, ϕ takes maximal irreducible varieties to
maximal irreducible varieties.

Finally, by Cohen-Seidenberg II (Zariski and Samuel [14], Corollary to Theorem 3, Chapter V, Section
2, or Atiyah and Macdonald [1], Chapter 5), inclusions are preserved, and since ϕ is finite, dimension is
preserved. The rest is clear.

We can finally prove the fundamental fact on dimension.

Proposition 1.15 Let V and W be irreducible complex varieties with W a maximal subvariety of V . Then,

dim(W ) = dim(V )− 1.

Proof . We may assume that V and W are affine (using open covers, as usual). By Noether’s normalization
theorem (Theorem 1.2), there is a finite surjective morphism ϕ : V → Cr, where r = dimC(V ). However, Cr

is normal, and by Proposition 1.14, we may assume that V = Cr. Let W be a maximal irreducible variety
in Cr. It corresponds to a minimal prime ideal P of A[T1, . . . , Tr], which is a UFD. As a consequence, since
P is a minimal prime, it is equal to some principal ideal, i.e., P = (g), where g is not a unit. Without loss
of generality, we may assume that g involves Tr.

Now, the images t1, . . . , tr−1 of T1, . . . , Tr−1 in A[T1, . . . , Tr]/P are algebraically independent over C.
Otherwise, there would be some polynomial f ∈ A[T1, . . . , Tr−1] such that

f(t1, . . . , tr−1) = 0.
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But then, f(T1, . . . , Tr−1) ∈ P = (g). Thus,

f(T1, . . . , Tr−1) = α(T1, . . . , Tr)g(T1, . . . , Tr),

contradicting the algebraic independence of T1, . . . , Tr. Therefore, dimC(W ) ≥ r− 1, but since we also know
that dimC(W ) ≤ r − 1, we get dimC(W ) = r − 1.

Corollary 1.16 The combinatorial dimension of V over {ξ} is just dimC V ; consequently, it is independent
of ξ ∈ V (where V is affine irreducible).

Corollary 1.17 If V is affine and irreducible, then dimC mξ/m
2
ξ ≥ dimC V = comb. dim. V = dimC OV,ξ

(= Krull dimension) and we have equality iff ξ is a nonsingular point. Therefore, OV,ξ is a regular local ring
(i.e., dimC mξ/m

2
ξ = dimC OV,ξ) iff ξ is a nonsingular point.

We now use these facts and the implicit function theorem for local analysis near a nonsingular point.

Definition 1.5 Say V ⊆ Cn is an affine variety and write d = dim V . Then, V is called a complete
intersection iff I(V ) has n− d generators. If V is not necessarily affine and ξ ∈ V , then V is a local complete
intersection at ξ iff there is some affine open, V (ξ), of V such that

(a) ξ ∈ V (ξ) ⊆ V

(b) V (ξ) ⊆ Cn, for some n, as a subvariety

(c) V (ξ) is a complete intersection in Cn.

Theorem 1.18 (Local Complete Intersection Theorem) Let V be an irreducible complex variety, ξ ∈ V be
a nonsingular point and write dim(V ) = d. Then, V is a local complete intersection at ξ. That is, there is
some affine open, U ⊆ V , with ξ ∈ U , such that U can be embedded into Cn as a Z-closed subset (we may
assume that n is minimal) and U is cut out by r = n−d polynomials. This means that there exists a possibly
smaller Z-open W ⊆ U ⊆ V with ξ ∈W and some polynomials f1, . . . , fr, so that

η ∈W if and only if f1(η) = · · · = fr(η) = 0.

The local complete intersection theorem will be obtained from the following affine form of the theorem.

Theorem 1.19 (Affine local complete intersection theorem) Let V ⊆ Cn be an affine irreducible complex
variety of dimension dim(V ) = d, and assume that V = V (p). If ξ ∈ V is nonsingular point, then there exist
f1, . . . , fr ∈ p, with r = n− d, so that

p =

{
g ∈ C[Z1, . . . , Zn]

∣∣∣∣∣ g =
r∑

i=1

hi(Z1, . . . , Zn)

l(Z1, . . . , Zn)
fi(Z1, . . . , Zn) , and l(ξ) 6= 0

}
, (†)

where hi and l ∈ C[Z1, . . . , Zn]. The fi’s having the above property are exactly those fi ∈ p whose differentials
dfi cut out the tangent space TV,ξ (i.e., these differentials are linearly independent).

Proof of the local complete intersection theorem (Theorem 1.18). We show that the affine local complete
intersection theorem (Theorem 1.19) implies the general one (Theorem 1.18). There is some open affine set,
say U , with ξ ∈ U . By working with U instead of V , we may assume that V is affine. Let V = V (p), and
let A = (f1, . . . , fr), in C[Z1, . . . , Zn]. Suppose that g1, . . ., gt are some generators for p. By the affine local
complete intersection theorem (Theorem 1.19), there are some l1, . . . , lt with lj(ξ) 6= 0, so that

gj =

r∑

i=1

hij
lj
fi, for j = 1, . . . , t.
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Let l =
∏t
j=1 lj and let W be the Z-open of Cn where l does not vanish. We have ξ ∈ W , and we also have

A[V ∩W ] = A[V ]l =
{ α
lk

∣∣∣ α ∈ A[V ], k ≥ 0
}
.

But,

ljgj =

r∑

i=1

hijfi,

and on V ∩W , the lj’s are units. Therefore,

pA[V ∩W ] = AA[V ∩W ].

Thus, on V ∩W , we have p = A in the above sense, and so, V ∩W is the variety given by the fj ’s. The
affine version of the theorem implies that r = n− d.

We now turn to the proof of the affine theorem.

Proof of the affine local complete intersection theorem (Theorem 1.19). Let the righthand side of (†) be P.
Given any g ∈ P, there is some l so that

lg =

r∑

i=1

hifi.

Since fi ∈ p, we have lg ∈ p. But l(ξ) 6= 0, so l /∈ p; and since p is prime, we must have g ∈ p. Thus, we have

P ⊆ p.

By translation, we can move p to the origin, and we may assume that ξ = 0. Now, the proof of our theorem
rests on the following proposition:

Proposition 1.20 (Zariski) Let f1, . . . , fr ∈ C[Z1, . . . , Zn] be polynomials with
f1(0, . . . , 0) = · · · = fr(0, . . . , 0) = 0, and linearly independent linear terms at (0, . . . , 0). Then, the ideal

P =

{
g ∈ C[Z1, . . . , Zn]

∣∣∣∣∣ g =
r∑

i=1

hi(Z1, . . . , Zn)

l(Z1, . . . , Zn)
fi(Z1, . . . , Zn) , and l(0, . . . , 0) 6= 0

}

is a prime ideal and V (P) has dimension n − r. Moreover, (0, . . . , 0) ∈ V (P) is a nonsingular point and
V (f1, . . . , fr) = V (P) ∪ Y , where Y is Z-closed and (0, . . . , 0) /∈ Y .

If we assume Zariski’s Proposition 1.20, we can finish the proof of the affine local complete intersection
theorem (Theorem 1.19): Since ξ = (0, . . . , 0) is nonsingular, we find dim TV,0 = d, the differentials of
f1, . . . , fr are linearly independent if and only if they cut out TV,0. Then, V (P) has dimension n − r = d.
By Proposition 1.20, P is prime, and we have already proved P ⊆ p. However,

dim V (P) = dim V (p);

so, we get V (P) = V (p), and thus, P = p. This proves the affine local complete intersection theorem.

It remains to prove Zariski’s proposition.

Proof of Proposition 1.20. We have the three rings

R = C[Z1, . . . , Zn],

R′ = C[Z1, . . . , Zn](Z1,...,Zn) = OCn,0, and

R′′ = C[[Z1, . . . , Zn]].
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0

V (P)

V (f ′s)

Figure 1.3: Illustration of Proposition 1.20

If l ∈ OCn,0 ∩ C[Z1, . . . , Zn] and l(0) 6= 0, then

l(Z1, . . . , Zn) = l(0)


1 +

n∑

j=1

aj(Z1, . . . , Zn)Zj


 ,

where aj(Z1, . . . , Zn) ∈ C[Z1, . . . , Zn]. But then,

1

1 +
∑n
j=1 aj(Z1, . . . , Zn)Zj

=

∞∑

r=0

(−1)r



n∑

j=1

aj(Z1, . . . , Zn)Zj



r

,

which belongs to C[[Z1, . . . , Zn]]. Hence, we have inclusions

R →֒ R′ →֒ R′′.

Let P′ = (f1, . . . , fr)R
′ and write P′′ = (f1, . . . , fr)R

′′. By definition, P = P′ ∩R. If we can show that P′

is a prime ideal, then P will be prime, too.

Claim: P′ = P′′ ∩R′.

Let g ∈ P′′ ∩R′. Then,

g =
r∑

i=1

hifi,

with g ∈ R′, by assumption, and with hi ∈ R′′. We can define the notion of “vanishing to order t of a power
series,” and with “obvious notation,” we can write

hi = h̃i +O(Xt),

where deg h̃i < t. Because fi(0, . . . , 0) = 0 for each i, we find that

g =

r∑

i=1

h̃ifi +O(Xt+1),
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and thus,
g ∈ P′ + (Z1, . . . , Zn)

t+1R′, for all t.

As a consequence,

g ∈
∞⋂

t=1

(
P′ + (Z1, . . . , Zn)

t+1R′
)
;

so,

P′′ ∩R′ ⊆
∞⋂

t=1

(
P′ + (Z1, . . . , Zn)

t+1R′
)
.

But R′ is a Noetherian local ring, and by Krull’s intersection theorem (Zariski and Samuel [14], Theorem
12′, Chapter IV, Section 7), P′ is closed in the M-adic topology of R′ (where, M = (Z1, . . . , Zn)R

′).
Consequently,

P′ =

∞⋂

t=1

(
P′ +Mt+1

)
,

and we have proved
P′′ ∩R′ ⊆ P′.

Since we already know that P′ ⊆ P′′∩R′, we get our claim. Thus, if we knew P′′ were prime, then so would
be P′. Now, the linear terms of f1, . . . , fr at (0, . . . , 0) are linearly independent, thus,

rk

(
∂fi
∂Zj

(0)

)
= r,

and we can apply the formal implicit function theorem (Theorem 1.7). As a result, we get the isomorphism

R′′/P′′ ∼= C[[Zr+1, . . . , Zn]].

However, since C[[Zr+1, . . . , Zn]] is an integral domain, P′′ must be a prime ideal. Hence, our chain of
arguments proved that P is a prime ideal. To calculate the dimension of V (P), observe that

P′′ ∩R = P′′ ∩R′ ∩R = P′ ∩R = P,

and we also have
C[Z1, . . . , Zn]/P →֒ C[[Z1, . . . , Zn]]/P

′′ ∼= C[[Zr+1, . . . , Zn]].

Therefore, Zr+1, . . . , Zn (modP) are algebraically independent over k, which implies that dimV (P) ≥ n−r.
Now, the linear terms of f1, . . . , fr cut out the linear space TV,0, and by linear independence, this space has
dimension n− r. Then,

n− r = dim TV,0 ≥ dim V (P) ≥ n− r,
so that dim V (P) = n− r, and 0 is nonsingular.

If g ∈ P, there exists some l with l(0) 6= 0 such that

g =

r∑

i=1

hi
l
fi,

which implies that lg ∈ (f1, . . . , fr). Applying this fact to each of the generators of P, say, g1, . . . , gt, and
letting l =

∏t
i=1 li, we have

lP ⊆ (f1, . . . , fr) ⊆ P.

As a consequence,
V (P) ⊆ V (f1, . . . , fr) ⊆ V (lP) = V (l) ∪ V (P).
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If we let Y = V (l) ∩ V (f1, . . . , fr), we have

V (f1, . . . , fr) = V (P) ∪ Y.

Since l(0) 6= 0, we have 0 /∈ Y .

Remarks:

(1) Given an irreducible complex variety, V , we have the intuition that OV,ξ should control the structure
of V near ξ. Since the question is local, we may assume that V is affine, say V = V (p), where p is a
prime ideal of C[Z1, . . . , Zn]. We have the diagram

C[Z1, . . . , Zn]
� � //

��

C[Z1, . . . , Zn]I(ξ) = OCn,ξ

��
C[Z1, . . . , Zn]/p = A[V ] � � // A[V ]

I(ξ) = OV,ξ.

The kernel on the left hand side is p and the kernel on the right hand side is pe. By the LCIT, we have
f1, . . . , fr (where n = r + d and dim V = d) cutting out V . What is the right hand side of ALCIT? It
is Aec, where A = (f1, . . . , fr) ⊆ C[Z1, . . . , Zn] and Ae = AOCn,ξ. Therefore, the ALCIT says

p = Aec.

Thus, pe = Ae. It follows that if pe as ideal of OCn,ξ has generators f1, . . . , fr, then these generators
cut out V (from Cn) in a Z-neighborhood of ξ (ξ is nonsingular).

(2) Suppose ξ is nonsingular and V is affine, irreducible and look at the diagram

OCn,ξ = C[Z1 − ξ1, . . . , Zn − ξn]I(ξ) � � //

��

C[[Z1 − ξ1, . . . , Zn − ξn]] = ÔCn,ξ

��
OV,ξ = A[V ]

I(ξ)
� � // ÔV,ξ.

By the LCIT, V is cut out by f1, . . . , fr, where df1, . . . , dfr cut out TV,ξ from Cn, i.e., df1, . . . , dfr are

linearly independent forms on TCn,ξ
∼= Cn. Thus, rk

(
∂fi
∂Zj

)
= r is maximal. By the FIFT, we have

ÔV,ξ = C[[Z1 − ξ1, . . . , Zn − ξn]]/(f1, . . . , fr) ∼= C[[Zr+1 − ξr+1, . . . , Zn − ξn]].

By the same theorem, if we pick y1, . . . , yd (d = n − r) in mξ, with images yi linearly independent

in mξ/m
2
ξ (yj = dyj), then we know that ÔV,ξ ∼= C[[y1, . . . , yd]]. Therefore, at ξ, as point of Cn, the

differentials df1, . . . , dfr, dy1, . . . , dyd are linearly independent on TCn,ξ, i.e., they are a basis. So, by
the FIFT, again,

C[[Z1 − ξ1, . . . , Zn − ξn]] ∼= C[[f1, , . . . , fr, y1, . . . , yd]].

We conclude

(a) For all f ∈ ÔV,ξ, there is a unique power series in y1, . . . , yd equal to f (Taylor series).

(b) Near ξ (in the Z-topology), by Remark 1, Cn has a “splitting” into coordinates locally on V and
coordinates locally transverse to V . Therefore, TV,η as η ranges over a Z-open neighborhood of
the nonsingular point ξ is locally constant, i.e., just given by dy1, . . . , dyd in this neighborhood.

For the complex analytic case, we have:
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Theorem 1.21 Let V be an irreducible complex algebraic variety of dimension d and let ξ ∈ V be a nonsin-
gular point. If locally in the Zariski topology near ξ, the variety V may be embedded in Cn, then there exist
d of the coordinates (of Cn), say Zr+1, . . . , Zn (r = n− d) so that

(a) dZr+1, . . . , dZn are linearly independent forms on TV,ξ,

(b) there exists some ǫ > 0 and we have r converging power series g1(Zr+1 − ξr+1, . . . , Zn − ξn), . . .,
gr(Zr+1 − ξr+1, . . . , Zn − ξn), so that

(Z1, . . . , Zn) ∈ PD(ξ, ǫ) ∩ V iff Zi − ξi = gi(Zr+1 − ξr+1, . . . , Zn − ξn), i = 1, . . . , r.

(c) Any choice of d of the coordinates Z1, . . . , Zn so that the corresponding dZi’s are linearly independent
on TV,ξ will serve, and the map

V ∩ PD(ξ, ǫ) −→ PD(0, ǫ)

given by
(Z1, . . . , Zn) 7→ (Zr+1 − ξr+1, . . . , Zn − ξn)

is an analytic isomorphism. Hence, if we take (V −SingV )an, it has the natural structure of a complex
analytic manifold. Furthermore, V an is a complex analytic manifold if and only if V is a nonsingular
variety.

Proof . Since ξ is nonsingular, by the local complete intersection theorem (Theorem 1.18), we can cut out V
locally (in the Zariski topology) by f1, . . . , fr and then we know that

rk

(
∂fi
∂Zj

(ξ)

)
= r

is maximal. By the convergent implicit function theorem (Theorem 1.10), there is some ǫ > 0 and there are
some power series g1, . . . , gr so that on PD(ξ, ǫ), we have

fi(Z1, . . . , Zn) = 0 iff Zi − ξi = gi(Zr+1 − ξr+1, . . . , Zn − ξn) for i = 1, . . . , r. (∗)

The lefthand side says exactly that

(Z1, . . . , Zn) ∈ V ∩ PD(ξ, ǫ).

We get a map by projection on the last d coordinates

V ∩ PD(ξ, ǫ) −→ PD(0, ǫ),

whose inverse is given by the righthand side of equation (∗); and thus, the map is an analytic isomorphism.
By the formal implicit function theorem (Theorem 1.7),

C[[Z1, . . . , Zn]]/(f1, . . . , fr) ∼= C[[Zr+1, . . . , Zn]].

Hence, dZr+1, . . . , dZn are linearly independent on TV,ξ. If conversely, the last d coordinates have linearly
independent differentials dZr+1, . . . , dZn, then

dim TV,ξ ≤ d.

But ξ is nonsingular, and thus, dZr+1, . . . , dZn form a basis of TV,ξ. Now, TCn,ξ is cut out by df1, . . . , dfr,
dZr+1, . . . , dZn, where f1, . . . , fr cut out V locally (in the Zariski topology) at ξ, by the local complete
intersection theorem. It follows that

rk

(
∂fi
∂Zj

(ξ)

)
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is maximal (that is, r = n−d) and we can repeat our previous arguments. The last statement of the theorem
is just a recap of what has already been proved.

Remark: In the nonsingular case, the differential geometric definition of TV,ξ and ours then agree and the
notions of dimension also agree. Consider a morphism, ϕ : V → W , of varieties and let ξ be a point of V
(perhaps singular). We know that we have the local morphism (ϕ∗)ξ : OW,ϕ(ξ) −→ OV,ξ and mϕ(ξ) −→ mξ.
Thus, we have a linear map mϕ(ξ)/m

2
ϕ(ξ) −→ mξ/m

2
ξ, but T

D
W,ϕ(ξ)

∼= mϕ(ξ)/m
2
ϕ(ξ) and TDV,ξ = mξ/m

2
ξ. If we

dualize, we get a linear map TV,ξ −→ TW,ϕ(ξ), as expected.

To go further and understand the local structure of an irreducible variety near a nonsingular point on it,
we need the following famous theorem first proved by Zariski (1947) in the case at hand [13]. However, the
theorem is more general and holds for an arbitrary regular local ring as was proved by M. Auslander and D.
Buchsbaum, and independently Jean-Pierre Serre (all in 1959).

Theorem 1.22 Let V be an irreducible complex algebraic variety and let ξ be a nonsingular point of V , then
OV,ξ is a UFD.

In order to prove Theorem 1.22, we need and will prove the following algebraic theorem:

Theorem 1.23 If A is a local noetherian ring and if its completion Â is a UFD, then, A itself is a UFD.

Proof of Theorem 1.22. Assume Theorem 1.23, then, OV,ξ is a noetherian local ring and as ξ is nonsingular,

ÔV,ξ ∼= C[[Z1, . . . , Zd]],

for some d, by the LCIT and implicit function theorem. However, the latter ring is a UFD, by elementary
algebra. Therefore, Theorem 1.23 implies Theorem 1.22.

Observe that we also obtain the fact that C{Z1, . . . , Zd} is a UFD.

Proof of Theorem 1.23. The proof proceeds in three steps.

Step 1. I claim that for every ideal A ⊆ A we have

A = A ∩ AÂ.

Clearly, A ⊆ A ∩AÂ. We need to prove that

A ∩ AÂ ⊆ A.

Pick f ∈ A ∩ AÂ, then, f ∈ A and

f =

t∑

i=1

αiai,

and αi ∈ Â and ai ∈ A. Write
αi = α

(n)
i +O(m̂n+1),

where α
(n)
i ∈ A, and m is the maximal ideal of A. Then,

f =
∑

i

α
(n)
i ai +

∑

i

O(m̂n+1)ai,

and
∑

i α
(n)
i ai ∈ A. So,

f ∈ A+ Am̂n+1 = A+ Amn+1Â,
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and this is true for all n. The piece of f in Amn+1Â lies in A, and thus, in mn+1. We find that f ∈ A+mn+1

for all n, and we have

f ∈
⋂

n≥0

(A+mn+1) = A,

by Krull’s intersection theorem.

Step 2. I claim that
Frac(A) ∩ Â = A.

This means that given f/g ∈ Frac(A) and f/g ∈ Â, then f/g ∈ A. Equivalently, this means that if g divides

f in Â, then g divides f in A. Look at
A = gA.

If f/g ∈ Â, then f ∈ gÂ, and since f ∈ A, we have

f ∈ A ∩ gÂ.

But gÂ = AÂ, and by Step 1, we find that

gA = A = A ∩ AÂ,

so, f ∈ gA, as claimed.

We now come to the heart of the proof.

Step 3. Let f, g ∈ A with f irreducible. I claim that either f divides g in A or (f, g) = 1 in Â (where
(f, g) denotes the gcd of f and g).

Assuming this has been established, here is how we prove Theorem 1.23: Firstly, since A is noetherian,
factorization into irreducible factors exists (but not necessarily uniquely). By elementary algebra, one knows
that to prove uniqueness, it suffices to prove that if f is irreducible then f is prime. That is, if f is irreducible
and f divides gh, then we must prove either f divides g or f divides h.

If f divides g, then we are done. Otherwise, (f, g) = 1 in Â, by Step 3. Now, f divides gh in Â and Â is

a UFD, so that as (f, g) = 1 in Â we find that f divides h in Â. By Step 1 2, we get that f divides h in A,
as desired.

Proof of Step 3. Let f, g ∈ Â and let d be the gcd of f and g in Â. Thus,

f = dF, and g = dG,

where d, F,G ∈ Â, and
(F,G) = 1 in Â.

Let ordm̂ F = n0 (that is, n0 is characterized by the fact that F ∈ m̂n0 but F /∈ m̂n0+1). Either F is a unit

or a nonunit in Â. If F is a unit in Â, then n0 = 0, and f = dF implies that F−1f = d; then,

F−1fG = g,

which implies that f divides g in Â. By Step 2, we get that f divides g in A.

We now have to deal with the case where ord(F ) = n0 > 0. We have

F = lim
n7→∞

Fn and G = lim
n7→∞

Gn,

in the m-adic topology, with Fn and Gn ∈ A, and F − Fn and G−Gn ∈ m̂n+1. Look at

g

f
− Gn
Fn

=
gFn − fGn

fFn
.
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Now,

gFn − fGn = g(Fn − F ) + gF − fGn
= g(Fn − F ) + dGF − fGn
= g(Fn − F ) + fG− fGn
= g(Fn − F ) + f(G−Gn).

The righthand side belongs to (f, g)m̂n+1, which means that it belongs to (f, g)mn+1Â. However, the lefthand
side is in A, and thus, the righthand side belongs to

A ∩ (f, g)mn+1Â.

Letting A = (f, g)mn+1, we can apply Step 1, and thus, the lefthand side belongs to (f, g)mn+1. This means
that there are some σn, τn ∈ mn+1 ⊆ A so that

gFn − fGn = fσn + gτn;

It follows that
g(Fn − τn) = f(Gn + σn);

so, if we let
αn = Gn + σn and βn = Fn − τn,

we have the following properties:

(1) gβn = fαn, with αn, βn ∈ A,

(2) αn ≡ Gn (modmn+1) and βn ≡ Fn (modmn+1),

(3) Gn ≡ G (modmn+1Â) and Fn ≡ F (modmn+1Â).

Choose n = n0. Since ord(F ) = n0 > 0, we have ord(Fn0) = n0, and thus, ord(βn0) = n0. Look at (1):

gβn0 = fαn0 ,

so
dGβn0 = dFαn0 ,

and, because Â is an integral domain,
Gβn0 = Fαn0 .

However, (F,G) = 1 in Â and F divides Gβn0 . Hence, F divides βn0 , so that there is some H ∈ Â with
βn0 = FH and

ord(βn0) = ord(F ) + ord(H).

But ord(F ) = n0, and consequently, ord(H) = 0, and H is a unit. Since βn0 = FH , we see that βn0 divides
F , and thus,

F = βn0δ

for some δ ∈ Â. Again, ord(δ) = 0, and we conclude that δ is a unit. Then,

βn0δd = dF = f,

so that βn0 divides f in Â. By step 2, βn0 divides f in A. But f is irreducible and βn0 is not a unit, and so
βn0u = f where u is a unit. Thus, δd = u is a unit, and since δ is a unit, so is d, as desired.

The unique factorization theorem just proved has important consequences for the local structure of a
variety near a nonsingular point:



1.3. LOCAL STRUCTURE OF COMPLEX VARIETIES, II 39

Theorem 1.24 Say V is an irreducible complex variety and let ξ be a point in V . Let f ∈ OV,ξ be a locally
defined holomorphic function at ξ and assume that f 6≡ 0 on V and f(ξ) = 0. Then, the locally defined
subvariety, W = {x ∈ V | f(x) = 0}, given by f is a subvariety of codimension 1 in V . If ξ is nonsingular
and f is irreducible, thenW is irreducible. More generally, if ξ is nonsingular then the irreducible components
of W through ξ correspond bijectively to the irreducible factors of f in OV,ξ. Conversely, suppose ξ is
nonsingular and W is a locally defined pure codimension 1 subvariety of V through ξ, then, there is some
irreducible f ∈ OV,ξ so that near enough ξ, we have

W = {x ∈ V | f(x) = 0} and I(W )OV,ξ = fOV,ξ.

Proof . Let ξ be a point in V and let f be in OV,ξ, with f irreducible. As the question is local on V we may
assume that V is affine. Also,

OV,ξ = lim
−→

g/∈I(ξ)

Ag,

with A = A[V ]. Thus, we may assume that f = F/G, with G(ξ) 6= 0 and with F,G ∈ A. Upon replacing V
by VG (where VG is an open such that ξ ∈ VG), we may assume that f is the image of some F ∈ A = A[V ].
The variety V is irreducible and V = V (p), where p is some prime ideal. Near ξ (i.e., on some open affine
subset U0 with ξ ∈ U0), let

A = {g ∈ C[Z1, . . . , Zn] | lg ∈ p+ (f), where l(ξ) 6= 0}, (∗)

and let m be the ideal of ξ on V . This means that m = {g ∈ A[V ] | g(ξ) = 0}. We have

p ⊆ A ⊆ m.

Reading the above in A, we get A ⊆ m, and in OV,ξ, we find from (∗) that Ae = fOV,ξ. Thus, Ae is a
prime ideal, because f is irreducible and OV,ξ is a UFD. Then, A is prime and W = V (A) is a variety locally
defined by f = 0, and is irreducible. We have W 6⊆ V , since f = 0 on W but not on V , and we find that

dim(W ) ≤ dim(V )− 1.

We will prove equality by a tangent space argument.

Claim. There is some affine open U ⊆ Wα with ξ ∈ U so that for all u ∈ U : TWα,u is cut out from TV,u
by the equation df = 0, where Wα is some irreducible component of W through ξ.

Let g1, . . . , gt be generators for A. Thus, dg1 = · · · = dgt = 0 cut out TW,u near ξ, i.e., in some suitable
open set U0 with ξ ∈ U0. By (∗), on U0, there exist l1, . . . , lt so that

ligi = pi + λif,

where pi ∈ p, and the λi’s are polynomials. Let l =
∏
li, and take

U = U0 ∩ {η | l(η) 6= 0}.

The set U is open and affine. By differentiating, we get

lidgi + (dli)gi = dpi + (dλi)f + λidf. (†)

On U ⊆W ⊆ V , we have

(1) f = 0 (in W ).

(2) pi = 0 (in V ).

(3) gi = 0 (in W ).
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(4) li 6= 0.

(5) dpi = 0, as we are in TV,u, with u ∈ U .

In view of (†), we get
li(u)dgi(u) = λi(u)df(u).

Assume that df(u) = 0. Since li(u) 6= 0, we get dgi(u) = 0, which implies that the equation df(u) = 0 cuts
out a subspace of TW,u. Then, TW,u contains the hyperplane df = 0 of TV,u, which implies that

dim(TW,u) ≥ dim(TV,u)− 1.

Now, Z-open are dense in irreducible; consequently on some irreducible component Wα of W , U ∩Wα is
open, dense and some u in U ∩Wα is nonsingular, so

dimW ≥ dimWα = dim(TW,u) ≥ dim(TV,u)− 1 ≥ dim V − 1.

Thus, (by previous work),
dim(W ) = dim(V )− 1.

Conversely, assume that W is locally defined near ξ, and is of codimension 1. Replacing V by this affine
neighborhood, we may assume that W ⊆ V , is globally defined, and of codimension 1. Also recall that ξ is
assumed to be nonsingular. We have the ideal I(W )OV,ξ in OV,ξ, and we can write

I(W )OV,ξ = p1 ∩ · · · ∩ pt,

where the pj ’s are minimal primes of OV,ξ, each of height 1. Since OV,ξ is a UFD, every pi is principal, i.e.,
pi = fiOV,ξ, where fi is irreducible. As

p1 ∩ · · · ∩ pt = p1 · · · pt,

we get
I(W )OV,ξ = fOV,ξ,

where f = f1 · · · ft. The above argument implies that I(W ) = (F ) in some AG, where A = A[V ]; G(ξ) 6= 0;
G ∈ A. Thus, I(W ) is locally principal. Observe also that if W is irreducible, then I(W ) is prime; so, f = fj
for some j, i.e., f is irreducible.

Now, consider f ∈ OV,ξ, where ξ is not necessarily nonsingular, and look at the local variety through ξ
defined by f = 0 (remember, f(ξ) = 0). The radical ideal A = I(W ) (in A = C[Z1, . . . , Zn]/p) defining W
has a decomposition

A = p1 ∩ · · · ∩ pt,

and since A =
√
A, the pj’s are the minimal primes containing A (the isolated primes of A). Let g1, . . . , gt be

generators of A. The image of gj in OV,ξ has the form λjf (remember, W is locally principal by hypothesis).
Since

OV,ξ = lim
−→

G/∈I(ξ)

AG,

take G enough for g1, . . . , gt, and then the open VG so that gj = λ̃jF , where I(W ) in AG is just (F ), and
F/G = f in OV,ξ. Thus,

A = I(W ) =

s⋂

j=1

pj ,

where in the above intersection, we find only the primes surviving in OV,ξ, i.e., those with pj ⊆ m, where
m = I(ξ). By Krull’s principal ideal theorem (Zariski and Samuel [14], Theorem 29, Chapter IV, Section
14), these pj’s are minimal ideals, and thus, the components of W have codimension 1.
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If ξ is actually nonsingular, then these surviving pj ’s are minimal in the UFD OV,ξ. Hence, locally
enough, each pj is principal; say pj = (fj). Then,

(f) = A = (f1) ∩ · · · ∩ (fs) = (f1 · · · fs);

so that
f = uf1 · · · fs

where u is a unit. The irreducible branches of W through ξ are the irreducible factors of the local equation
f = 0 defining W locally.

Nomenclature: If V is a complex variety, then a Cartier divisor on V is a subvariety, W ⊆ V , so that for
all ξ ∈W , there is Uξ open in V , with ξ ∈ Uξ and there is some function fξ locally defined on Uξ so that

W ∩ Uξ = {η | fξ(η) = 0}.

Then, the translation of Theorem 1.24 is:

Corollary 1.25 If V is a complex variety, then every Cartier divisor is a pure codimension one subvariety
of V . If ξ is nonsingular, then a pure codimension one subvariety of V through ξ is a Cartier divisor near ξ.

Corollary 1.26 (Hypersurface Intersection Theorem) Say V is a complex variety and f is a global function
(f 6≡ 0) on V . Let W = {v ∈ V | f(v) = 0} (e.g., V ⊆ CN is affine, H = a hyperplane in CN given by
H = {x ∈ CN | F (x) = 0} and W = V ∩ H, with V 6⊆ H and V ∩ H 6= ∅.) If f 6≡ 0 and f is not a unit,
then each irreducible component of W has codimension 1.

Corollary 1.27 (Intersection Dimension Theorem) Say V,W,Z are irreducible complex varieties and
V,W ⊆ Z. Pick ξ ∈ V ∩W and assume ξ is a nonsingular point of Z. Then, V ∩W = (

⋃
α Tα) ∪Q, where

(1) The Tα are irreducible components of V ∩W through ξ.

(2) Q = the rest of V ∩W .

(3) dim Tα ≥ dim V + dimW − dim Z, for all α.

Proof . (1) and (2) simply set up the notation and we just have to prove (3). We may assume that V,W,Z are
affine (by density of a Z-open in an irreducible), say Z ⊆ CN . As ξ is nonsingular, if dim Z = n, there exist
functions g1, . . . , gn on Z with dg1, . . . , dgn a basis for TDZ,ξ (by the Local Complete Intersection Theorem).
Observe that

V ∩W = (V
∏

W ) ∩∆Z ,

where ∆Z ⊆ Z
∏
Z is the diagonal. Consider the functions f1, . . . , fn on Z

∏
Z given (near ξ) by

fi(z1, . . . , zn;w1, . . . , wn) = gi(z1, . . . , zn)− gi(w1, . . . , wn), i = 1, . . . , n.

Clearly, fi ↾ ∆Z ≡ 0 (near (ξ, ξ)) and df1, . . . , dfn are l.i. at (ξ, ξ) on the tangent space. By the LCIT, we
must have

C(f1, . . . , fn) = ∆Z ∪R,
where R = the union of the irreducible components of V (f1, . . . , fn) through (ξ, ξ). Therefore, near ξ, we
have

V ∩W = (V ∩W ) ∩ V (f1) ∩ · · · ∩ V (fn).

By Corollary 1.26, dim Tα ≥ dim(V
∏
W )− n. However, dim(V

∏
W ) = dim V + dimW , so

dim Tα ≥ dim V + dimW − dim Z.
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� If V and W are contained in some affine variety Z not Cq, the intersection dimension theorem may be
false at a singular point. Indeed, consider the following example.

Example 1.2 Let Z be the quadric cone in C4 given by

x1x2 − x3x4 = 0.

The cone Z has dimension 3 (it is a hypersurface). Let V be the plane

x1 = x3 = 0,

and W the plane
x2 = x4 = 0.

Observe that V,W ⊆ Z. Since V and W have dimension 2 and V ∩W 6= ∅, the intersection dimension
theorem would yield dim(V ∩ W ) ≥ 2 + 2 − 3 = 1. However V ∩ W = {(0, 0, 0, 0)}, the origin, whose
dimension is zero!

What is the problem? The answer is that near 0, ∆ ∩ Z is not the locus of three equations, but rather
of four equations.

Corollary 1.28 (Intersection Dimension Theorem in CN and PN )

(1) Say V,W are complex affine varieties V,W ⊆ CN . Then, every irreducible component of V ∩W has
dimension at least dim V + dimW −N .

(2) Say V,W are complex varieties V,W ⊆ PN , with dim V + dimW ≥ N . Then, V ∩W 6= ∅ and every
irreducible component of V ∩W has dimension at least dim V + dimW −N .

Proof . (1) As each point of CN is nonsingular, we can apply Corollary 1.28.

(2) Write C(V ), C(W ) for the cones over V and W in CN+1, i.e., the affine varieties given by the same
homogeneous equations regarded in affine space CN+1. We have dim C(V ) = dim V + 1 and
dim C(W ) = dimW + 1. As 0 ∈ C(V ) ∩ C(W ), by part (1), every irreducible component of C(V ) ∩ C(W )
through 0 has dimension at least dim V + 1 + dimW + 1 − (N + 1), i.e., (dim V + dimW −N) + 1. But,
each such irreducible component is the cone over the corresponding irreducible component of V ∩W and,
as dim V +dimW ≥ N , we deduce that these irreducible affine cones have dimension at least 1, so that the
corresponding irreducible components in PN are nonempty. The rest is clear.

1.4 Elementary Global Theory of Varieties

We begin by observing that the category of complex varieties has fibred products. The set-up is the following:
V and W are two given varieties and we have two morphisms p : V → Z and q : W → Z, whereW is another
complex variety. We seek a variety, P , together with two morphisms, pr1 : P → V and pr2 : P →W , so that
the diagram below commutes

P
pr2 //

pr1

��

W

q

��
V

p
// Z

and so that for every test variety, T , and morphisms, ϕ : T → V and ψ : T →W , so that the diagram

T
ψ //

ϕ

��

W

q

��
V p

// Z
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commutes, there is a unique morphism, (ϕ, ψ) : T → P , with

ϕ = pr1 ◦ (ϕ, ψ) and ψ = pr2 ◦ (ϕ, ψ).

Such a variety, P , always exists and is unique up to (unique) isomorphism (use glueing, DX). This variety
is called the fibred product of V and W over Z and is denoted V

∏
Z

W .

Say we have a morphism p : V → Z, and let z ∈ Z be any point in Z. Then {z} ⊆ Z is Z-closed, i.e.,
the inclusion map, q : {z} → Z is a morphism. Consequently, we can make the fibred product V

∏
Z

{z}, a
variety. Set theoretically, it is the fibre p−1(z).

Theorem 1.29 (Fibre Dimension Theorem) If ϕ : V → Z is a surjective morphism of complex, irreducible
varieties, then

(1) For every z ∈ Z,
dim ϕ−1(z) ≥ dim V − dim Z.

(2) There is a Z-open, U ⊆ Z, so that, for every u ∈ U ,

dim ϕ−1(u) = dim V − dim Z.

Proof . You check (DX), we may assume Z is affine, say Z ⊆ CN .

(1) Pick ξ ∈ Z, ξ 6= z. There is a hyperplane H ⊆ CN such that z ∈ H and ξ /∈ H . Thus, Z is not
contained in H . [In fact, if L = 0 is a linear form defining H , Ld (d ≥ 1) is a form of degree d defining a
hypersurface of degree d, call it H ′; Z is not contained in H ′, but z ∈ H ′.] By the hypersurface intersection
theorem (Corollary 1.26), the dimension of any irreducible component of Z∩H is dim(Z)−1. Pick, ξ1, . . . ξs
in each of the components of Z ∩H . Then, there is a hyperplane H̃ so that ξj /∈ H̃ for all j, 1 ≤ j ≤ s, but
z ∈ H̃. Then, by Corollary 1.26 again, the dimension of any component of Z ∩H ∩ H̃ is dim(Z)− 2. Using
this process, we get some hyperplanes H = H1, H2, . . . , Hm such that

z ∈
m⋂

j=1

Hj ,

and if we write
Zj = Zj−1 ∩Hj ,

with Z1 = Z ∩H1, we get a chain

Z ⊃ Z1 ⊃ Z2 ⊃ · · · ⊃ Zm with m = dim Z.

Here, z ∈ Zm, and
dim(Zj) = dim(Z)− j.

Thus, the linear forms L1, . . . , Lm associated with the Hj ’s define Zm in Z and

dim(Zm) = 0.

Consequently, Zm is a finite set of points:

Zm = {z = z1, z2, . . . , zt}.

Let
U0 = Z − {z2, . . . , zt},
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it is a Z-open dense subset of Z. We can replace Z by U0, and thus, we may assume that Zm = {z}. We
have the morphism ϕ : V → Z, and so, each ϕ∗(Lj) is a global function on V (where ϕ∗ : ϕ∗OZ → OV ). But
then, ϕ−1(z) is the locus in V cut out by ϕ∗(L1), . . . , ϕ

∗(Lm); so, by the intersection dimension theorem,
we get

dim ϕ−1(z) ≥ dim(V )−m = dim(V )− dim Z.

(2) We need to prove that there is a Z-open, U ⊆ Z, so that dimϕ−1(u) = dim V − dimZ, for all u ∈ U .
As this statement is local on the base, we may assume that Z is affine. Assume at first that V is affine as well.
By hypothesis, ϕ : V → Z is onto (ϕ(V ) Z-dense in Z is enough), so the corresponding map A[Z] −→ A[V ]
is an injection (DX). If we let m = dim Z and n = dim V , as tr.dCA[Z] = m and tr.dCA[V ] = n, we have

tr.dA[Z]A[V ] = n−m.

Now, we have V →֒ CN , with A[V ] = C[v1, . . . , vN ] and Z →֒ CM , with A[Z] = C[z1, . . . , zM ], for some
M,N . We can choose and reorder the vj ’s so that v1, . . . , vn−m form a transcendence basis of A[V ] over
A[Z]. Then, each vj (j = n−m+ 1, . . . , N) is algebraic over A[Z][v1, . . . , vn−m], and there are polynomials
Gj(T1, . . . , Tn−m, T ) (coefficients in A[Z]) so that

Gj(v1, . . . , vn−m, vj) = 0.

Pick gj(T1, . . . , Tn−m) as the coefficient of highest degree of Gj in T . The set

{z ∈ Z | gj(z) = 0} = Zj

is a Z-closed subset of Z. Let

U = Z −
N⋃

j=n−m+1

Zj.

The Z-open U is nonempty, since Z is irreducible. On U , the polynomial Gj is not identically zero as a
polynomial in T1, . . . , Tn−m, T , yet

Gj(v1, . . . , vn−m, vj) = 0.

Thus, vj is algebraically dependent on v1, . . . , vn−m over A[U ]. Letting ṽj denote the restriction of vj to
ϕ−1(z) (i.e., the image of vj in A[V ]⊗A[Z] C), where z ∈ U , we see that ṽj is also algebraically dependent
on ṽ1, . . ., ṽn−m. Now,

A[ϕ−1(z)] = C[ṽ1, . . . , ṽn−m] = A[V ]⊗A[Z] C,

which implies that
dim(ϕ−1(z)) = tr.dC C[ṽ1, . . . , ṽn−m] ≤ n−m.

However, by (1),
dim(ϕ−1(z)) ≥ n−m,

and so, dim(ϕ−1(z)) = n−m on U .

If V is not affine, cover V by affine opens, Vα; each Vα is Z-dense in V (since V is irred.) Then, for every

z ∈ Z, we have ϕ−1(z) =
⋃
α(Vα∩ϕ−1(z)) =

⋃
α ϕ

−1
α (z). Here, ϕα : Vα →֒ V

ϕ−→ Z. Now, ϕα(Vα) is Z-dense
in Z, so the above implies that there exist some opens Uα in Z so that dim ϕ−1

α (z) = n−m if z ∈ Uα. We
can take U =

⋂
α Uα (a finite intersection since Z is a variety, and thus, is quasi-compact).

Corollary 1.30 Assume that we are in the same situation as in the fibre dimension theorem. Let

Zl = {w ∈ Z | dim(ϕ−1(w)) ≥ l}.

Then, Zl is Z-closed in Z, i.e., the function

w 7→ dim(ϕ−1(w))
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is upper semi-continuous on Z. Hence, Z possesses a stratification

Z = U0 ∪ U1 ∪ · · · ∪ Un,

where Uj = Zj − Zj+1 = {z ∈ Z | dim ϕ−1(z) = l} is locally closed and dim(ϕ−1(w)) = j for all w ∈ Uj.

Proof . The proof is by induction on dim(Z). The case where dim(Z) = 0 is easy. Given Z, Theorem 1.29
part (2) implies that there is some open set U ⊆ Z and some Zl (l ≥ 1 and l minimum) so that

Zl ⊆ Z̃ = Z − U.

Also, Z̃ is closed and we have some irredundant decomposition

Z̃ =

t⋃

j=1

Zj,

where Zj is irreducible and strictly contained in Z. Then, dim(Zj) < dim(Z), and we can apply the induction
hypothesis to the maps ϕj : ϕ

−1(Zj)→ Zj , the details are left as an exercise (DX).

Observe that given a morphism ϕ : V → Z, we can write

V =
⋃

z∈Z

ϕ−1(z).

Each ϕ−1(z) is a complex algebraic variety and these are indexed by an algebraic variety. Therefore, V is
an algebraic family of varieties.

� Note that the dimension of the fibres may jump, as shown by the following example (which is nothing
but the “blowing-up” at a point in C2).

Example 1.3 Let Z = C2, and consider C2
∏

P1. We use z1, z2 as cooordinates on Z, and ξ1, ξ2 as
homogeneous coordinates on P1. Write B0(C2) for the subvariety of C2

∏
P1 given by the equation

z1ξ2 = z2ξ1.

This equation is homogeneous in ξ1, ξ2, and it defines a closed subvariety of C2
∏

P1. We get a morphism
ϕ : B0(C2)→ Z via

ϕ : B0(C
2) →֒ C2

∏
P1 pr1−→ Z = C2.

If z = (z1, z2) 6= (0, 0), then the fibre over z is {(ξ1 : ξ2) | z1ξ2 = z2ξ1}.

1. If z1 6= 0, then ξ2 = (z2/z1)ξ1.

2. If z2 6= 0, then ξ1 = (z1/z2)ξ2.

In both cases, we get a single point (z1, z2; (1 : z2/z1)) in case (1) and (z1, z2; (z1/z2 : 1)) in case (2)) and
the dimension of the fibre ϕ−1(z) is zero for z ∈ C− {(0, 0)}. In fact, observe that

B0(C
2)− pr−1

1 ((0, 0))
pr1

−̃→ C2 − {(0, 0)}.

Therefore, pr1 is a birational morphism between B0(C2) and C2. Observe that pr2 : B0(C2) → P1 is also
surjective and the fibre over every point of P1 is a line. It turns out that B0(C2) is a line bundle over P1.

When z = (0, 0), the fibre is the whole P1. Thus, the dimension of the fibre at the origin jumps from 0
to 1.
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In algebraic geometry, we have the analog of the notions of being Hausdorff or compact, but here working
for the Zariski topology.

Definition 1.6 A morphism ϕ : V → W is separated iff ∆WV = the diagonal in V
∏
W

V is Z-closed in

V
∏
W

V . A variety, V , is separated when the morphism V −→ ∗ is separated, where ∗ is any one-point

variety.

Examples of separated varieties.

(1) Any affine variety and any projective variety is separated.

(2) Any closed or open subvariety of a separated variety is separated (DX).

(3) We say that V is quasi-affine (resp. quasi-projective) iff it is open in an affine (resp. open in a
projective) variety. These are separated.

(4) The product of separated varieties is separated.

(5) The variety we get from two copies of P1 by glueing the opens C1 − {0} by the identity map is not
separated.

Definition 1.7 A morphism, ϕ : V →W , is proper iff

(a) It is separated and

(b) For every variety, T , the second projection map, pr2 : V
∏
W

T → T , is a Z-closed morphism.

We say that a variety, V , is proper iff it is separated and if property (b) holds (W = {∗}).

As we said, the notion of properness of a variety is the algebraic substitute for compactness. An older
terminology is the term complete variety. As an illustration of the similarity of properness and compactness,
we have the following property (well known for continuous maps on compact spaces):

Proposition 1.31 If V is proper and W is separated, then any morphism ϕ : V →W is Z-closed.

Proof . Consider the graph morphism

Γϕ : V → V
∏

W,

given by
Γϕ(v) = (v, ϕ(v)).

Note that the image of Γϕ is closed in V
∏
W because W is separated. Indeed, consider the morphism

(ϕ, id) : V
∏

W → W
∏

W

given by
(ϕ, id)(v, w) = (ϕ(v), w).

It is obvious that Im Γϕ = (ϕ, id)−1(∆W ), where ∆W is the diagonal in W
∏
W . But, W is separated, so

∆W is Z-closed in W
∏
W and consequently, (ϕ, id)−1(∆W ) is Z-closed in V

∏
W . Since V is proper, by

setting T = W in condition (b), we see that pr2 : V
∏
W → W is Z-closed and so, pr2(Im Γϕ) is Z-closed

in W . However, pr2(Im Γϕ) = Im ϕ, therefore, Im ϕ is closed. If C is closed in V , then the composition
C →֒ V −→ ∗ is proper (DX). Replace V by C and apply the above argument to get Im C is closed.
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Theorem 1.32 (Properness of projective varieties) A projective variety, V , is a proper variety. This means
that for every variety W ,

pr2 : V
∏

W −→W

is a Z-closed map.

Proof . (1) We reduce the proof to the case where W is affine. Assume that the theorem holds when W is
affine. Cover W with affine opens Wα, so that W =

⋃
αWα. Check that

V
∏

W ∼=
⋃

α

(
V
∏

Wα

)
.

Let C ⊆ V ∏
W be a closed subvariety. If Cα denotes C ∩ (V

∏
Wα), then,

pr2(C) ∩Wα = pr2(Cα).

But, pr2(Cα) is closed in Wα, which implies that pr2(C) is closed in W .

(2) We reduce the proof to the case where V = Pn. Assume that the theorem holds for Pn. We have a
closed immersion, V →֒ Pn, so

V
∏

W →֒ Pn
∏

W

is also a closed immersion (= embedding) (DX). Hence, we have the commutative diagram

C
� � // V

∏
W

pr2 ##H
HH

HH
HH

� � // Pn
∏
n
W

pr2{{vv
vv
vv
v

W

,

and this shows that we may assume that V = Pn.

(3) Lastly, we reduce the proof to the case: W = Cm. Assume that the theorem holds for W = Cm. By
(1), we may assume that W is closed in Cm, then we have the following commutative diagram:

C � � // Pn
∏
W

(pr2)W
��

� � // Pn
∏

Cm

(pr2)Cm
��

W
� � // Cm

where the arrows in the top line are closed immersions (for the second arrow, this is because W →֒ Cm, as
in (2)). So,

(pr2)W (C) = (pr2)Cm(C) ∩W,
and, since by hypothesis, (pr2)Cm(C) is closed, and W is closed, we find (pr2)W (C) is also closed.

We are now reduced to the essential case: Which is to prove that pr2 : Pn
∏

Cm → Cm is a closed map.

Let C be a closed subvariety of Pn
∏

Cm. Then, C is the common solution set of a system of equations of

form

fj(X0, . . . , Xn;Y1, . . . , Ym) = 0, for j = 1, . . . , p, (†)
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where fj is homogeneous in the Xj ’s and we restrict to solutions for which Xj 6= 0 for some j, with 0 ≤ j ≤ n.
Pick y ∈ Cm, and write y = (y1, . . . , ym); also write (†)(y) for the system (†) in which we have set Yj = yj
for j = 1, . . . ,m.

Plan of the proof : We will prove that (pr2(C))
c (the complement of pr2(C)) is open. Observe that

y ∈ pr2(C) iff (∃x)((x, y) ∈ C)
iff (∃x)(xj 6= 0 for some j, and (†)(y) holds).

Thus,
y ∈ (pr2(C))

c iff (∀x)(if (†)(y) holds, then xj = 0, for 0 ≤ j ≤ n).
Let A(y) be the ideal generated by the polynomials, fj(X0, . . . , Xn, y1, . . . , ym), occurring in (†)(y). Hence,

y ∈ (pr2(C))
c iff (∃d ≥ 0)((X0, . . . , Xn)

d ⊆ A(y)).

Let
Nd = {y ∈ Cm | (X0, . . . , Xn)

d ⊆ A(y)}.
Then,

(pr2(C))
c =

∞⋃

d=1

Nd.

Now,
Nd ⊆ Nd+1,

and so,

(pr2(C))
c =

∞⋃

d>>0

Nd,

where d >> 0 means that d is sufficiently large.

Claim. If d > max{d1, . . . , dp}, where dj is the homogeneous degree of fj(X0, . . . , Xn, Y1, . . . , Ym) in the
Xi’s, then Nd is open in Cm. This will finish the proof.

Write Sd(y) for the vector space (over C) of polynomials in k[y1, . . . , ym][X0, . . . , Xn] of exact degree d.
We have a map of vector spaces

ψd(y) : Sd−d1(y)⊕ · · · ⊕ Sd−dp(y) −→ Sd(y)

given by

ψd(y)(g1, . . . , gp) =

p∑

j=1

fj(X0, . . . , Xn, y1, . . . , ym)gj .

If we assume that ψd(y) is surjective, then all monomials of degree d are in the range of ψd(y). Thus, A(y)
will contain all the generators of (X0, . . . , Xn)

d, i.e.,

(X0, . . . , Xn)
d ⊆ A(y),

and this means
y ∈ Nd.

Conversely, if y ∈ Nd, then (X0, . . . , Xn)
d ⊆ A(y), and thus, A(y) contains every monomial of degree d. But

then, each monomial of degree d is in the range of ψd(y), and since these monomials form a basis of Sd(y),
the map ψd(y) is surjective.

Therefore, y ∈ Nd iff ψd(y) is surjective.
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Pick bases for all of the Sd−dj ’s and for Sd. Then, ψd(Y ) is given by a matrix whose entries are polynomials
in the Yj ’s. We know that ψd(y) is surjective iff rkψd(y) = nd, where nd = dim(Sd)(y). Therefore, ψd(y) will
be surjective iff some nd × nd minor of our matrix is nonsingular. This holds if and only if the determinant
of this minor is nonzero. However, these determinants for ψd(y) are polynomials q(Y1, . . . , Ym). Therefore,
ψd(y) will be surjective iff y belongs to the Z-open such that some q(y) 6= 0. This proves that Nd is open,
and finishes the proof.

Remark: Homogeneity in the Xi’s allowed us to control degrees.

Corollary 1.33 Let V be a proper variety (e.g., by Theorem 1.32, any projective variety). If W is any
quasi-affine variety (i.e., an open in an affine) or any affine variety, then for any morphism ϕ : V → W ,
the image, Im ϕ, of ϕ is a finite set of points. If V is Z-connected (e.g, norm connected or Z-connected),
then ϕ is constant. In particular, every holomorphic function on V has finitely many values and if V is
Z-connected, ϕ is constant.

Proof . Since Cn is separated, W is separated. We have

V −→W →֒ Cn,

and thus, we may assume that W = Cn. Pick j, with 1 ≤ j ≤ n, and look at

V −→ Cn
prj−→ C1.

If we knew the result for C1, by a simple combinatorial argument, we would have the result for Cn. Thus,
we are reduced to the case W = C1. In this case, either Im ϕ = C1, or a finite set of points, since C1 is
irreducible. Furthermore, in the latter case, if V is Z-connected, then Im ϕ consists of a single point. We
need to prove that ϕ : V → C1 is never surjective. Assume it is. Consider the diagram

V
∏

C1
ϕ
∏

id //

pr2
%%LL

LL
LL

LL
LL

C1
∏

C1

π2

��
C1

and let
H = {(x, y) ∈ C1 × C1 | xy = 1}.

The map ϕ
∏

id is onto. Therefore, (ϕ
∏

id)−1(H) is closed and

ϕ
∏

id : (ϕ
∏

id)−1(H)→ H

is surjective. Let C = (ϕ
∏

id)−1(H). By the definition of proper, pr2(C) is closed. However, by commuta-
tivity of the diagram,

pr2(C) = π2(H),

and yet, π2(H) = C1 − {0} is Z-open, a contradiction on the properness of C1.

Corollary 1.34 (Kronecker’s main theorem of elimination) Consider p polynomials
f1(X0, . . . , Xn; Y1, . . . , Ym), . . ., fp(X0, . . . , Xn;Y1, . . . , Ym), with coefficients in C and homogeneous in the
Xi’s (of varying degrees). Consider further the simultaneous system

fj(X0, . . . , Xn;Y1, . . . , Ym) = 0, for j = 1, . . . , p. (†)
Then, there exist polynomials g1(Y1, . . . , Ym), . . ., gt(Y1, . . . , Ym) with coefficients in C involving only the Yj ’s
so that (†) has a solution in which not all Xi’s are 0 iff the system

gj(Y1, . . . , Yn) = 0, for j = 1, . . . , t, (††)
has a solution. (The Xi’s have been eliminated).
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Proof . The system (†) defines a closed subvariety C of Pn
∏

Cm.

Claim. The set pr2(C), which, by Theorem 1.32, is closed in Cm, gives us the system (††) by taking the
gj ’s as a set of polynomials defining pr2(C). To see this, note that C = ∅ iff pr2(C) = ∅; note further that
(x, y) ∈ C iff (†) has a solution with not all Xi’s all zero. Consequently, (†) has a solution with not all Xi

zero iff (††) has a solution in the Yj ’s.

Theorem 1.35 (Irreducibility criterion) Say ϕ : V → W a surjective morphism with W separated and
assume that

(1) V is proper

(2) W is irreducible.

(3) ϕ−1(w) is irreducible for every w ∈ W .

(4) dim(ϕ−1(w)) = d, a constant for all w ∈W .

Then, V is irreducible.

Proof . Let V =
⋃q
j=1 Vj be an irredundant decomposition of V into irreducible components. Consider Vj .

It is closed in V , and thus, ϕ(Vj) is closed in W , because V is proper and W is separated. Since ϕ : V →W
is surjective,

W =

q⋃

j=1

ϕ(Vj).

ButW is irreducible; so, it follows (after renumbering, if needed) that ϕ(Vj) =W for j = 1, . . . , s, and ϕ(Vj)
is strictly contained in W for j = s+ 1, . . . , q. Thus,

q⋃

j=s+1

ϕ(Vj)

is a Z-closed subset of W strictly contained in W , and

W̃ =W −
q⋃

j=s+1

ϕ(Vj)

is a Z-open dense subset of W , as W is irreducible. Let Ṽ = ϕ−1(W̃ ), write Ṽj = Ṽ ∩ Vj , and let ϕj be the

restriction of ϕ to Ṽj . Note,

ϕj(Ṽj) = ϕ(Ṽj) = W̃ (1 ≤ j ≤ s),

because, given any w ∈ W̃ , there exists v ∈ Vj with ϕ(v) = w. Since ϕ(v) ∈ W̃ , the element v is in Ṽ .

Therefore, v ∈ Ṽ ∩ Vj ; hence, v ∈ Ṽj , as required. Write

µj = min{dim(ϕ−1
j (w)) | w ∈ W̃}.

By the fibre dimension theorem (Theorem 1.29), there is some nonempty open subset Uj ⊆ W̃ so that if

w ∈ Uj , then dim(ϕ−1
j (w)) = µj . Thus, as U =

⋂s
j=1 Uj is a dense Z-open subset of W̃ , we have a nontrivial

Z-dense open, U , so that if w ∈ U , then dim(ϕ−1
j (w)) = µj , for j = 1, . . . , s. Pick w0 ∈ U . Then

ϕ−1(w0) =
s⋃

j=1

ϕ−1
j (w0).
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However, ϕ−1(w0) is irreducible, and thus, there is some j such that

ϕ−1(w0) = ϕ−1
j (w0).

We may assume that j = 1. Since the dimension of the fibres is constant, we get

µ1 = d.

By the fibre dimension theorem, dim ϕ−1
1 (w) ≥ dim ϕ−1

1 (w0) = d, for all w ∈W . Now,

ϕ−1(w) =

s⋃

j=1

ϕ−1
j (w), (∗)

and since dim ϕ−1
1 (w) ≤ dim ϕ−1(w) = d, we must have dim ϕ−1

1 (w) = d for all w ∈ W and (∗) together
with the irreducibility of ϕ−1(w) imply that ϕ−1(w) = ϕ−1

1 (w), for all w ∈W . It follows that

V =
⋃

w∈W

ϕ−1(w) =
⋃

w∈W

ϕ−1
1 (w) = V1

and since V1 is irreducible, so is V .

� The conditions of the irreducibilty criterion though sufficient are not necessary. For example, take
π : B0(Cn) → Cn. Outside 0 and π−1(0) we have an isomorphism and so, B0(Cn) is irreducible (it

contains a dense open which is irreducible), yet the fibres don’t have constant dimension.

Generally, given a morphism, ϕ : V →W , of algebraic varieties, the image, ϕ(Z), of a closed subset of U
is not closed. Nevertheless, it is natural to ask what kind of set ϕ(Z) is. The answer is given by a theorem
of Chevalley and involves sets called constructible.

Definition 1.8 Given a topological space (for example, an affine variety) V , we say that a set Z is locally
closed in V if

Z = U ∩W
where U is open and W is closed.

Observe that open and closed sets in a variety are locally closed. Let Zi = Ui ∩Wi, i = 1, 2. Then,

Z1 ∩ Z2 = U1 ∩ U2 ∩W1 ∩W2,

so that Z1 ∩ Z2 is locally closed. Thus, any finite intersection of locally closed sets is locally closed.

If Z = U ∩W , then Zc = U c ∪W c, where U c is closed and W c is open. It follows that the Boolean
algebra generated by the open and closed sets is just the set of finite unions of locally closed sets, denoted
Constr(V ). Finite unions of locally closed sets are called constructible sets . We have the following important
theorem.

Theorem 1.36 (Chevalley) If ϕ : V → W is a morphism of complex varieties and Z is a constructible set
in V , then ϕ(Z) is constructible in W . If ϕ is dominant (i.e, ϕ(V ) = W ), then there is a nonempty open,
U ⊆W , so that U ⊆ ϕ(V ) ⊆W .

Proof . Consider the statements

(1) The image of a constructible set in V is a constructible set in W .
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(2) If ϕ(V ) is dense in W , there is some nonempty Z-open set U in W so that

U ⊆ ϕ(V ) ⊆W.

We first prove (2). I claim that (2) follows from the case where both V and W are irreducible. Let V ′ be

any irreducible component of V . Then, ϕ(V ′) is irreducible in W , and thus, W̃ = ϕ(V ′) is again irreducible
and closed in W . Let

W =

t⋃

j=1

Wj ,

where the Wj are the irredundant components of W . Then

W̃ =

t⋃

j=1

W̃ ∩Wj ,

and since W̃ is irreducible, there is some j, 1 ≤ j ≤ t, such that W̃ = W̃ ∩Wj , i.e.,

W̃ ⊆Wj .

But, if

V =
s⋃

i=1

Vi

is an irredundant decomposition of V , we showed that for every i, 1 ≤ i ≤ s, there is some j = j(i) so that

ϕ(Vi) ⊆Wj(i).

However,

ϕ(V ) = ϕ

(
s⋃

i=1

Vi

)
=

s⋃

i=1

ϕ(Vi).

Therefore,

W = ϕ(V ) =

s⋃

i=1

ϕ(Vi) =

s⋃

i=1

ϕ(Vi) ⊆
s⋃

i=1

Wj(i) =

s⋃

i=1

Wj(i) ⊆
t⋃

j=1

Wj =W,

and the inclusions are all equalities. Since the decompositions are irredundant, the Wj(i) run over all the
Wj ’s and, by denseness, ϕ(Vi) is dense in Wj(i).

Assume that the theorem (2) holds when V is irreducible (so is W , since W = ϕ(V )). Then, for every i,
there is some Z-open subset Ui ⊆Wj(i) so that

Ui ⊆ ϕ(Vi) ⊆Wj(i).

If Ci =Wj(i) − Ui, then Ci is closed in Wj(i), which implies that Ci is closed in W . The image ϕ(V ) misses
at most

C =

s⋃

i=1

Ci,

which is closed. Therefore, U = Cc is a nonempty Z-open contained in ϕ(V ). Therefore, we may assume
that V and W are irreducible.

I now claim that we may also assume that V and W are affine. Since W is affine, we have W =
⋃
αWα

for some affine Z-open sets Wα. Let Vα = ϕ−1(Vα). Note that Wα is Z-dense in W and Vα is Z-dense in V .
Thus, if V 0

α is open and Z-dense in Vα, then V
0
α is also Z-dense in V . Let V 0

α be an affine open in Vα, then
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(i) V 0
α ,Wα are affine.

(ii) V 0
α ,Wα are irreducible.

(iii) ϕ(V 0
α ) =Wα.

Then, there is some open subset Uα of Wα so that

Uα ⊆ ϕ(V 0
α ) ⊆ ϕ(Vα) ⊆ ϕ(V ) ⊆W,

and Uα is open in W (as an open in an open).

We are finally reduced to the basic case: V and W are irreducible, affine and ϕ is dominant.

As ϕ(V ) is Z-dense in W , we know that A[W ] →֒ A[V ] is an inclusion. Letting r = tr.dA[W ]A[V ], we pick
some transcendence base ξ1, . . . , ξr (ξj ∈ A[V ]) over A[W ], so that A[V ] is algebraic over A[W ][ξ1, . . . , ξr].
Since

A[W ][ξ1, . . . , ξr] ∼= A[W ]⊗C C[ξ1, . . . , ξr],

the map

A[W ] →֒ A[W ][ξ1, . . . , ξr] →֒ A[V ] (∗)

is just the map
ϕ̃ : A[W ] →֒ A[W ]⊗C A[ξ1, . . . , ξr] →֒ A[V ].

Reading the above geometrically, we get the map

ϕ : V
ϕ1−→W

∏
Cr

pr1−→W.

Since each η ∈ A[V ] is algebraic over A[W
∏

Cr], we have equations

a0(ξ1, . . . , ξr)η
s + a1(ξ1, . . . , ξr)η

s−1 + · · ·+ as(ξ1, . . . , ξr) = 0,

where the coefficients aj(ξ1, . . . , ξr) are functions over W , and thus, depend on w ∈ W , but we omit w for
simplicity of notation. If we multiply by a0(ξ1, . . . , ξr)

s−1 and let ζ = a0(ξ1, . . . , ξr)η, we get

ζs + b1(ξ1, . . . , ξr)ζ
s−1 + · · ·+ bs(ξ1, . . . , ξr) = 0.

Therefore, for every η ∈ A[V ], there is some α ∈ A[W ∏
Cr] so that

ζ = αη

is integral over A[W
∏

Cr]. Since A[V ] is finitely generated, there exist η1, . . . , ηt so that

A[V ] = A[W
∏

Cr][η1, . . . , ηt],

and each ηj comes with its corresponding αj and αjηj is integral over A[W
∏

Cr]. Let

b =

t∏

j=1

αj(ξ1, . . . , ξs) ∈ A[W
∏

Cr].

Let U1 be the Z-open of W
∏

Cr where b is invertible; it is that affine variety in W
∏

Cr whose coordinate
ring is A[W

∏
Cr]b. We have U1 ⊆ W

∏
Cr, and on U1, b and all the αj ’s are invertible. Let us look

at b̂ = ϕ̂1(b) ∈ A[V ], where ϕ̂1 : A[W
∏

Cr] → A[V ] is the algebra homomorphism associated with the
morphism ϕ1 : V →W

∏
Cr. Then, we get

Vb̂
ϕ1−→ U1.
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Since each αj is invertible, on Vb̂, each ηj is integral over A[U1]. But Vb̂ is generated by the ηj ’s; so Vb̂ is
integral over U1. And therefore, the image of the morphism

Vb̂
ϕ1−→ U1 (†)

is closed (DX). Consequently, as Vb̂ −→ U1 has dense image, (†) is a surjection of varieties, and we find

U1 = ϕ1(Vb̂) ⊆ ϕ1(V ) ⊆W
∏

Cr.

Even though U1 is a nonempty open, we still need to show that there is some nonempty open U ⊆W such
that U ⊆ pr1(U1). For then, we will have U ⊆ ϕ(V ). Now, b ∈ A[W ∏

Cr] means that b can be expressed
by a formula of the form

b =
∑

(β)

b(β)(w)ξ
(β),

where (β) denotes the multi-index (β) = (β1, . . . , βr), x
(β) = ξβ1

1 · · · ξβr
r , and b(β) ∈ A[W ]. Let

U = {w ∈W | ∃(β), b(β)(w) 6= 0}.

The set U is a Z-open set inW . If w ∈ U , since b is a polynomial in the ξj ’s which is not identically null, there
is some (β) such that b(β)(w) 6= 0. Now, C is infinite, so there are some elements t1, . . . , tr ∈ C such that
b(w, t1, . . . , tr) 6= 0. However, (w, t1, . . . , tr) ∈ W

∏
Cr and b(w, t1, . . . , tr) 6= 0, so that (w, t1, . . . , tr) ∈ U1

and pr1(w, t1, . . . , tr) = w. Therefore, U ⊆ pr1(U1), which concludes the proof of (2).

(1) Say Z is constructible in V , then

Z = (U1 ∩ V1) ∪ · · · ∪ (Un ∩ Vn),

where each Ui ⊆ V is open and each Vi ⊆ V is closed. Since ϕ(Z) =
⋃n
j=1 ϕ(Ui ∩ Uj), we may assume that

Z is locally closed.

Say we know that ϕ(Z) is constructible if Z is a variety and further, U open (in a variety) implies ϕ(U)
is constructible. Take Z locally closed in V , then

Z = U1 ∩ V1 →֒ V1 →֒ V
ϕ−→ W,

and if we let ϕ1 be the composition V1 →֒ V
ϕ−→ W , then ϕ1 is a morphism. As Z is open in V1, by

assumption, ϕ1(Z) = ϕ(Z) is constructible in W .

Now, assume that ϕ(V ) is constructible if V is an affine variety. Take U , any open in V . Since V is
a variety, we can write V =

⋃
α Vα, where each Vα is affine open. Then, U =

⋃
α(U ∩ Vα) and ϕ(U) =⋃

α ϕ(U ∩ Vα), where each U ∩ Vα is open in an affine. Consequently, we may assume that U is open in an
affine. In this case,

U = Vf1 ∪ · · · ∪ Vfl ,
a union of affine varieties and

ϕ(U) =

l⋃

j=1

ϕ(Vfj ),

a union of constructible as each Vfj is an affine variety. Therefore, we are reduced to the case where Z is an
affine variety and we have to prove that ϕ(Z) is constructible.

I claim that we can assume that ϕ(V ) is Z-dense in W . For, Let W̃ = Im ϕ. If Im ϕ is constructible in

W̃ , then
Im ϕ = U1 ∩ W̃1 ∪ . . . ∪ Un ∩ W̃n,
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where Uj is open in W̃ , and W̃j is closed in W̃ , which implies that W̃j is closed in W . By definition of the
relative topology, there are some open sets U ′

j in W so that

W̃ ∩ U ′
j = Uj .

Then, we have

Im ϕ = (W̃ ∩ U ′
1) ∩ W̃1 ∪ · · · ∪ (W̃ ∩ U ′

n) ∩ W̃n

= W̃ ∩ (U ′
1 ∩ W̃1 ∪ · · · ∪ U ′

n ∩ W̃n)

= U ′
1 ∩ W̃1 ∪ · · · ∪ U ′

n ∩ W̃n,

a constructible set in W . As a consequence, we may assume that W = W̃ , i.e., that Im ϕ is dense in W .
Now, as ϕ(V ) is dense in W and V is irreducible, it follows that W is also irreducible and we can finish the
proof by induction on dim V .

If dim V = 0, then both V and ϕ(V ) consist of a single point and (1) holds trivially.

Assume the induction hypothesis holds if dim V = r − 1 and let dim V = r. By (2), there is some
nonempty open subset U of W such that U ⊆ ϕ(V ). Let T = ϕ−1(U). This is a Z-open subset of V and
moreover, ϕ(T ) = U . Let Z = V − T . The set Z is Z-closed in V , and thus

dim Z < dim V,

and by induction, Chevalley’s result holds for Z. But then,

ϕ(V ) = ϕ(Z) ∪ ϕ(T ) = ϕ(Z) ∪ U,

and since ϕ(Z) is constructible and U is open, ϕ(Z) ∪ U is also constructible.

Corollary 1.37 (of the proof) Say ϕ : V → W is a surjective quasi-finite morphism of complex varieties
(i.e., all the fibres are finite). Then, there exist a nonempty Z-open, U ⊆W , so that ϕ ↾ ϕ−1(U) : ϕ−1(U)→
W is an integral morphism.

In order to prove the topological comparison theorem, we need some material on projections.

Let p ∈ Pn, and let H be a hyperplane such that p /∈ H . Consider the collection of lines through p, and
take any q ∈ Pn such that q 6= p. Then, p and q define a unique line lpq not contained in H , since otherwise,
we would have p ∈ H . The line lpq intersects H in a single point, πp(q). This defines a map

πp : P
n − {p} −→ H,

called the projection onto H from p. We claim that this map is a morphism. For this, let

n∑

j=0

ajXj = 0

be an equation defining the hyperplane H ; let p = (p0 : · · · : pn) and q = (q0 : · · · : qn). The line lpq has the
parametric equation

(s : t) 7→ (sp0 + tq0 : · · · : spn + tqn),

where (s : t) ∈ P1. The line lpq intersects H in the point whose coordinates satisfy the equation

n∑

j=0

aj(spj + tqj) = 0,
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and we get

s

n∑

j=0

ajpj + t

n∑

j=0

ajqj = 0.

However,
∑n

j=0 ajpj 6= 0, since p /∈ H , and thus, we can solve for s in terms of t. We find that lpq ∩H is the
point with homogeneous coordinates

t

(
−
(∑n

j=0 ajqj∑n
j=0 ajpj

)
p0 + q0 : · · · : −

(∑n
j=0 ajqj∑n
j=0 ajpj

)
pn + qn

)
,

and this is, (
−
(∑n

j=0 ajqj∑n
j=0 ajpj

)
p0 + q0 : · · · : −

(∑n
j=0 ajqj∑n
j=0 ajpj

)
pn + qn

)
,

since t 6= 0, because p /∈ H . These coordinates are linear in the qj ’s, and thus, the projection map is a
morphism.

We may perform a linear change of coordinates so that the equation of the hyperplane H becomes

Xn = 0.

We get
πp(q0 : · · · : qn) = (l1(q0, . . . , qn) : · · · : ln(q0, . . . , qn) : 0),

where li(q0, . . . , qn) = −(pi−1/pn)qn + qi−1 is a linear form, for i = 1, . . . , n. Furthermore, these n linear
forms do not vanish simultaneously for any q = (q0 : · · · : qn), unless q = p, which implies that they are
linearly independent.

Conversely, let us take any n linearly independent linear forms l1(X0, . . . , Xn), . . ., ln(X0, . . . , Xn). These
linear forms define some hyperplanes H1, . . . , Hn in Pn whose intersection is a point p ∈ Pn. Then, we have
the map πp : (Pn − {p})→ Pn−1, defined by

πp(X0 : · · · : Xn) = (l1(X0, . . . , Xn) : · · · : ln(X0, . . . , Xn)).

Geometrically, πp is the projection from p onto the hyperplane Xn = 0. We have the following corollary of
Theorem 1.32:

Corollary 1.38 Let X ⊆ Pn be a projective variety of dimension r < n and let p ∈ Pn−X. Then, projection
from p, when restricted to X, is a morphism from X to Pn−1. Further, we have the following properties:

(a) If X ′ = πp(X), then πp ↾ X : X → X ′ is a morphism.

(b) X ′ is closed in Pn−1 and r-dimensional.

(c) The fibres of πp ↾ X are finite and there is an open U ⊆ πp(X) so that πp ↾ π
−1
p (U) : π−1

p (U) → U is
an integral morphism.

Proof . The map πp is a morphism outside p, and since p /∈ X , it is a morphism on X . Since X is closed in
Pn, by Theorem 1.32, X ′ is closed in Pn−1. For (c), pick q ∈ X ′. Note that π−1

p (q) corresponds to the line
lpq intersected with X . However, lpq 6⊆ X , since p /∈ X , and thus, lpq ∩X 6= lpq. Then, lpq ∩X is closed in
lpq, and since lpq has dimension 1, it follows that lpq ∩X is finite.

Let L be a linear subspace of Pn, which means that C(L), the cone over L, is a linear subspace of An+1.
Assume that dim(L) = δ, and let r = n−δ−1. Then, we can define a morphism πL : (Pn−L)→ Pr. Indeed,
if L is cut out by n− δ = r + 1 hyperplanes defined by linear forms l0, . . . lr, we let

πL(q0 : · · · : qn) = (l0(q0, . . . , qn) : · · · : lr(q0, . . . , qn)).
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Geometrically, πL can described as follows: Let H be a linear subspace of Pn of dimension n − δ − 1 = r,
disjoint from L. Consider any linear subspace F of dimension δ + 1 = n− r through L. Then,

dim(F ) + dim(H)− n = δ + 1 + r − n = 0.

By the projective version of the intersection dimension theorem, F ∩H is nonempty, and F ∩H consists of
a single point, πL(F ). Thus, we get a map as follows: For every q /∈ L, if Fq is the span of q and L, then
dim(Fq) = δ + 1, and we let

πL(q) = Fq ∩H.
If we take points p1, . . . , pδ+1 spanning L, then we can successively project from the pj ’s and we get

πL : P
n − L πp1−→ Pn−1 − 〈p2, . . . , pδ+1〉

πp2−→ · · · πpδ−→ Pn−δ − pδ+1

πpδ+1−→ Pr.

Therefore, πL is the composition of πpj ’s.

We can iterate Proposition 1.38 to prove Noether’s normalization lemma in the projective case.

Theorem 1.39 (Noether’s normalization lemma–projective case) Let X ⊆ Pn be an irreducible projective
variety, and assume that dim(X) = r < n. Then, there is a linear subspace, L ⊆ Pn, so that πL : X → Pr

is surjective and has finite fibres. Moreover, we can choose L and the embedding Pr −→ Pn by a linear
change of coordinates so that πL ↾ X : X → Pr is a finite morphism, i.e., for the projective coordinate rings
C[T0, . . . , Tr] →֒ C[Z0, . . . , Zn]/I(X), the right hand side is a finitely generated module over the former.

Proof . If L has dimension n− r+1, then we can choose L so that L∩X = ∅. From the previous discussion,
πL is the composition of πpj ’s. Project from p1. Corollary 1.38 says that πp1(X) = X1 ⊆ Pn−1, and that
the fibres are finite. Then, dim(X1) = dim(X) = r, by the fibre dimension theorem. If r 6= n− 1, repeat the
process. We get a sequence of projections

X
πp1−→ X1 −→ · · · −→ X ′ ⊆ Pr.

Since X is irreducible, X ′ is also irreducible, and dim(X ′) = r = dim(Pr). Hence, X ′ = Pr, since Pr is
irreducible. The fibres of π are finite.

In order to prove the second statement of the theorem, we only need to consider a single step, since being
a finite module is a transitive property, and we can finish by induction. Pick p ∈ Pn−X . Using a preliminary
linear transformation, we may assume that p = (0: · · · : 0 : 1) and that the linear forms lj defining p are
lj(Z0, . . . , Zn) = Zj , for j = 0, . . . , n− 1. Then,

πp(q) = (q0 : · · · : qn−1).

Our result is a question about the affine cones C(X) and C(X ′), whose rings are
A[C(X)] = C[Z0, . . . , Zn]/I(X) and A[C(X ′)] = C[Z0, . . . , Zn−1]/I(X

′), where the map of affine rings

A[C(X ′)] −→ A[C(X)]

is given by Zj 7→ Zj, j = 0, . . . , n − 1. There is some f ∈ I(X) such that f(p) 6= 0, since p /∈ X . Let
deg(f) = δ.

Claim. The monomial Zδn appears in f .

If not, all of the monomials appearing in f are of the form

ZǫnZ
α0
0 · · ·Z

αn−1

n−1
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where ǫ + α1 + · · · + αn−1 = δ and ǫ < δ. But then, some αi > 0, and these monomials all vanish at p, a
contradiction. Thus,

f(Z0, . . . , Zn) = Zδn + f1(Z0, . . . , Zn−1)Z
δ−1
n + · · ·+ fδ(Z0, . . . , Zn).

We know that the map

C[Z0, . . . , Zn−1] −→ C[Z0, . . . , Zn]/I(X)

factors through A[C(X ′)]. We only need to prove that C[Z0, . . . , Zn]/I(X) is a finite
C[Z0, . . ., Zn−1]-module. This will be the case if C[Z0, . . . , Zn]/(f) is a finite C[Z0, . . . , Zn−1]-module. But
C[Z0, . . . , Zn]/(f) is a free C[Z0, . . . , Zn−1]-module on the basis 1, Zn, . . . , Z

δ−1
n , and this proves the second

statement of the theorem.

Remark: We can use Proposition 1.38 to show that the degree of a curve is well-defined. Let C ⊆ Pn be
a complex projective curve. We wish to prove that there is an integer, d ≥ 1, so that for every hyperplane,
H , of Pn the number of intersection points #(C ∩ H) is at most d. The idea is to pick a “good” point, p,
outside C, and to project C from p onto Pn−1 in such a way that the hyperplanes through p that cut C in at
most d points are in one-to-one correspondence with the hyperplanes in Pn−1 that cut the projection, C′, of
C in at most d points. Repeating this procedure, we will ultimately be reduced to the case n = 3. A “good”
point is a point not on the secant variety of C, i.e., a point so that no line through it meets the curve in at
least two distinct points or is tangent to the curve. Since the secant variety has dimension 3, a good point
can always be found provided n ≥ 4. When n = 3, a good point may not exist. However, C only has a finite
number of singular points and the projection C′ of C in P2 only has finitely more singular points than C.
Then, in the case n = 2, as C is irreducible, C′ is also irreducible and it is given by a single homogeneous
equation of degree d which is the desired number.

In order to prove the projective comparison theorem, we will need a refined version of Noether’s normal-
ization.

Theorem 1.40 Let X ⊆ Pn be an irreducible projective complex variety of dimension r, let L be a linear
subspace of dimension n − r − 1 so that L ∩ X = ∅, and let pL be the projection with center L. For any
ξ ∈ X, there is some linear subspace M of L of dimension n− r − 2, so that the following properties hold:

(1) If π = pM ↾ X, then

(π)−1(π(ξ)) = {ξ}.

(2) pL factors as

pL = px ◦ π
according to the following commutative diagram, for any x /∈ pM (X):

Pr+1 − {x} px // Pr

X π
// pM (X)

OO

px

::tttttttttt

Proof . We have

pL(ξ) = L(ξ) ∩ Pr,

where L(ξ) is the join of L and ξ. Given y, we have

pL(y) = pL(ξ) iff y ∈ L(ξ).
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Thus, y ∈ p−1
L (pL(ξ)) iff y ∈ L(ξ). By the standard version of Noether’s normalization, L(ξ) ∩X is a finite

set containing ξ, i.e.,
L(ξ) ∩X = {ξ, η1, . . . , ηt}.

Let L0(ξ) be a hyperplane in L(ξ) so that ξ ∈ L0(ξ) but ηj /∈ L0(ξ) for j = 1, . . . , t. Write M = L0(ξ) ∩ L.
Then, M is a hyperplane in L, since ξ /∈ L (recall that L ∩X = ∅ and ξ ∈ X). Observe that

M(ξ) = L0(ξ).

For any y ∈ X , we have

π(y) = π(ξ) iff y ∈M(ξ) ∩X iff y ∈ L0(ξ) ∩X.

But L0(ξ) ∩X = {ξ}, by construction of L0(ξ). Thus, y ∈ (π)−1(π(ξ)) iff y = ξ, proving (1).

To prove (2) is now very easy. Take x so that x /∈ pM (X) and M(x) = L. The rest is clear.

Theorem 1.41 (Comparison theorem) Suppose X is a complex variety and Y is a Z-constructible subset of
X. If Y is Z-dense in X then Y is norm-dense in X.

Proof . (Mumford and Stolzenberg) Note if U = the Z-closure of U and U = the norm-closure of U (clearly,

U ⊆ U), then the assertion of the theorem is that U = U if U is constructible.

First, assume Y is Z-open in X . Write X =
⋃
αXα, where Xα is affine, open (and there are only finitely

many α, since X is a variety). Assume the theorem holds for affines. Then, Y = X ∩ Y =
⋃
α Yα, where

Yα = Y ∩Xα ⊆ Xα. We get

Y =
⋃

α

Yα =
⋃

α

Yα,

and as Yα is open in the affine Xα, by hypothesis, we have Yα = Yα. Thus,

Y =
⋃

α

Yα =
⋃

α

Yα = Y .

Therefore, we may assume that X is affine. Then, X →֒ Cn is Z-closed and Cn →֒ Pn is Z-dense. Let X̃
be the Z-closure of X in Pn. Then, X is Z-dense in X̃ and Y is Z-dense in X , so Y is Z-open in X̃. If we

assume that the theorem holds for projective varieties, we get Y = X̃ = Y and Y ∩ Cn = X̃ ∩ Cn = X .
Then, Y is norm-dense in X (as X is norm-closed in Cn). So, we may assume that X is actually projective.
Finally, assume that the theorem holds for irreducible projective varieties. Write X =

⋃n
j=1Xj , where each

Xj is irreducible. Then, Y = Y ∩X =
⋃n
j=1 Y ∩Xj , so

Y =

n⋃

j=1

Y ∩Xj =

n⋃

j=1

Y ∩Xj =

n⋃

j=1

Y ∩Xj =

n⋃

j=1

Y ∩Xj = Y .

Therefore, we are reduced to the

Minimal Case: X ⊆ Pn is projective irreducible and Y is Z-open in X . If so, Y is automatically Z-dense.
Pick ξ ∈ X − Y . We’ll show that ξ is the limit in the norm topology of a sequence of points in Y . Now,
dim(X) = r, and we can pick M and L as in the refined version of Noether’s normalization theorem with
respect to ξ (Theorem 1.40). We also choose x /∈ pM (X). We may choose coordinates so that

(1) M is cut out by Y = · · · = Xr+1 = 0.

(2) ξ = (1: 0 : · · · : 0).
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(3) L is cut out by Y = · · · = Xr, and

x = (0: · · · : 0︸ ︷︷ ︸
r+1

: 1).

Look at pL(X −Y ) ⊆ Pr. The image is closed, and thus, contained in some hypersurface f = 0, for some
homogeneous polynomial, f(Y, . . . , Xr). Therefore,

{x ∈ X | f(pL(x)) 6= 0} ⊆ Y,

and we may replace Y by the above open set. By (2) of Theorem 1.40, pM (X) has dimension r, and
pM (X) ⊆ Pr+1, which implies that pM (X) is a hypersurface. Thus,

pM (X) = {y = (y0 : · · · : yr+1) | F (y) = 0},

for some homogeneous form, F (Y0, . . . , Yr+1) (of degree d). The rest of the argument has three stages:

Stage 1: Approximating in Pr. Since f 6= 0, there is some nontrivial (α0, . . . , αr) ∈ Cr+1 such that
f(α0, . . . , αr) = 0 (because C is algebraically closed). Let

ξ0 = pL(ξ) ∈ Pr.

By choice, ξ0 = (1: 0 : · · · : 0) ∈ Pr. Look at points

ξ0 + tα = (1 + tα0, tα1, . . . , tαr).

Then, f(ξ0 + tα) = f(1 + tα0, tα1, . . . , tαr) is a polynomial in t. However, a polynomial in one variable has
finitely many zeros. Thus, there exists a sequence (ti)

∞
i=1 so that

(1) f(ξ0 + tiα) 6= 0.

(2) ti → 0 as i→∞.

(3) ξ0 + tiα→ ξ0 as i→∞.

Stage 2: Approximating in Pr+1. We know that pM (X) is the hypersurface given by F (Y, . . . , Xr+1) = 0,
and x = (0: · · · : 0 : 1). Write F as

F (Y, . . . , Xr+1) = γXd
r+1 + a1(Y, . . . , Xr)X

d−1
r+1 + · · ·+ ad(Y, . . . , Xr). (∗)

Claim. There exists a sequence (bi) so that

(1) bi ∈ pM (X).

(2) bi → ξ0 + tiα (under px).

(3) limi→∞ bi = (1: 0 : · · · : 0) = pM (ξ).

In order to satisfy (2), the bi must be of the form

bi = (1 + tiα0 : tiα1 : · · · : tiαr : β(i)),

for some β(i) yet to be determined. We also need to satisfy (1); that is, we must have

F (1 + tiα0 : tiα1 : · · · : tiαr : β(i)) = 0.
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We know that x /∈ pM (X), which implies that F (x) 6= 0, and since x = (0: · · · : 0 : 1), by (∗), we must have
γ 6= 0. The fact that pM (ξ) ∈ pM (X) implies that F (pM (ξ)) = 0. Since pM (ξ) = (1: 0 : · · · : 0), from (∗),
we get ad(ξ0) = F (pM (ξ)) = 0. Also, by (∗), β(i) must be a root of

γY d + a1(ξ0 + tiα)Y
d−1 + · · ·+ ad(ξ0 + tiα) = 0. (∗∗)

Thus, we get (2). To get (3), we need β(i) → 0 when i → ∞. Now, as i → ∞, ti → 0; but the product of
the roots in (∗∗) is

±ad(ξ0 + tiα)

γ
,

and this term tends to 0 as i tends to infinity. Then, some root must tend to 0, and we can pick β(i) in such
a manner, so that limi→∞ β(i) = 0. Thus, we get our claim.

Stage 3: Lifting back to Pn. Lift each bi in any arbitary manner to some ηi ∈ X ⊆ Pn. We know that Pn

is compact, since C is locally compact. Thus, the sequence (ηi) has a convergent subsequence. By restriction
to this subsequence, we may assume that (ηi) converges, and we let η be the limit. Now, ηi ∈ X and X is
closed, so that η ∈ X . We have

pM (η) = lim
i→∞

pM (ηi) = lim
i→∞

bi = pM (ξ),

since pM is continuous. Therefore,
η ∈ p−1

M (pM (ξ)) = {ξ},
and thus, η = ξ. Now,

f(pL(ηi)) = f(px(pM (ηi))) = f(px(bi)) = f(ξ0 + tiα) 6= 0,

and thus, ηi ∈ Y . This proves that Y is norm-dense.

Having shown that the theorem holds when Y is Z-open, let Y be Z-constructible. Then, we can write
Y =

⋃n
j=1 Yj ∩Xj , where Yj is open in X and Xj is closed in X . We have

Y =
n⋃

j=1

Yj ∩Xj =
n⋃

j=1

Yj ∩Xj.

But, Yj ∩Xj is Z-open in Xj , where Xj is some variety. By the open case, Yj ∩Xj = Yj ∩Xj in Xj ; since

Xj is closed in X , we see that Yj ∩Xj is the closure of Yj ∩ Xj in X . Therefore, Yj ∩Xj = Yj ∩Xj in X

and Y = Y , as required.

Now, we can get results comparing the Z-topology and the norm topology.

Theorem 1.42 (Theorem A) Say X is a complex variety (not necessarily separated). Then, X is separated
(in the Z-topology) iff X is Hausdorff (in the norm topology).

Proof . (⇐). By hypothesis, X is Hausdorff in the norm topology. We know ∆ is closed in X
∏
X in the

norm topology (U ∩ V = ∆−1(∆ ∩ (U
∏
V ))). But, ∆ = ∆(X) is the image of a morphism; it follows that

∆ is constructible, by Chevalley’s Theorem. Then, by the comparison theorem (Theorem 1.41), ∆ = ∆ and

since ∆ is norm closed, ∆ = ∆, which yields ∆ = ∆, i.e., ∆ is Z-closed. By definition, this means that X is
separated.

(⇒). Suppose X separated, so ∆ is Z-closed in X
∏
X . It follows that ∆ is norm closed in X

∏
X , which

implies X is Hausdorff.

To deal with compacteness and properness, we need a comparison theorem between projective varieties
and proper varieties. This is Chow’s lemma:
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Theorem 1.43 (Chow’s Lemma) Say π : X → Y is a proper morphism. Then, there exists a Y -projective
variety, P , i.e., P →֒ PM

∏
Y as a closed subvariety, and a surjective birational morphism, f : P → X, so

that the diagram

P //

f

��

PM
∏
Y

pr2

��
X π

// Y

commutes. In particular, when Y is a point, then for every X, proper over C, there exists a projective,
complex, variety, P , and a surjective birational morphism, f : P → X. If X is irreducible, we may choose
P irreducible.

Theorem 1.44 (Theorem B) Assume π : X → Y is a morphism of complex (separated) varieties. Then,
π : X → Y is a norm-proper morphism (i.e., for every compact, C ⊆ Y , the set π−1(C) is compact in X) iff
π : X → Y is a Z-proper morphism. In particular, when Y is a point, X is compact (in the norm topology)
iff X is proper (in the Z-topology).

Proof . (⇒). By hypothesis, π : X → Y is proper (in the norm topology).

Claim. For every T , a complex variety over Y , the morphism X
∏
Y

T
pr2−→ T is a norm-closed map.

Pick T , pick Q norm-closed in X
∏
Y

T and let C = pr2(Q). Further, pick a sequence, {ξj}j≥1 ⊆ C,

and assume that {ξj} converges to ξ0 ∈ T . If D = {ξj}j≥1 ∪ {ξ0}, we know that D is compact. If we
know that pr−1

2 (D) is compact, then lift ξj (j 6= 0) to some ηj ∈ Q. Since {ηj} is contained in pr−1
2 (D),

which is compact, the sequence {ηj} has a converging subsequence; so, we may assume that the sequence
{ηj} converges and let its limit be η0 ∈ X

∏
Y

T . Now, η0 ∈ Q, as Q is norm-closed. It follows that

ξ0 = pr2(η0) ∈ pr2(Q) = C and C is norm-closed. Therefore, we just have to prove that if D is compact,
then X

∏
Y

D is compact.

Pick a sequence, {ηj} ∈ X
∏
Y

D, and write ξj = pr2(ηj). We have ηj = (xj , ξj) ∈ X
∏
Y

D, so

π(xj) = ν(ξj), where ν : D → Y . As D is compact, we may assume that that {ξj} converges to some ξ0.
Then, the ν(ξj)’s converge to ν(ξ0). As ηj = (xj , ξj), we deduce that xj ∈ π−1(

⋃
j≥1 ν(ξj)∪ ν(ξ0)). Now, as⋃

j≥1 ν(ξj) ∪ ν(ξ0) is compact in Y , by hypothesis, π−1(
⋃
j≥1 ν(ξj) ∪ ν(ξ0)) is compact, so the xj ’s have a

converging subsequence. We deduce that {ηj} also has a converging subsequence and X
∏
Y

D is compact,

as required.

Now, we can show that π is Z-proper. Pick T , pick Q Z-closed in X
∏
Y

T and let C = pr2(Q). We

know pr2 is a morphism, so C is constructible (by Chevalley). But, C is norm-closed, by the above agument.

Consequenly, by the comparison theorem, C = C = C, which shows that C is Z-closed.

(⇐). By hypothesis, π : X → Y is a proper morphism (in the Z-topology). We need to show that π−1(C)
is norm-compact whenever C is norm-compact. By Chow’s Lemma, there is P projective over Y and a
surjective morphism f : P → X so that the diagram

P
i //

f

��

PM
∏
Y

pr2

��
X π

// Y
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commutes. Pick a compact, C, in Y . We have pr−1
2 (C) = PM

∏
C, which is compact (both PM and C are

compact); we also have i−1(pr−1
2 (C)) = pr−1

2 (C) ∩ P . But, P is closed, so i−1(pr−1
2 (C)) is compact. Yet,

f−1(π−1(C)) = i−1(pr−1
2 (C)) and as f is surjective and continuous, f(f−1(π(C))) = π−1(C) and π−1(C) is

compact.

Proof of Chow’s Lemma (Theorem 1.43). Say the theorem holds when X is irreducible. Then, for any
complex variety, X , we have X =

⋃t
i=1Xj, where the Xj ’s are irreducible. By Chow’s lemma in the

irreducible case, for each Xj , there is a variety, Pj , Y -projective, irreducible and a birational surjective

morphism, Pj −→ Xj . Let P =
∐t
j=1 Pj ; I claim P is projective over Y . Since Pj is Y -projective if we cover

Y by affines, Yα (coordinate rings Aα), then Pj is covered by varieties whose homogeneous coordinate rings
are

Aα[Z
(j)
0 , . . . , Z

(j)
Nj

]/Iα

and the glueing is by glueing the Aα’s. Fix α and look at

Aα[T
(1)
0 , . . . , T

(1)
N1
, . . . , T

(t)
0 , . . . , T

(t)
Nt

] = Bα,

let M = N1 + · · ·+Nt− 1 and send T
(j)
l to Z

(j)
l (of Pj) for each j, monomials in a fixed number of variables

to similar monomials and all “mized” products Z
(i)
l Z

(j)
m to 0. This gives a homogeneous ideal, Jα of Bα

and we can glue Proj(Bα/Jα) and Proj(Bβ/Jβ) via glueing on Aα and Aβ . We get a projective variety in
PM

∏
Y . Check (DX), this is P ; so, P is projective over Y . As Pj −→ Xj is surjective,

∐
j Pj −→

⋃· j Xj is
surjective.

Let Uj be a Z-open of Xj isomorphic to a Z-open of Pj via our birational morphism Pj −→ Xj. Write

Ũj = Uj ∩
(⋂

i6=j X
c
i

)
; by irreducibility, Ũj is Z-open and Z-dense in Xj and isomorphic to a Z-open of

Pj . The Ũj are disjoint and so,
⋃t
j=1 Ũj is a Z-open of X isomorphic to the corresponding Z-open of P .

Therefore, we may assume that X is irreducible.

Cover Y by open affines, Yα, then the Xα = π−1(Yα) cover X . Each Xα has an open affine covering

(finite), say Xβ
α and for all α, β, there is a closed immersion Xβ

α →֒ CN
β
α
∏
Y . Consequently, there is a locally

closed immersion Xβ
α →֒ PN

β
α
∏
Y . All the Xβ

α are Z-open, Z-dense in X as X is irreducible, so,

U =
⋂

α,β

Xβ
α

is Z-open and Z-dense in X and we get a locally closed immersion U →֒ PN
β
α
∏
Y , for all α, β. By the Segre

morphism, there is some M > 0 so that

U →֒ PM
∏

Y,

a locally closed embedding. We also have locally closed embeddings Xβ
α →֒ PM

∏
Y . If P̃ βα is the Z-closure

of Xβ
α in PN

β
α
∏
Y , then P̃ =

∏
α,β P̃

β
α is Z-closed in PM

∏
Y , so P̃ is Y -projective, as are the P̃ βα . We have

the diagram

U
j //

��

∏
α,β P̃

β
α = P̃

prβα
��

Xβ
α

// P̃ βα

(†)

and we get the morphisms

(a) U →֒ Xβ
α →֒ X

(b) j : U →֒ P̃ (locally closed)
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(c) jβα : X
β
α →֒ P̃ βα (Y -projective)

(d) P̃ =
∏
α,β P̃

β
α is Y -projective.

The maps (a) and (b) give us a morphism

ψ : U → X
∏

Y

P̃ ,

a locally closed immersion (via ψ(ξ) = (ξ, (jβα(ξ))). Let P = ψ(U) be the Z-closure of ψ(U) in X
∏
Y

P̃ .

Note, P is closed in X
∏
Y

P̃ and X is proper over Y , so pr2(P ) is closed in P̃ , thus it is Y -projective. Now,

we have two maps on P :

f : P
g→֒ X

∏

Y

P̃
pr1−→ X and θ : P

g→֒ X
∏

Y

P̃
pr2−→ P̃ ,

and we conclude that θ(P ) is Y -projective.

(A) The map f is the morphism we seek.

(A1) I claim f is surjective. As P̃ is projective, it is proper over Y , so f(P ) is closed in X . But, the
diagram

U
ψ //

��

f

!!C
CC

CC
CC

CC
P

pr2

��
Xβ
α

� � // X

commutes, so U ⊆ f(P ); but, U is Z-dense and f(P ) is closed in X , which implies X = f(P ). Therefore, f
is surjective.

(A2) As the fibred product U
∏
Y

P̃ is Z-open inX
∏
Y

P̃ , consider the Z-open g−1(U
∏
Y

P̃ ) = (U
∏
Y

P̃ )∩P .

We have f−1(U) = g−1(pr−1
1 (U)) = g−1(U

∏
Y

P̃ ).

Claim: f : f−1(U) −̃→ U .

We have the factorization

ψ : U
Γ−→ U

∏

Y

P̃ −→ X
∏

Y

P̃

and (U
∏
Y

P̃ ) ∩ P is the Z-closure of Γ(U) in U
∏
Y

P̃ . Yet, P̃ is separated (Hausdorff), so Γ(U) is Z-closed

in U
∏
Y

P̃ ; this shows that f−1(U) is the Z-closure of Γ(U), i.e., f−1(U) = Γ(U). But, pr1 : Γ(U) −→ U is

an isomorphism and it follows that f : f−1(U)→ U is an isomorphism and f is thereby birational.

(B) The map θ is an immersion. The question is local on P .

(B1) As the Xβ
α cover X , if we set Xβ′

α = f−1(Xβ
α), we see that the Xβ′

α cover P .

(B2) As jβα(X
β
α) is open in P̃ βα , the setW

β
α = pr−1

α,β(j
β
α(X

β
α)) is Z-open in P̃ . Let Xβ′′

α = θ−1(W β
α ), Z-open

in P .

Set-theoretically, we have
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(a) As P = X
∏
Y

P̃ , any η ∈ P is of the form η = (y, (ηδγ)), where η
δ
γ ∈ P̃ βα and y ∈ X . As, f(y, (ηδγ)) = y,

we see that

Xβ′

α = {(y, (ηδγ)) ∈ P | y ∈ Xβ
α}.

(b) Since θ(y, (ηδγ)) = (ηδγ), we have

Xβ′′

α = {(y, (ηδγ)) ∈ P | (ηδγ) ∈ W β
α }

= {(y, (ηδγ)) ∈ P | ηβα = jβα(q), q ∈ Xβ
α}.

Consider f−1(U) and the incomplete diagram

f−1(U)

ϕ
%%KK

KK
KK

KK
KK

K
W β
α

Γβ
α

��
X
∏
Y

W β
α .

(††)

We have f−1(U) = Γ(U) = {(ξ, (jδγ(ξ)) | ξ ∈ U} and

ϕ(ξ, (jδγ(ξ)) = (ξ, (jδγ(ξ)) ∈ X
∏

Y

W β
α ,

since W β
α = {(ηδγ) | ηβα = jβα(x), x ∈ Xβ

α}. We have the map wβα : W
β
α → X defined as follows: (ηδγ) 7→ x,

where ηβα = jβα(x). Also, let Γβα be the graph of the morphism wβα given by (ηδγ) 7→ (x, (ηδγ)), where x ∈ Xβ
α

and ηβα = jβα(x). Therefore, there is a morphism, zβα : f
−1(U) → W β

α rendering (††) commutative. As
f−1(U) ⊆ ImΓβα and X is Hausdorff, we deduce that ImΓβα is Z-closed, so the Z-closure of f−1(U) in
X
∏
Y

W β
α is contained in ImΓβα. Now, ImΓβα

∼= W β
α , and so, the Z-closure of f−1(U) is contained in a Z-

closed set isomorphic to W β
α , which means that the Z-closure of f−1(U) in X

∏
Y

W β
α is P ∩Xβ′′

α . Therefore,

θ(P ∩Xβ′′

α ) is isomorphic to a Z-closed subset of W β
α . Now, if the X

β′′

α were to cover P , we would find that

θ is an immersion P →֒ P̃ . However, I claim:

(B3) For all α, β, we have Xβ′

α ⊆ Xβ′′

α .

As f is surjective, the Xβ′

α cover P , so the claim will show that the Xβ′′

α also cover P ; this will imply

that P →֒ P̃ is a closed immersion and we will be done.

Look at f−1(U) = {(ξ, jδγ(ξ)) | ξ ∈ U}. The diagram

f−1(U)
pr2 //

f

��

P̃

prα,β

��
U

jβα

// P̃ βα

commutes, for

(ξ, jδγ(ξ))
pr2−→ (jδγ(ξ))

prα,β−→ jβα(ξ)

and

(ξ, jδγ(ξ))
f−→ ξ −→ jβα(ξ).
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Take the closure of f−1(U) in Xβ′

α . Now, f−1(U) is Z-dense in Xβ′

α as U is Z-dense in Xβ
α , so by taking

closures, we get the commutative diagram

Xβ′

α

pr2 //

f

��

P̃

prα,β

��
Xβ
α

jβα

// P βα .

Take (x, (ηδγ)) ∈ Xβ′

α where x ∈ Xβ
α , we have

(x, (ηδγ))
pr2−→ (ηδγ) −→ ηβα

and

(x, (ηδγ))
f−→ x −→ jβα(x),

and the commutativity of the above diagram implies ηβα = jβα(x). Therefore, the tuple (x, (ηδγ)) we started

from belongs to Xβ′′

α , which proves that Xβ′

α ⊆ Xβ′′

α , as contended.

Now, we need to prove the connectedness theorem. We need two remarks.

(1) Say U 6= ∅ is Z-open in X , where X is a complex irreducible variety and suppose U is norm-connected,
then X is norm-connected.

Proof . The set U is Z-open, Z-dense in X and by the comparison theorem, U is norm-dense in X . Yet the
norm-closure of a norm-connected is norm-connected, so we conclude that X is norm-connected.

(2) Say U 6= ∅ is Z-open in Cn. Then, U is norm-connected.

Proof . Take ξ, η ∈ U and let l be the line (ξ, η) ⊆ Cn. Since l 6⊆ U c, we deduce that U c∩l is a Z-closed subset
of l distinct from l. As dim l = 1, we deduce that U c ∩ l consists of a finite set of points. As l is a complex
line, l ∼= C, and so, U ∩ l = C − F , where F is a finite set of points. But, C − F is arc-connected, which
implies that ξ and η are arc-connected. Since ξ and η are arbitrary, we conclude that U is norm-connected.

Theorem 1.45 (Theorem C) A complex algebraic variety, X, is Z-connected iff it is norm-connected.

Proof . (⇐). This is trivial as the Z-topology is coarser than the norm-topology.

(⇒). We may assume that X is Z-irreducible. For, suppose we know the theorem when X is irreducible.
Then, for any variety, we can write X =

⋃t
i=1Xi, an irredundant decomposition into irreducible components

and let U, V be a disconnection of X , which means that X = U ∪· V , where U and V are norm-open and
norm-dense nonempty disjoint subsets of X . Let Ui = Xi ∩ U and Vi = Xi ∩ V , then Ui, Vi form a norm
disconnection of Xi. As Xi is norm-connected either Ui = Xi and Vi = ∅ or Ui = ∅ and Vi = Xi. Write
i ∈ V iff Vi = Xi (iff Xi ⊆ Vi) and i ∈ U iff Ui = Xi iff (Xi ⊆ Ui), then

X =

(⋃

i∈U

Xi

)
∪
(⋃

i∈V

Xi

)

and the first part of the union is a subset of U whereas the second is a subset of V . Therefore, the above is
a disjoint union, contradicting the hypothesis that X is Z-connected. Therefore, we may assume that X is
irreducible.

Now, assume that the theorem holds if X is affine irreducible. Take a Z-open affine, U , in X (X
irreducible). As the Z-open U is Z-dense and X is irreducible, U is Z-irreducible. Then, Theorem C applies
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to U and U is norm-connected. But, U is norm-dense by the comparison theorem; we conclude that X = U
and X is norm connected.

We are reduced to the case where X is affine and irreducible. If dimX = n, then by Noether’s normal-
ization theorem there exists a quasi-finite morphism, X −→ Cn. We proved that there is an affine Z-open,
X ′ ⊆ X , so that the morphism π : X ′ → Cn is a finite morphism. Therefore, A[X ′] is a finitely generated
C[Z1, . . . , Zn]-module. Let ξ1, . . . , ξt be module generators. We know Mer(X ′) is a finite-degree field over
C(Z1, . . . , Zn), so by Kronecker’s theorem of the primitive element, there is some θ (a primitive element) so
that

Mer(X ′) = C(Z1, . . . , Zn)[θ],

and we may assume θ ∈ A[X ′] (clear denominators). Thus,

C[Z1, . . . , Zn][θ] ⊆ A[X ′] ⊆ C(Z1, . . . , Zn)[θ]

and, as usual, for every ξ ∈ A[X ′], there is some aξ ∈ C[Z1, . . . , Zn] so that aξξ ∈ C[Z1, . . . , Zn][θ]. If we
apply the latter to ξ1, . . . , ξt, we get aξ1 , . . . , aξt ; if α = aξ1 · · · aξt , then

αA[X ′] ⊆ C[Z1, . . . , Zn][θ].

We know θ is the root of an irreducible polynomial, F (T ) ∈ C[Z1, . . . , Zn][T ], of degree m = deg(F ). Let δ
be the discrimiant of F ; we have δ ∈ C[Z1, . . . , Zn] and the locus where δ = 0 (in Cn) is called the branch
locus of the morphism π : X ′ → Cn. Off the branch locus, all roots of F are disjoint. Let γ = αδ and set
V = Cn − V (γ). We know V is norm-connected , by Remark (2). Consider U = X − V (π∗(γ)), a Z-open in
X ′. We have a map π : U → V , it is onto (by choices) because the coordinate ring of U is

A[U ] = A[X ′]π∗(γ) = A[Cn]γ [θ],

and so U ⊆ X ′ is affine, integral over V , which implies that π is onto and every fibre of π ↾ U is a set of exactly
m points. The Jacobian of π has full rank everywhere on U as δ 6= 0 on V . So, by the convergent implicit
function theorem, for every ξ ∈ U , there is an open, Uξ ∋ ξ, so that π ↾ Uξ is a complex analytic isomorphism
to a small open containing π(ξ). Therefore, by choosing η1, . . . , ηm in the fibre over v = π(ηi) and making the
neighborhood small enough, the Uξ don’t intersect else we have a contradiction on the number of elements,
m, in every fibre. It follows that U is an m-fold cover of V (in the sense of C∞-topology). Now U ⊆ X ′ ⊆ X
and U is affine open in X . Consequently, if we prove U is norm-connected, by Remark (1), the variety X
will be norm-connected.

Say U is norm-disconnected and U = X1 ∪· X2 is a norm disconnection. The morphism, π, is both an
open and a closed morphism, so π(Xi) is nonempty, open and closed in V . Thus, each Xi is a complex
analytic covering of V and if the degree is mi, then we have m1 + m2 = m, with mj < m, for j = 1, 2.
Recall that U is integral over V . Take ϕ ∈ A[U ] and pick a point, v ∈ V , then in a small neighborhood of

V , say Ṽ , we have π−1
j (Ṽ ) = U

(j)
1 ∪· · · · ∪· U

(j)
mj (where πj = π ↾ Xj), disjoint open sets about each point in

π−1
j (v). The function ϕ ↾ U

(j)
i is a holomorphic function on U

(j)
i , call it ϕ

(j)
i . We know that U

(j)
i −̃→ Ṽ

by a complex analytic isomorphism. (The map Ṽ −→ U
(j)
i is holomorphic not algebraic.) Thus, each ϕ

(j)
i

is a holomorphic function on Ṽ , not necessarily algebraic; namely, Ṽ −→ U
(j)
i

ϕ
(j)
i−→ C. Let σ

(j)
l be the l-th

symmetric function of ϕ
(j)
1 , . . . , ϕ

(j)
mj ; this is a function on Ṽ . Thus, σ

(j)
l is a root of

Tmj − π∗
jσ

(j)
1 Tmj−1 + · · ·+ (−1)mjπ∗

j σ
(j)
mj

= 0, j = 1, 2.

I claim there exist polynomials, P
(j)
r ∈ C[Z1, . . . , Zn], for j = 1, 2; 1 ≤ r ≤ mj; so that P

(j)
r ↾ Ṽ = σ

(j)
r , for

all r’s and j’s. Then, we get

ϕmj − π∗
jP

(j)
1 ϕmj−1 + · · ·+ (−1)mjπ∗

jP
(j)
mj

= 0, (∗)
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Now, Pj [T ] = Tmj − π∗
jP

(j)
1 Tmj−1 + · · ·+(−1)mjπ∗

jP
(j)
mj belongs to A[U ][T ] and Pj(ϕ) = 0. If we apply this

to our primitive element, we get P1(θ) = P2(θ) = 0 (the first on X1 and the second on X2). Consequently,
(P1P2)(θ) ≡ 0 on U . Yet, P1P2 ∈ A[U ][T ] and U is Z-connected, so A[U ][T ] is domain and it follows that
either P1 = 0 or P2 = 0. In either case, θ satisfies a polynomial of degree m1 or m2 and both m1,m2 < m,
a contradiction.

So, it remains to prove our claim and, in fact, it is enough to prove it for θ. If we cover V by the Ṽ ’s we

find that the σ
(j)
r patch, which implies that they are global holomorphic functions on V . If ξ ∈ Cn (not on

V ), take a “compact open” neighborhood (i.e, an open whose closure is compact) of ξ. Now, θ is integral
over C[Z1, . . . , Zn], so we have an equation

θm + π∗a1ϕ
m−1 + · · ·+ π∗am = 0, where al ∈ C[Z1, . . . , Zn]. (∗∗)

The functions al are bounded on this compact neighborhhod and so are therefore the roots of (∗∗). It follows
that the σ

(j)
r are also bounded on this neighborhood. So, by Riemann’s classic argument (using the Cauchy

integral form on polydiscs and boundedness) we get an extension of σ
(j)
r to all of C (as an entire function);

j = 1, 2; 1 ≤ r ≤ m. Now, we show that the σ
(j)
r , so extended, are really polynomials—this is a matter of

how they grow. Write ‖z‖ = ‖(z1, . . . , zn)‖ = max1≤i≤n |zi|. Then, from (∗∗), if ξ ∈ U , then (DX)

|θ(ξ)| ≤ 1 + max{|aj(π(ξ))|}.

If d is the maximum degree of the aj ’s, then

|aj(π(ξ))| ≤ C ‖π(ξ)‖d (all l).

Consequently, we can choose C so that

|θ(ξ)| ≤ C ‖π(ξ)‖d .

This works for all the roots θ1, . . . , θm and since σ
(j)
r is a polynomial of degree r in these roots, we deduce

that

|σ(j)
r π(ξ)| ≤ D ‖π(ξ)‖rd .

Lemma 1.46 Say f(z1, . . . , zn) is entire on Cn and |f(z1, . . . , zn)| ≤ D ‖z‖q. Then, f(z1, . . . , zn) is a
polynomial of degree at most q.

The proof of the lemma will finish the proof of Theorem C.

Proof . Write the MacLaurin series for f :

f(z1, . . . , zn) = F0 + F1(z1, . . . , zn) + · · ·+ Fl(z1, . . . , zn) + · · · ,

where Fl(z1, . . . , zn) is a homogeneous polynomial of degree l in z1, . . . , zn. We must show Fl ≡ 0 if t > q.
Say not, pick the minimal t with t > q where Ft 6≡ 0. As Ft 6≡ 0, there exist α1, . . . , αn ∈ C so that
Ft(α1, . . . , αn) 6= 0. Let ζ be a complex variable and write zj = αjζ. Then,

g(ζ) = f(α1ζ, . . . , αnζ)− F0 − F1(α1ζ, . . . , αnζ)− · · · − Fq(α1ζ, . . . , αnζ)

= Ft(α1ζ, . . . , αnζ) +O(|ζ|t+1)

= ζtFt(α1, . . . , αn) +O(|ζ|t+1).

If we divide by ζq, we get
g(ζ)

ζq
= ζt−qFt(α1, . . . , αn) +O(|ζ|t−q+1),
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where the right hand side is an entire function of ζ. But, by the growth hypothesis on f , the left hand side
is bounded on C. By Liouville’s theorem, this function is constant. Yet, the right hand side is not constant,
since Ft(α1, . . . , αn) 6= 0 and t > q, a contradiction.

Now that the lemma is proved, so is our theorem.

We now come back to some unfinished business regarding complex algebraic varieties in Cn. We begin
by proving a fact that was claimed without proof in the remark before Proposition 1.1.

Theorem 1.47 Suppose V and W are affine varieties, with W ⊆ Cn, and ϕ : V →W is a morphism. Then,
there exist F1, . . . , Fn ∈ A[V ] so that

ϕ(v) = (F1(v), . . . , Fn(v)), for all v ∈ V .

Proof . Since V is a variety it is quasi-compact, so V is covered by some affine opens, Vg1 , . . . , Vgt . For any
v ∈ Vgj , we have

ϕ(v) =

(
f
(j)
1 (v)

gν1j (v)
, . . . ,

f
(j)
n (v)

gνnj (v)

)
,

for some f
(j)
1 , . . . , f

(j)
n , gj ∈ A[V ], with gj 6= 0 on Vgj . If ν is the maximum of the νi’s, since Vgν = Vg, we

may assume that ν = 1. Thus, on each Vgj , we have

ϕ(v) =

(
f
(j)
1 (v)

gj(v)
, . . . ,

f
(j)
n (v)

gj(v)

)
. (∗)

Since ϕ is well-defined, the local definitions of ϕ must agree on Vgi ∩ Vgj = Vgigj , and we have

f
(j)
l (v)

gj(v)
=
f
(i)
l (v)

gi(v)

for all v ∈ Vgigj and all l, 1 ≤ l ≤ n. As a consequence,

f
(j)
l gi − f (i)

l gj = 0 on Vgigj ,

which implies that

f
(j)
l gi − f (i)

l gj = 0 in A[V ]gigj .

Therefore, there are some integers nijl so that

(gigj)
nijl(f

(j)
l gi − f (i)

l gj) = 0 in A[V ].

Let N = max{nijl}, where 1 ≤ i, j,≤ t, 1 ≤ l ≤ n. We have

(gigj)
Nf

(j)
l gi = (gigj)

Nf
(i)
l gj, (∗∗)

for all i, j, l, with 1 ≤ i, j,≤ t, 1 ≤ l ≤ n. Now, the Vgi cover V . Hence, the gi have no common zero, and
neither do the gN+1

i (since VgN = Vg). By the Nullstellensatz,

(gN+1
1 , . . . , gN+1

t ) = (1),

the unit ideal in A[V ], and thus, there are some hi ∈ A[V ] so that

1 =

t∑

i=1

hig
N+1
i .
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But, we have

gNi f
(i)
l = gNi f

(i)
l

(
t∑

r=1

hrg
N+1
r

)

=

t∑

r=1

hrg
N+1
r gNi f

(i)
l

=

t∑

r=1

hrg
N+1
i gNr f

(r)
l by (∗∗)

= gN+1
i

(
t∑

r=1

hrg
N
r f

(r)
l

)
.

Letting

Fl =

t∑

r=1

hrg
N
r f

(r)
l ,

we have Fl ∈ A[V ], and

gNi f
(i)
l = gN+1

i Fl in A[V ], for all i with 1 ≤ i ≤ t.
For any v ∈ Vgi , we get

f
(i)
l (v)

gi(v)
= Fl(v),

and by (∗),

ϕ(v) = (F1(v), . . . , Fn(v)).

Corollary 1.48 Say X is a complex affine variety, then the ring of global holomorphic functions on X, i.e.,
the ring Γ(X,OX), is exactly the coordinate ring, A[X ], of X.

Proof . The ring Γ(X,OX) is just HomC−vars(X,C1), essentially by definition. By Theorem 1.47, there is
some F ∈ A[X ] so that if ϕ ∈ Γ(X,OX), we have ϕ(x) = F (x), for all x ∈ X . Therefore, Γ(X,OX) = A[X ].

Corollary 1.49 The category of affine complex varieties is naturally anti-equivalent to the category of re-
duced (i.e., no nilpotent elements) finitely generated C-algebras.

Proof . Say A is a reduced f.g. C-algebra, we can make a variety—it is denoted SpecA—as follows: The
underlying topological space (in the norm topology), X = SpecA, is

HomC−alg(A,C) = HomC−alg(C[Z1, . . . , Zn]/A,C)

= {(z1, . . . , zn) | f1(z1, . . . , zn) = · · · = fp(z1, . . . , zn) = 0},

where A = (f1, . . . , fp) is a radical ideal. The sheaf is as before, use the opens, Xg, where g 6= 0 (with g ∈ A)
and on those, use as functions, h/g, with g, h ∈ A. This gives Γ(Xg,OX).

Conversely, given an affine variety, X , make the f.g. reduced C-algebra, A = A[X ].

We also need to show how maps of rings transform to morphisms and the other way around. Say A
and B are reduced C-algebras. Then, if θ : A → B, set θ̃ : SpecB → SpecA via: Pick x ∈ SpecB, i.e.,
x ∈ HomC−alg(B,C), then θ̃(x) = x ◦ θ. Localize θ̃ at the g’s so that the Yg’s cover Y = SpecB, then
Bg −→ Aθ̃(g) is just the locally defined map of sheaves. If X = SpecA and we have a morphism Y −→ X ,

then we get a map Γ(X,OX) −→ Γ(Y,OY ); but, Corollary 1.48 says this is a ring map from A to B. The
rest of the checking is (DX).
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Corollary 1.50 A n.a.s.c. that (V,OV ) be a complex affine variety is that the canonical map

HomC−vars(T, V ) −→ HomC−alg(Γ(V,OV ),Γ(T,OT ))

is a bijection for every complex variety, T .

Proof . An affine variety, V , does have the above property. For, say V is affine and pick any T . What is
HomC−vars(T, V )? We can cover T by affines, Tα, and get morphisms Tα −→ V , for all α; clearly, they agree
on the overlaps Tα ∩ Tβ. The Tα ∩ Tβ are affine (because V is separated), in fact, their coordinate rings are

Γ(Tα,OT ↾ Tα)⊗Γ(T,OT ) Γ(Tβ,OT ↾ Tβ).

We get the commutative diagrams

Tα

  @
@@

@@
@@

@

Tα ∩ Tβ

;;vvvvvvvvv

##G
GG

GG
GG

GG
V

Tβ

??~~~~~~~~

. (†)

Apply Corollary 1.49, this gives ring morphisms

Γ(Tα,OTα)

''PP
PP

PP
PP

PP
PP

Γ(V,OV )

88ppppppppppp

&&NN
NN

NN
NN

NN
N

Tα ∩ Tβ,OT )

Γ(Tβ,OTβ
)

77oooooooooooo

. (∗)

By definition of sheaves, we get a map of sheaves,

Γ(V,OV ) −→ Γ(T,OT ).

Conversely, a map Γ(V,OV ) −→ Γ(T,OT ) gives by restriction to Γ(Tα,OT ) (resp. Γ(Tβ ,OT )) our commu-
tative diagram (∗), and by Corollary 1.49, it gives (†) and this is a morphism T −→ V .

Now, given V with the property of the corollary, make Ṽ = Spec(Γ(V,OV )); then Ṽ is affine. By hypoth-

esis, V has the property, Ṽ has it by the previous part of the proof, so the functors T  HomC−vars(T, V )

and T  HomC−vars(T, Ṽ ) are canonically isomorphic. Yoneda’s Lemma implies V ∼= Ṽ .

Corollary 1.51 Say ϕ : X → Y is a morphism of complex affine varieties and ϕ̃ : A[Y ] → A[X ] is the
corresponding algebra map. Then,

(1) The morphism ϕ is a closed immersion iff ϕ̃ is surjective (Ker ϕ̃ defines the image).

(2) The algebra map ϕ̃ is injective iff Im ϕ is Z-dense in Y .

Proof . (DX).
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Chapter 2

Cohomology of (Mostly) Constant
Sheaves and Hodge Theory

2.1 Real and Complex

Let X be a complex analytic manifold of (complex) dimension n. Viewed as a real manifold, X is a C∞-
manifold of dimension 2n. For every x ∈ X , we know TX,x is a C-vector space of complex dimension n, so,
TX,x is a real vector space of dimension 2n. Take local (complex) coordinates z1, . . . , zn at x ∈ X , then we
get real local coordinates x1, y1, . . . , xn, yn on X (as an R-manifold), where zj = xj + iyj. (Recall, TX is a
complex holomorphic vector bundle). If we view TX,x as a real vector space of dimension 2n, then we can
complexify TX,x, i.e., form

TX,xC = TX,x ⊗R C,

a complex vector space of dimension 2n. A basis of TX,x at x (as R-space) is just

∂

∂x1
,
∂

∂y1
, . . . ,

∂

∂xn
,
∂

∂yn
.

These are a C-basis for TX,xC, too. We can make the change of coordinates to the coordinates zj and zj ,
namely,

zj = xj + iyj , zj = xj − iyj ,
and of course,

xj =
1

2
(zj + zj), yj =

1

2i
(zj − zj).

So, TX,xC has a basis consisting of the ∂/∂zj, ∂/∂zj; in fact, for f ∈ C∞(open), we have

∂f

∂zj
=

∂f

∂xj
− i ∂f

∂yj
and

∂f

∂zj
=

∂f

∂xj
+ i

∂f

∂yj
.

More abstractly, let V be a C-vector space of dimension n and view V as a real vector space of dimension
2n. If e1, . . . , en is a C-basis for V , then ie1, . . . , ien make sense. Say ej = fj+igj (from C-space to R-space),
then, iej = ifj − gj = −gj + ifj. Consequently, the map (e1, . . . , en) 7→ (ie1, . . . , ien) corresponds to the
map

((f1, g1), . . . , (fn, gn))
J−→ ((−g1, f1), . . . , (−gn, fn))

where V is viewed as R-space of dimension 2n. The map J an endomorphism of V viewed as R-space and
obviously, it satisfies

J2 = −id.

73
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If, conversely, we have an R-space, V , of even dimension, 2n and if an endomorphism J ∈ EndR(V ) with
J2 = −id is given, then we can give V a complex structure as follows:

(a+ ib)v = av + bJ(v).

In fact, the different complex structures on the real vector space, V , of dimension 2n are in one-to-one
correspondence with the homogeneous space GL(2n,R)/GL(n,C), via

classA 7→ AJA−1.

Definition 2.1 An almost complex manifold is a real C∞-manifold together with a bundle endomorphism,
J : TX → TX , so that J2 = −id.

Proposition 2.1 If (X,OX) is a complex analytic manifold, then it is almost complex.

Proof . We must construct J on TX . It suffices to do this locally and check that it is independent of the
coordinate patch. Pick some open, U , where TX ↾ U is trivial. By definition of a patch, we have an
isomorphism (U,OX ↾ U) −̃→ (BC(0, ǫ),OB) and we have local coordinates denoted z1, . . . , zn in both cases.
On TX ↾ U , we have ∂/∂z1, . . . , ∂/∂zn and ∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . , ∂/∂yn, as before. The map J is
given by (

∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn

)
J−→
(
− ∂

∂y1
, . . . ,− ∂

∂yn
,
∂

∂x1
, . . . ,

∂

∂xn

)
.

We need to show that this does not depend on the local trivialization. Go back for a moment to two complex
manifolds, (X,OX) and (Y,OY ), of dimension 2n and consider a smooth map f : (X,OX) → (Y,OY ). For
every x ∈ X , we have an induced map on tangent spaces, df : TX,x → TY,y, where y = f(x) and if, as
R-spaces, we use local coordinates x1, . . . , xn, y1, . . . , yn on TX,x and local coordinates u1, . . . , un, v1, . . . , vn
on TY,y, then df is given by the Jacobian

JR(f) =




(
∂uα
∂xj

) (
∂uα
∂yj

)

(
∂vα
∂xj

) (
∂vα
∂yj

)


 .

If f is holomorphic, the Cauchy-Riemann equations imply

∂uα
∂xj

=
∂vα
∂yj

and
∂vα
∂xj

= −∂uα
∂yj

.

Now, this gives

JR(f) =




(
∂vα
∂yj

) (
∂uα
∂yj

)

(
−∂uα
∂yj

) (
∂vα
∂yj

)


 =

(
A B
−B A

)
.

Going back to our problem, if we have different trivializations, on the overlap, the transition functions
are holomorphic, so JR(f) is as above. Now J in our coordinates is of the form

J =

(
0n In
−In 0

)

and we have JJR(f) = JR(f)J when f is holomorphic (DX).

So, an almost complex structure is a bundle invariant.

Question: Does S6 possess a complex structure?
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The usual almost complex structure from S7 (= unit Cayley numbers = unit octonions) is not a complex
structure. Borel and Serre proved that the only spheres with an almost complex structure are: S0, S2 and
S6.

Say we really have complex coordinates, z1, . . . , zn down in X . Then, on TX ⊗R C, we have the basis

∂

∂z1
, . . . ,

∂

∂zn
,
∂

∂z1
, . . . ,

∂

∂zn
,

and so, in this basis, if we write f = (w1, . . . , wn), where wα = uα + ivα, we get

JR(f) =




(
∂wα
∂zj

) (
∂wα
∂zj

)

(
∂wα
∂zj

) (
∂wα
∂zj

)


 ,

and, again, if f is holomorphic, we get
∂wα
∂zj

=
∂wα
∂zj

= 0,

which yields

JR(f) =




(
∂wα
∂zj

)
0

0

(
∂wα
∂zj

)


 =

(
A 0
0 A

)
.

Write

J(f) =

(
∂wα
∂zj

)

and call it the holomorphic Jacobian. We get

(1) JR(f) =

(
J(f) 0

0 J(f)

)
, so, R-rankJR(f) = 2C-rankJ(f).

(2) We have det(JR(f)) = | det(J(f))|2 ≥ 0, and det(JR(f)) > 0 if f is a holomorphic isomorphism (in
this case, m = n = the common dimension of X,Y ).

Hence, we get the first statement of

Proposition 2.2 Holomorphic maps preserve the orientation of a complex manifold and each complex man-
ifold possesses an orientation.

Proof . We just proved the first statement. To prove the second statement, as orientations are preserved
by holomorphic maps we need only give an orientation locally. But, locally, a patch is biholomorphic to a
ball in Cn. Therefore, it is enough to give Cn an orientation, i.e., to give C an orientation. However, C is
oriented as (x, ix) gives the orientation.

Say we have a real vector space, V , of dimension 2n and look at V ⊗R C. Say V also has a complex
structure, J . Then, the extension of J to V ⊗R C has two eigenvalues, ±i. On V ⊗R C, we have the two
eigenspaces, (V ⊗R C)1,0 = the i-eigenspace and (V ⊗R C)0,1 = the −i-eigenspace. Of course,

(V ⊗R C)0,1 = (V ⊗R C)1,0.

Now, look at
∧l

(V ⊗R C). We can examine

p,0∧
(V ⊗R C)

def
=

p∧
[(V ⊗R C)1,0] and

0,q∧
(V ⊗R C)

def
=

q∧
[(V ⊗R C)0,1],
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and also
p,q∧

(V ⊗R C)
def
=

p,0∧
(V ⊗R C)⊗

0,q∧
(V ⊗R C).

Note that we have
l∧
(V ⊗R C) =

∐

p+q=l

p,q∧
(V ⊗R C).

Now, say X is an almost complex manifold and apply the above to V = TX , T
D
X ; we get bundle decom-

positions for TX ⊗R C and TDX ⊗R C. Thus,

•∧
(TDX ⊗R C) =

2n∐

l=1

∐

p+q=l

p,q∧
(TDX ⊗R C).

Note that J on
∧p,q

is multiplication by (−1)qip+q. Therefore, J does not act by scalar multiplication in

general on
∧l

(V ⊗R C).

Say X is now a complex manifold and f : X → Y is a C∞-map to another complex manifold, Y . Then,
for every x ∈ X , we have the linear map

Df : TX,x ⊗R C −→ TY,f(x) ⊗R C.

� The map f won’t in general preserve the decomposition TX,x ⊗R C = T 1,0
X,x

∐
T 0,1
X,x.

However, f is holomorphic iff for every x ∈ X , we have Df : T 1,0
X,x → T 1,0

Y,f(x).

Let us now go back to a real manifold, X . We have the usual exterior derivative

d :

l∧
TDX,x ⊗R C −→

l+1∧
TDX,x ⊗R C,

namely, if ξ1, . . . , ξ2n are real coordinates at x, we have

∑

|I|=l

aIdξI 7→
∑

|I|=l

daI ∧ dξI .

here, the aI are C-valued function on X near x and dξI = dξi1 ∧ · · · ∧ dξil , with I = {i1 < i2 < · · · < il}.

In the almost complex case, we have the p, q-decomposition of TDX ⊗R C and consequently

p,q∧
(TDX ⊗R C)

ip,q→֒
l∧
(TDX ⊗R C)

d−→
l+1∧

(TDX ⊗R C) =
∐

r+s=l+1

r,s∧
(TDX ⊗R C).

We let

∂ = {∂p,q = prp+1,q ◦ d ◦ ip,q :
p,q∧

(TDX ⊗R C) −→
p+1,q∧

(TDX ⊗R C)}p,q

and

∂ = {∂p,q = prp,q+1 ◦ d ◦ ip,q :
p,q∧

(TDX ⊗R C) −→
p,q+1∧

(TDX ⊗R C)}p,q.
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Note that d = ∂ + ∂ + other stuff. Let us take a closer look in local coordinates. We can pick ξ1, . . . , ξn,
some coordinates for T 1,0

X , then ξ1, . . . , ξn are coordinates for T 0,1
X (say x1, . . . , x2n are local coordinates in

the base). Then, any ω ∈ ∧p,q(TDX ⊗R C) has the form

ω =
∑

|I|=p

|Ĩ|=q

aI,Ĩ dξI ∧ dξ Ĩ ,

and so
dω =

∑

|I|=p

|Ĩ|=q

daI,Ĩ ∧ dξI ∧ dξĨ +
∑

|I|=p

|Ĩ|=q

aI,Ĩ d(dξI ∧ dξĨ) = ∂ω + ∂ω + stuff.

If we are on a complex manifold, then we can choose the ξj so that ξj = ∂/∂zj and ξj = ∂/∂zj , constant
over our neigborhood and then,

dω =
∑

|I|=p

|Ĩ|=q

daI,Ĩ dξI ∧ dξĨ

=
∑

|I|=p

|Ĩ|=q

n∑

j=1

(
∂aI,Ĩ
∂zj

dzj ∧ dzI ∧ dzĨ +
∂aI,Ĩ
∂zj

dzj ∧ dzI ∧ dzĨ
)

= ∂ω + ∂ω = (∂ + ∂)ω.

Consequently, on a complex manifold, d = ∂ + ∂.

� On an almost complex manifold, d2 = 0, yet, ∂2 6= 0 and ∂
2 6= 0 in general.

However, suppose we are lucky and d = ∂ + ∂. Then,

0 = d2 = ∂2 + ∂∂ + ∂∂ + ∂
2
,

and we deduce that ∂2 = ∂
2
= ∂∂ + ∂∂ = 0, in this case.

Definition 2.2 The almost complex structure on X is integrable iff near every x ∈ X , there exist real
coordinates, ξ, . . . , ξn in T 1,0

X and ξ1, . . . , ξn in T 0,1
X , so that d = ∂ + ∂.

By what we just did, a complex structure is integrable. A famous theorem of Newlander-Nirenberg (1957)
shows that if X is an almost complex C∞-manifold whose almost complex structure is integrable, then there
exists a unique complex structure (i.e., complex coordinates everywhere) inducing the almost complex one.

Remark: Say V has a complex structure given by J . We have

V = V ⊗R R →֒ V ⊗R C
pr1,0−→ V 1,0.

The vector space V 1,0 also has a complex structure, namely, multiplication by i. So, we have an isomorphism
V ∼= V 1,0, as R-spaces, but also an isomorphism V ∼= V 1,0, as C-spaces, where the complex structure on
V is J and the complex structure on V 0,1 is multiplication by i. Therefore, we also have an isomorphism
V ∼= V 1,0, where the complex structure on V is −J and the complex structure on V 0,1 is multiplication by
−i.

For tangent spaces, T 1,0
X is spanned by ∂/∂z1, . . . , ∂/∂zn, the space T

0,1
X is spanned by ∂/∂z1, . . . , ∂/∂zn;

also, TD 1,0
X is spanned by dz1, . . . , dzn and TD 0,1

X is spanned by dz1, . . . , dzn.
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2.2 Cohomology, de Rham, Dolbeault

Let X be a real 2n-dimensional C∞-manifold and let d be the exterior derivative, then we get the complex

TDX
d−→

2∧
TDX

d−→ · · · d−→
2n∧
TDX ,

(d2 = 0). The same is true for complex-valued forms, we have the complex

TDX ⊗R C
d−→

2∧
TDX ⊗R C

d−→ · · · d−→
2n∧
TDX ⊗R C,

(d2 = 0). Here, there is an abuse of notation: TDX denotes a sheaf, so we should really use a notation such as
T DX . To alleviate the notation, we stick to TDX , as the context makes it clear that it is a sheaf. These maps
induce maps on global C∞-sections, so we get the complexes

Γ(X,TDX )
d−→

2∧
Γ(X,TDX )

d−→ · · · d−→
2n∧

Γ(X,TDX )

and

Γ(X,TDX ⊗R C)
d−→

2∧
Γ(X,TDX ⊗R C)

d−→ · · · d−→
2n∧

Γ(X,TDX ⊗R C).

Define

Z lDR(X) = Ker d, where d :

l∧
Γ(X,TDX ) −→

l+1∧
Γ(X,TDX )

Z lDR(X)C = Ker d, where d :

l∧
Γ(X,TDX ⊗R C) −→

l+1∧
Γ(X,TDX ⊗R C)

BlDR(X) = Im d, where d :
l−1∧

Γ(X,TDX ) −→
l∧
Γ(X,TDX )

BlDR(X)C = Ker d, where d :

l−1∧
Γ(X,TDX ⊗R C) −→

l∧
Γ(X,TDX ⊗R C)

H l
DR(X) = Z lDR(X)/BlDR(X)

H l
DR(X)C = Z lDR(X)C/B

l
DR(X)C.

Note: H l
DR(X)C = H l

DR(X)⊗R C. These are the de Rham cohomology groups . For Dolbeault cohomology,
take X , a complex manifold of dimension n, view it as a real manifold of dimension 2n, consider the
complexified cotangent bundle, TDX ⊗R C, and decompose its wedge powers as

l∧
(TDX ⊗R C) =

∐

p+q=l

p,q∧
(TDX ⊗R C).

Since X is a complex manifold, d = ∂+ ∂ and so, ∂2 = ∂
2
= 0. Therefore, we get complexes by fixing p or q:

(a) Fix q:
∧0,q

(TDX ⊗R C)
∂−→ ∧1,q

(TDX ⊗R C)
∂−→ · · · ∂−→ ∧n,q

(TDX ⊗R C).

(b) Fix p:
∧p,0(TDX ⊗R C)

∂−→ ∧p,1(TDX ⊗R C)
∂−→ · · · ∂−→ ∧p,n(TDX ⊗R C).

The above are the Dolbeault complexes and we have the corresponding cohomology groups Hp,q

∂
(X) and

Hp,q
∂ (X). Actually, the Hp,q

∂
(X) are usually called the Dolbeault cohomology groups . The reason for that is

if f : X → Y is holomorphic, then df and (df)D respect the p, q-decomposition. Consequently,

(df)D :

p,q∧
(TDY,f(x) ⊗R C) −→

p,q∧
(TDX,x ⊗R C)
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for all x ∈ X and
(df)D ◦ ∂Y = ∂X ◦ (df)D

imply that (df)D induces maps Hp,q

∂
(Y ) −→ Hp,q

∂
(X).

The main local fact is the Poincaré lemma.

Lemma 2.3 (Poincaré Lemma) If X is a real C∞-manifold and is actually a star-shaped manifold (or
particularly, a ball in Rn), then

Hp
DR(X) = (0), for all p ≥ 1.

If X is a complex analytic manifold and is a polydisc (PD(0, r)), then

(a) Hp,q

∂
(X) = (0), for all p ≥ 0 and all q ≥ 1.

(b) Hp,q
∂ (X) = (0), for all q ≥ 0 and all p ≥ 1.

Proof . Given any form ω ∈ ∧p,q(PD(0, r)) with ∂ω = 0, we need to show that there is some

η ∈ ∧p,q−1
(PD(0, r)) so that ∂η = ω. There are three steps to the proof.

Step I . Reduction to the case p = 0.

Say the lemma holds is ω ∈ ∧0,q
(PD(0, r)). Then, our ω is of the form

ω =
∑

|I|=p
|J|=q

aI,J dzI ∧ dzJ .

Write

ωI =
∑

|J|=q

aI,J dzJ ∈
0,q∧

(PD(0, r)).

Claim: ∂ωI = 0.

We have ω =
∑

|I|=p dzI ∧ ωI and

0 = ∂ω =
∑

|I|=p

∂(dzI ∧ ωI) =
∑

|I|=p

±dzI ∧ ∂ωI .

These terms are in the span of

dzi1 ∧ · · · ∧ dzip ∧ dzj ∧ dzj1 ∧ · · · ∧ dzjq

and by linear independence of these various wedges, we must have ∂ωI = 0, for all I. Then, by the
assumption, there is some ηI ∈

∧0,q−1(PD(0, r)), so that ∂ηI = ωI . It follows that

ω =
∑

|I|=p

dzI ∧ ∂ηI =
∑

|I|=p

±∂(dzI ∧ ηI) = ∂(
∑

|I|=p

±dzI ∧ ηI),

with
∑

|I|=p±dzI ∧ ηI ∈
∧p,q−1

(PD(0, r)), which concludes the proof of Step I.

Step II : Interior part of the proof.

We will prove that for every ǫ > 0, there is some η ∈ ∧0,q−1
(PD(0, r)) so that ∂η = ω in PD(0, r − ǫ).

Let us say that η depends on dz1, . . . , dzs if the terms aJdzJ in η where J 6⊆ {1, . . . , s} are all zero, i.e.,
in η, only terms aJdzJ appear for J ⊆ {1, . . . , s}.



80 CHAPTER 2. COHOMOLOGY OF (MOSTLY) CONSTANT SHEAVES AND HODGE THEORY

Claim: If ω depends on dz1, . . . , dzs, then there is some η ∈ ∧0,q−1(PD(0, r)) so that ω − ∂η depends
only on dz1, . . . , dzs−1 in PD(0, r − ǫ).

Clearly, if the claim is proved, the interior part is done by a trivial induction. In ω, isolate the terms
depending on dz1, . . . , dzs−1, call these ω2 and ω1 the rest. Now, ω1 = θ ∧ dzs, so ω = θ ∧ dzs + ω2 and we
get

0 = ∂ω = ∂(θ ∧ dzs) + ∂ω2. (∗)

Examine the terms
∂aJ
∂zl

dzs ∧ dzJ , where l > s.

Linear independence and (∗) imply

∂aJ
∂zl

= 0 if J ⊆ {1, 2, . . . , s− 1} and l > s.

If s ∈ J , write J̃ = J − {s}. Look at the function

ηJ(z1, . . . , zn) =
1

2πi

∫

|ξ|≤r−ǫ

aJ (z1, . . . , zs−1, ξ, zs+1, . . . , zn)
dξ ∧ dξ
ξ − zs

. (∗∗)

We have the basic complex analysis lemma:

Lemma 2.4 Say g(ξ) ∈ C∞(∆r) (where ∆r is the open disc of radius r), then the function

f(z) =
1

2πi

∫

|ξ|≤r−ǫ

g(ξ)
dξ ∧ dξ
ξ − z

is in C∞(∆r) and
∂f

∂z
= g on ∆r−ǫ.

By this lemma, we have

aJ(z1, . . . , zn) =
∂ηJ
∂zs

on ∆r−ǫ(z’s)

and if l > s,
∂ηJ
∂zl

=
1

2πi

∫

|ξ|≤r−ǫ

∂aJ
∂zl

dξ ∧ dξ
ξ − zs

= 0,

by the above. So, if we set η =
∑

J ηJdzJ̃ , then ω − ∂η depends only on dz1, . . . , dzs−1 in PD(0, r − ǫ).
Step III : Exhaustion.

Pick a sequence, {ǫt}, with ǫt monotonically decreasing to 0 and examine PD(0, r−ǫt). Write rt = r−ǫt,
then the sequence {rt} monotonically increases to r.

Claim. We can find a sequence, ηt ∈
∧0,q−1

(PD(0, r)), such that

(1) ηt has compact support in PD(0, rt+1).

(2) ηt = ηt−1 on PD(0, rt−1).

(3) ∂ηt = ω on PD(0, rt).

We proceed by induction on q, here is the induction step. Pick a sequence of cutoff C∞-functions, γt, so
that
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(i) γt has compact support in PD(0, rt+1).

(ii) γt ≡ 1 on PD(0, rt).

Having chosen ηt, we will find ηt+1. First, by the interior part of the proof, there is some
η̃t+1 ∈

∧0,q−1
(PD(0, r)) with ∂η̃t+1 = ω in PD(0, rt+1). Examine η̃t+1 − ηt on PD(0, rt), then

∂(η̃t+1 − ηt) = ∂η̃t+1 − ∂ηt = ω − ω = 0.

By the induction hypothesis, there is some β ∈ ∧0,q−2
(PD(0, r)) with

∂β = η̃t+1 − ηt on PD(0, rt).

Let ηt+1 = γt+1(η̃t+1 − ∂β) = γt+1ηt. We have

(1) ηt+1 ∈ C∞
0 (
∧0,q−1

(PD(0, rt+2))).

(3) As γt+1 ≡ 1 on PD(0, rt+1), we have ηt+1 = η̃t+1 − ∂β and so, ∂ηt+1 = ∂η̃t+1 = ω on PD(0, rt+1).

(2) ηt+1 − ηt = η̃t+1 − ∂β − ηt = 0 on PD(0, rt).

Now, for any compact subset, K, in PD(0, r), there is some t so that K ⊆ PD(0, rt). It follows that the
ηt’s stabilize on K and our sequence converges uniformly on compacta. Therefore,

η = lim
t7→∞

ηt = ∂η and ∂η = lim
t7→∞

∂ηt = ω.

Finally, we have to deal with the case q = 1. Let ω ∈ ∧0,1(PD(0, r)), with ∂ω = 0. Again, we need to
find some functions, ηt, with compact support on PD(0, rt+1), so that

(α) ∂ηt = ω on PD(0, rt).

(β) ηt converges uniformly on compacta to η, with ∂η = ω. Here, ηt, η ∈ C∞(PD(0, r)).

Say we found ηt with

‖ηt − ηt−1‖∞,PD(0,rt−2)
≤ 1

2t−1
.

Pick η̃t+1 ∈ C∞(PD(0, r)), with ∂η̃t+1 = ω on PD(0, rt+1). Then, on PD(0, rt), we have

∂(η̃t+1 − ηt) = ∂η̃t+1 − ∂ηt = ω − ω = 0.

So, η̃t+1−ηt is holomorphic in PD(0, rt). Take the MacLaurin series for it and truncate it to the polynomial
θ so that on the compact PD(0, rt−1), we have

‖η̃t+1 − ηt − θ‖∞,PD(0,rt−1)
≤ 1

2t
.

Take ηt+1 = γt+1(η̃t+1 − θ). Now, ηt+1 has compact support on PD(0, rt+2) and on PD(0, rt+1), we have
γt+1 ≡ 1. This implies that ηt+1 = η̃t+1 − θ, so

‖ηt+1 − ηt‖∞,PD(0,rt−1)
≤ 1

2t

and
∂ηt+1 = ∂η̃t+1 + ∂θ = ∂η̃t+1 = ω on PD(0, rt+1),

as θ is a polynomial. Therefore, the ηt’s converge uniformly on compacta and if η = limt7→∞ ηt, we get
∂η = ω.
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Corollary 2.5 (∂∂ Poincaré) Say ω ∈ ∧p,q(U), where U ⊆ X is an open subset of a complex manifold, X,
and assume dω = 0. Then, for all x ∈ U , there is a neighborhood, V ∋ x, so that ω = ∂∂η on V , for some
η ∈ ∧p−1,q−1

(V ).

Proof . The statement is local on X , therefore we may assume X = Cn. By ordinary d-Poincaré, for every
x ∈ X , there is some open, V1 ∋ x, and some ζ ∈ ∧p+q−1

(V1), so that ω = dζ. Now,

p+q−1∧
(V1) =

∐

r+s=p+q−1

r,s∧
(V1),

so, ζ = (ζr,s), where ζr,s ∈
∧r,s(V1). We have

ω = dζ =
∑

r,s

dζr,s =
∑

r,s

(∂ + ∂)ζr,s.

Observe that if (r, s) 6= (p− 1, q) or (r, s) 6= (p, q − 1), then the ζr,s’s have dζr,s 6∈
∧p,q

(V1). It follows that
ζr,s = 0 and we can delete these terms from ζ; we get ζ = ζp−1,q + ζp,q−1 with dζ = 0. We also have

ω = dζ = (∂ + ∂)ζ = ∂ζp−1,q + ∂ζp,q−1 + ∂ζp−1,q + ∂ζp,q−1 = ω + ∂ζp−1,q + ∂ζp,q−1,

that is, ∂ζp−1,q + ∂ζp,q−1 = 0. Yet, ∂ζp−1,q and ∂ζp,q−1 belong to different bigraded components, so
∂ζp−1,q = ∂ζp,q−1 = 0. We now use the ∂ and ∂-Poincaré lemma to get a polydisc, V ⊆ V1 and some forms

η1 and η2 in
∧p−1,q−1

(V ), so that ζp−1,q = ∂η1 and ζp,q−1 = ∂η2. We get

∂∂(η1) = ∂ζp−1,q and ∂∂(η2) = −∂∂(η2) = −∂ζp,q−1

and so,
∂∂(η1 − η2) = ∂ζp−1,q + ∂ζp,q−1 = ω,

which concludes the proof.

Remark: Take C∞ = the sheaf of germs of real-valued C∞-functions on X , then

H = Ker

(
∂∂ : C∞ −→

1,1∧
(X)

)

is called the sheaf of germs of pluri-harmonic functions .

Corollary 2.6 With X as in Corollary 2.5, the sequences

0 −→ ΩpX →֒
p,0∧
X

∂−→
p,1∧
X

∂−→ · · ·

(when p = 0, it is 0 −→ OX →֒
∧0,0X

∂−→ ∧0,1X
∂−→ · · · ),

0 −→ Ω
q

X →֒
0,q∧
X

∂−→
1,q∧
X

∂−→ · · ·

and

0 −→ H →֒ C∞X ∂∂−→
1,1∧
X

d−→
2,1∧
X
∐ 1,2∧

X
d−→ · · ·

are resolutions (i.e., exact sequences of sheaves) of ΩpX , Ω
q

X , H, respectively.
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Proof . These are immediate consequences of ∂, ∂, ∂∂ and d-Poincaré.

In Corollary 2.6, the sheaf ΩpX is the sheaf of holomorphic p-forms (locally, ω =
∑
I aIdzI , where the aI

are holomorphic functions), Ω
q

X is the sheaf of anti-holomorphic q-forms (ω =
∑
I aIdzI , where the aI are

anti-holomorphic functions) and H is the sheaf of pluri-harmonic functions .

If F is a sheaf of abelian groups, by cohomology, we mean derived functor cohomology, i.e., we have

Γ: F 7→ F(X) = Γ(X,F),

a left-exact functor and

Hp(X,F) = (RpΓ)(F) ∈ Ab.
We know that this cohomology can be computed using flasque (= flabby) resolutions

0 −→ F −→ G0 −→ G1 −→ · · · −→ Gn −→ · · · ,

where the Gi’s are flasque, i.e., for every open, U ⊆ X , for every section σ ∈ G(U), there is a global section,
τ ∈ G(X), so that σ = τ ↾ U . If we apply Γ, we get a complex of (abelian) groups

0 −→ Γ(X,F) −→ Γ(X,G0) −→ Γ(X,G1) −→ · · · −→ Γ(X,Gn) −→ · · · , (∗)

and then Hp(X,F) = the pth cohomology group of (∗).
Unfortunately, the sheaves arising naturally (from forms, etc.) are not flasque; they satisfy a weaker

condition. In order to describe this condition, given a sheaf, F , we need to make sense of F(S), where
S ⊆ X is a closed subset. Now, remember (see Appendix A on sheaves, Section A4) that for any subspace,
Y of X , if j : Y →֒ X is the inclusion map, then for any sheaf, F , on X , the sheaf j∗F = F ↾ Y is the
restriction of F to Y . For every x ∈ Y , the stalk of F ↾ Y at x is equal to Fx. Consequently, if S is any
subset of X , we have σ ∈ F(S) iff there is an open cover, {Uα}, of S and a family of sections, σα ∈ F(Uα),
so that for every α, we have

σ ↾ S ∩ Uα = σα ↾ S ∩ Uα.

Remark: (Inserted by J.G.) If X is paracompact , then for any closed subset, S ⊆ X , we have

F(S) = lim−→
U⊇S

F(U),

where U ranges over all open subsets of S (see Godement[5] , Chapter 3, Section 3.3, Corollary 1). [Recall
that for any cover, {Uα}α, of X , we say that that {Uα}α is locally finite iff for every x ∈ X , there is some
open subset, Ux ∋ x, so that Ux meets only finitely many Uα. A topological space, X , is paracompact iff it
is Hausdorff and if every open cover possesses a locally finite refinement.]

Now, we want to consider sheaves, F , such that for every closed subset, S, the restriction map
F(X) −→ F(S) is onto.

Definition 2.3 Let X be a paracompact topological space. A sheaf, F , is soft (mou) iff for every closed
subset, S ⊆ X , the restriction map F(X) −→ F ↾ S(S) is onto. A sheaf, F , is fine iff for all locally finite
open covers, {Uα −→ X}, there exists a family, {ηα}, with ηα ∈ End(F), so that

(1) ηα ↾ Fx = 0, for all x in some neighborhood of U cα, i.e., supp(ηα) ⊆ Uα.

(2)
∑
α ηα = id.

We say that the family {ηα} is a sheaf partition of unity subordinate to the given cover {Uα −→ X} for F .
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Remark: The following sheaves are fine on any complex or real C∞-manifold:

(1) C∞

(2)
∧p

(3)
∧p,q

(4) Any locally-free C∞-bundle (= C∞-vector bundle).

For, any open cover of our manifold has a locally finite refinement, so we may assume that our open cover is
locally finite (recall, a manifold is locally compact and second-countable, which implies paracompactness).
Then, take a C∞-partition of unity subordinate to our cover, {Uα −→ X}, i.e., a family of C∞-functions,
ϕα, so that

(1) ϕα ≥ 0.

(2) supp(ϕ) << Uα (this means supp(ϕ) is compact and contained in Uα).

(3)
∑
α ϕα = 1.

Then, for ηα, use multiplication by ϕα

Remark: If we know a sheaf of rings, A, on X is fine, then every A-module is also fine and the same with
soft.

Proposition 2.7 Let X be a paracompact space. Every fine sheaf is soft. Say

0 −→ F ′ λ−→ F µ−→ F ′′ −→ 0

is an exact sequence of sheaves and F ′ is soft. Then,

0 −→ F ′(X) −→ F(X) −→ F ′′(X) −→ 0 is exact.

Again, if

0 −→ F ′ λ−→ F µ−→ F ′′ −→ 0

is an exact sequence of sheaves and if F ′ and F are soft, so is F ′′. Every soft sheaf is cohomologically trivial
(Hp(X,F) = (0) if p > 0).

Proof . Take F fine, S closed and τ ∈ F(S). There is an open cover of S and sections, τα ∈ F(Uα), so that
τα ↾ Uα ∩ S = τ ↾ Uα ∩ S. Let U0 = X − S, an open, so that U0 and the Uα cover X . By paracompactness,
we may asume that the cover is locally finite. Take the ηα ∈ Aut(F) guaranteed as F is fine. Now, we have
ηα(τα) = 0 near the boundary of Uα, so ηα(τα) extends to all of X (as section) by zero, call it σα. We have
σα ∈ F(X) and

σ =
∑

α

σα exists (by local finiteness).

As σα ↾ Uα ∩ S = τα ↾ Uα ∩ S, we get

σα = ηα(τα) = ηα(τ) on Uα ∩ S

and we deduce that

σ =
∑

α

σα =
∑

α

ηα(τα) =
∑

α

ηα(τ) =
(∑

α

ηα

)
(τ) = τ ; on S.
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Therefore, σ is a lift of τ to X from S.

Exactness of the sequence

0 −→ F ′ λ−→ F µ−→ F ′′ −→ 0

implies that for every σ ∈ F ′′(X), there is an open cover, {Uα −→ X}, and a family of sections, τα ∈ F(Uα),
so that µ(τα) = σ ↾ Uα. By paracompactness, we may replace the Uα’s by a locally finite family of closed
sets, Sα. Consider the set

S =

{
(τ, S)

∣∣∣∣
(1) S =

⋃
Sα, for some of our Sα

(2) τ ∈ F(S), τ ↾ Sα = τα, for each Sα as in (1).

}

The set S is, as usual, partially ordered and it is inductive (DX). By Zorn’s lemma, S possesses a maximal
element, (τ, S). I claim that X = S.

If S 6= X , then there is some Sβ with Sβ 6⊆ S. On S ∩ Sβ, we have

µ(τ − τβ) = σ − σ = 0,

where µ(τ) = σ, by (2), and µ(τβ) = σ, by definition. By exactness, there is some ζ ∈ F ′(S ∩ Sβ) so that
λ(ζ) = τ − τβ on S ∩ Sβ . Now, as F ′ is soft, ζ extends to a global section of F ′, say, z. Define ω by

ω =

{
τ on S
τβ + λ(z) on Sβ .

On S ∩ Sβ , we have ω = τ = τβ + λ(z) = τβ + λ(ζ) = τ , so ω and τ agree. But then, (ω, S ∪ Sβ) ∈ S and
(ω, S ∪ Sβ) > (τ, S), a contradiction. Therefore, the sequence

0 −→ F ′ λ−→ F µ−→ F ′′ −→ 0

has globally exact sections.

Now, assume that F ′ and F are soft and take τ ∈ F ′′, with S closed. Apply the above to X = S; as F ′

is soft, we deduce that F(S) −→ F ′′(S) is onto. As F and F ′ are soft, the commutative diagram

F(X) //

��

F ′′(X)

��
F(S) //

��

F ′′(S) // 0

0

implies that F ′′(X) −→ F ′′(S) is surjective.

For the last part, we use induction. The induction hypothesis is: If F is soft, then Hp(X,F) = (0), for
0 < p ≤ n. When n = 1, we can embed F in a flasque sheaf, Q, and we have the exact sequence

0 −→ F −→ Q −→ cok −→ 0. (†)

If we apply cohomology we get

0 −→ H1(X,F) −→ H1(X,Q) = (0),

since Q is flasque, so H1(X,F) = (0).
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For the induction step, use (†) and note that cok is soft because Fand Q are soft (Q is flasque and flasque
sheaves are soft over a paracompact space, see Homework). When we apply cohomology, we get

(0) = Hj(X,Q) −→ Hj(X, cok) −→ Hj+1(X,F) −→ Hj+1(X,Q) = (0), (j ≥ 1)

so Hj(X, cok) ∼= Hj+1(X,F). As cok is soft, by the induction hypothesis, Hj(X, cok) = (0), so
Hj+1(X,F) = (0).

Corollary 2.8 Each of the resolutions (p > 0)

0 −→ ΩpX −→
p,0∧
X

∂−→
p,1∧
X

∂−→ · · · ,

(for p = 0, a resolution of OX),

0 −→ Ω
q

X −→
0,q∧
X

∂−→
1,q∧
X

∂−→ · · · ,

and

0 −→ R

C
−→

0∧
X = C∞ d−→

1∧
X

d−→ · · · ,

is an acyclic resolution (i.e., the cohomology of
∧p,q

X,
∧p

X vanishes).

Proof . The sheaves
∧p,q

X ,
∧p

X are fine, therefore soft, by Proposition 2.7.

Recall the spectral sequence of Čech cohomology (ŠS):

Ep,q2 = Ȟp(X,Hq(F)) =⇒ H•(X,F),

where

(1) F is a sheaf of abelian groups on X

(2) Hq(F) is the presheaf defined by U  Hq(U,F).

Now, we have the following vanishing theorem (see Godement [5]):

Theorem 2.9 (Vanishing Theorem) Say X is paracompact and F is a presheaf on X so that F ♯(= associated
sheaf to F) is zero. Then,

Ȟp(X,F) = (0), all p ≥ 0.

Putting the vanishing theorem together with the spectral sequence (ŠS), we get:

Theorem 2.10 (Isomorphism Theorem) If X is a paracompact space, then for all sheaves, F , the natural
map

Ȟp(X,F) −→ Hp(X,F)
is an isomorphism for all p ≥ 0.

Proof . The natural map Ȟp(X,F) −→ Hp(X,F) is just the edge homomorphism from (ŠS). By the
handout on cohomology,

Hq(F)♯ = (0), all q ≥ 1.

Thus, the vanishing says
Ep,q2 = Ȟp(X,Hq(F)) = (0), all p ≥ 0, q ≥ 1,

which implies that the spectral sequence (ŠS) degenerates and we get our isomorphism.
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Comments: How to get around the spectral sequence (ŠS).

(1) Look at the presheaf F and the sheaf F ♯. There is a map of presheaves, F −→ F ♯, so we get a map,
Ȟp(X,F) −→ Ȟp(X,F ♯). Let K = Ker (F −→ F ♯) and C = Coker (F −→ F ♯). We have the short exact
sequences of presheaves

0 −→ K −→ F −→ Im −→ 0 and 0 −→ Im −→ F ♯ −→ C −→ 0,

where Im is the presheaf image F −→ F ♯. The long exact sequence of Čech cohomology for presheaves gives

· · · −→ Ȟp(X,K) −→ Ȟp(X,F) −→ Ȟp(X, Im) −→ Ȟp+1(X,K) −→ · · ·

and
· · · −→ Ȟp−1(X,C) −→ Ȟp(X, Im) −→ Ȟp(X,F ♯) −→ Ȟp(X,C) −→ · · · ,

and as K♯ = C♯ = (0), by the vanishing theorem, we get

Ȟp(X,F) ∼= Ȟp(X, Im) ∼= Ȟp(X,F ♯).

Therefore, on a paracompact space, Ȟp(X,F) ∼= Ȟp(X,F ♯).
(2) Čech cohomology is a δ-functor on the category of sheaves for paracompact X .

Say
0 −→ F ′ −→ F −→ F ′′ −→ 0

is exact as sheaves. Then, if we write Im for Im(F −→ F ′′) as presheaves, we have the short exact sequence
of presheaves

0 −→ F ′ −→ F −→ Im −→ 0

and Im♯ = F ′′. Then, for presheaves, we have

· · · −→ Ȟp(X,F) −→ Ȟp(X, Im) −→ Ȟp+1(X,F ′) −→ · · ·

and by (1), Ȟp(X,F) ∼= Ȟp(X,F ♯), so we get (2).

(3) One knows, for soft F on a paracompact space, X , we have Ȟp(X,F) = (0), for all p ≥ 1. Each
F embeds in a flasque sheaf; flasque sheaves are soft, so {Ȟ•} is an effaceable δ-functor on the category of
sheaves and it follows that {Ȟ•} is universal. By homological algebra, we get the isomorphism theorem,
again.

In fact, instead of (3), one can prove the following proposition:

Proposition 2.11 Say X is paracompact and F is a fine sheaf. Then, for a locally finite cover, {Uα −→ X},
we have

Ȟp({Uα −→ X},F) = (0), if p ≥ 1.

Proof . Take {ηα}, the sheaf partition of unity of F subordinate to our cover, {Uα −→ X}. Pick
τ ∈ Zp({Uα −→ X},F), with p ≥ 1. So, we have τ = τ(Uα0 ∩ · · · ∩ Uαp). Write

ω =
∑

β

ηβ(τ(Uβ ∩ Uα0 ∩ · · · ∩ Uαp)).

Observe that ω exists as section over Uα0 ∩ · · · ∩ Uαp as ηβ is zero near the boundary of Uβ; so ω can be
extended from Uβ ∩ Uα0 ∩ · · · ∩ Uαp to Uα0 ∩ · · · ∩ Uαp by zero. You check (usual computation): dω = τ .

Corollary 2.12 If F is fine (over a paracompact, X), then

Ȟp(X,F) = (0), for all p ≥ 1.
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Figure 2.1: A triangulated manifold

Theorem 2.13 (P. Dolbeault) If X is a complex manifold, then we have the isomorphisms

Hq(X,ΩpX) ∼= Hp,q

∂
(X) ∼= Ȟq(X,ΩpX).

Proof . The middle cohomology is computed from the resolution of sheaves

0 −→ ΩpX −→
p,0∧
X

∂−→
p,1∧
X

∂−→
p,2∧
X

∂−→ · · · .

Moreover, the
∧p,q

X are acyclic for H•(X,−) and for Ȟ•(X,−). Yet, by homological algebra, we can
compute Hq(X,ΩpX) and Ȟq(X,ΩpX) by any acyclic resolution (they are δ-functors),

To prove de Rham’s theorem, we need to look at singular cohomology.

Proposition 2.14 If X is a real or complex manifold and F is a constant sheaf (sheaf associated with a
constant presheaf), then there is a natural isomorphism

Ȟp(X,F) ∼= Hp
sing(X,F),

provided F is torsion-free.

Proof . The space, X , is triangulable, so we get a singular simplicial complex, K (see Figure 2.1). Pick a
vertex, v, of K and set

St(v) =
⋃
{◦σ∈ K | v ∈ σ},

the open star of v (i.e., the union of the interiors of the simplices having v as a vertex). If v0, . . . , vp are
vertices, consider

St(v0) ∩ · · · ∩ St(vp) = Uv0,...,vp .

We have

Uv0,...,vp =

{
∅ if v0, . . . , vp are not the vertices of a p-simplex
a connected set if v0, . . . , vp are the vertices of a p-simplex.

Observe that {Uv −→ X}v∈vert(K) is an open cover of X and as F is a constant sheaf, we get

F(Uv0,...,vp) =
{
0 if (v0, . . . , vp) /∈ K
F if (v0, . . . , vp) ∈ K.

Let τ be a Čech p-cochain, then τ(Uv0,...,vp) ∈ F and let

Θ(τ)((v0, . . . , vp)) = τ(Uv0,...,vp),

where (v0, . . . , vp) ∈ K. Note that Θ(τ) is a p-simplicial cochain and the map τ 7→ Θ(τ) is an isomorphism

Cp({Uv −→ X},F) ∼= Cpsing(X,F)

that commutes with the coboundary operators on both sides. So, we get the isomorphism

Ȟp({Uv −→ X},F) ∼= Hp
sing(X,F).

We can subdivide K simplicially and we get refinements of our cover and those are arbitrarily fine. Subdivision
does not change the right hand side and if we take right limits we get

Ȟp(X,F) ∼= Hp
sing(X,F).

As a consequence, we obtain
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Theorem 2.15 (de Rham) On a real or complex manifold, we have the isomorphisms

Hp

(
X,

R

C

)
∼= Ȟp

(
X,

R

C

)
∼= Hp

sing

(
X,

R

C

)
∼= Hp

DR

(
X,

R

C

)

Proof . The isomorphism of singular cohomology with Čech cohomology follows from Proposition 2.14. The
isomorphism of derived functor cohomology with Čech cohomology follows since X is paracompact. Also de
Rham cohomology is the cohomology of the resolution

0 −→ R

C
−→ C∞ d−→

1∧
X

d−→
2∧
X

d−→ · · · ,

and the latter is an acyclic resolution, so it computes Hp or Ȟp.

Explicit Connection: de Rham  Singular.

Take a singular p-chain,
∑

j aj∆j , where ∆j = fj(∆); fj ∈ C(∆); ∆ = the usual p-simplex (aj ∈ Z, or
aj ∈ R, or aj ∈ C, ... .) We say that this p-chain is piecewise smooth, for short, ps , iff the fj ’s actually
are C∞-functions on a small neighborhood around ∆. By the usual C∞-approximation (using convolution),
each singular p-chain is approximated by a ps p-chain in such a way that cocycles are approximated by ps
cocycles and coboundaries, too. In fact, the inclusion

Cps
p (X,R) →֒ Csing

p (X,R)

is a chain map and induces an isomorphism

Hps
p (X,R) →֒ Hsing

p (X,R).

Say ω ∈ ∧pX , a de Rham p-cochain, i.e., a p-form. If σ ∈ Cps
p (X,R), say σ =

∑
j ajfj(∆) (with aj ∈ R),

then define Φ(ω) via:

Φ(ω)(σ) =

∫

σ

ω
def
=
∑

j

aj

∫

fj(∆)

ω
def
=
∑

j

aj

∫

∆

f∗
j ω ∈ R.

The map Φ(ω) is clearly a linear map on Cps
p (X,R), so we have Φ(ω) ∈ Cpps(X,R). Also, observe that

Φ(dω)(τ) =

∫

τ

ω =

∫

∂τ

ω (by Stokes) = Φ(ω)(∂τ),

from which we conclude that Φ(dω)(τ) = (∂Φ)(ω)(τ), and thus, Φ(dω) = ∂Φ(ω). This means that

∫
:

p∧
(X,R) −→ Cpps(X,R)

is a cochain map and so, we get our map

Hp
DR(X,R) −→ Hp

sing(X,R).

2.3 Hodge I, Analytic Preliminaries

Let X be a complex analytic manifold. An Hermitian metric on X is a C∞-section of the vector bundle

(T 1,0
X ⊗T 1,0

X )D, which is Hermitian symmetric and positive definite. This means that for each z ∈ X , we have

a map (−,−)z : T 1,0
X,z ⊗ T 1,0

X,z −→ C which is linear in its first argument, Hermitian symmetric and positive
definite, that is:
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(1) (v, u)z = (u, v)z (Hermitian symmetric)

(2) (u1 + u2, v)z = (u1, v)z + (u2, v)z and (u, v1 + v2)z = (u, v1)z + (u, v2)z .

(3) (λu, v)z = λ(u, v)z and (u, µv)z = µ(u, v)z .

(4) (u, u)z ≥ 0, for all u, and (u, u)z = 0 iff u = 0 (positive definite).

(5) z 7→ h(z) = (−,−)z is a C∞-function.

Remark: Note that (2) and (3) is equivalent to saying that we have a C-linear map, T 1,0
X,z ⊗ T

0,1
X,z −→ C.

In local coordinates, since (T 1,0
X )D =

∧1,0
TDX and T 1,0

X = T 0,1
X and since {dzj}, {dzj} are bases for∧1,0

TDX,z and
∧0,1

TDX,z, we get

h(z) =
∑

k,l

hkl(z)dzk ⊗ dzl,

for some matrix (hkl) ∈ Mn(C). Now, (−,−)z is an Hermitian inner product, so locally on a trivializing
cover for T 1,0

X , T 0,1
X , by Gram-Schmidt, we can find (1, 0)-forms, ϕ1, . . . , ϕn, so that

(−,−)z =
n∑

j=1

ϕj(z)⊗ ϕj(z).

The collection ϕ1, . . . , ϕn is called a coframe for (−,−) (on the respective open of the trivializing cover).
Using a partition of unity subordinate to a trivializing cover, we find all these data exist on any complex
manifold.

Consider ℜ(−,−)z and ℑ(−,−)z. For λ ∈ R, (1), (2), (3), (4), imply that ℜ(−,−)z is a positive definite
bilinear form, C∞ as a function of z, i.e, as TX,z real tangent space ∼= T 1,0

X,z, we see that ℜ(−,−)z is a C∞-
Riemannian metric on X . Hence, we have concepts such as length, area, volume, curvature, etc., associated
to an Hermitian metric, namely, those concepts for the real part of (−,−)z, i.e., the associated Riemannian
metric.

If we look at ℑ(−,−)z, then (1), (2), (3) and (5) imply that for λ ∈ R, we have an alternating real

bilinear nondegenerate form on T 1,0
X,z, C

∞ in z. That is, we get an element of (T 1,0
X,z∧T

1,0
X,z)

D ⊆ ∧2(TDX,z⊗C).

In fact, this is a (1, 1)-form. Look at ℑ(−,−)z in a local coframe. Say ϕk = αk + iβk, where αk, βk ∈ TDX,z.
We have

∑

k

ϕk(z)⊗ ϕk(z) =
∑

k

(αk(z) + iβk(z))⊗ (αk(z)− iβk(z))

=
∑

k

(αk(z)⊗ αk(z) + βk(z)⊗ βk(z)) + i
∑

k

(βk(z)⊗ αk(z)− αk(z)⊗ βk(z)).

Now, a symmetric bilinear form yields a linear form on S2TX,z = S2T 1,0
X,z; consequently, the real part of the

Hermitian inner product is ℜ(−,−)z =
∑
k(αk(z)

2 + βk(z)
2). We usually write ds2 for

∑
k ϕk ⊗ ϕk and

ℜ(ds2) is the associated Riemannian metric. For ℑ(ds2), we have a form in
∧2(T 1,0

X,z)
D:

ℑ(ds2) = −2
n∑

k=1

αk ∧ βk.

We let

ωds2 = ω = −1

2
ℑ(ds2)
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and call it the associated (1, 1)-form to the Hermitian ds2. If we write ϕk = αk + iβk, we have

n∑

k=1

ϕk ∧ ϕk =
n∑

k=1

(αk + iβk) ∧ (αk − iβk) = −2i
n∑

k=1

αk ∧ βk.

Therefore,

ω =

n∑

k=1

αk ∧ βk =
i

2

n∑

k=1

ϕk ∧ ϕk,

which shows that ω is a (1, 1)-form.

Remark: The expession for ω in terms of ℑ(ds2) given above depends on the definition of ∧. In these notes,

α ∧ β =
1

2
(α⊗ β − β ⊗ α),

but in some books, one finds

ω = −ℑ(ds2).

Conversely, suppose we are given a real (1, 1)-form. This means, ω is a (1, 1)-form and for all ξ,

ω(ξ) = ω(ξ) (reality condition).

Define an “inner product” via

H(v, w) = ω(v ∧ iw).
We have

H(w, v) = ω(w ∧ iv)
= −ω(iv ∧ w)
= ω(iv ∧ w)
= ω(iv ∧ w)
= ω(v ∧ iw)
= H(v, w).

(Note we could also set H(v, w) = −ω(v ∧ iw).) Consequently, H(v, w) will be an inner product provided
H(v, v) > 0 iff v 6= 0. So, we need ω(v ∧ iv) = −iω(v ∧ v) > 0, for all v 6= 0. Therefore, we say ω is positive
definite iff

−iω(v ∧ v) > 0, for all v 6= 0.

Thus, ω = −(1/2)ℑ(ds2) recaptures all of ds2. You check (DX) that ω is positive definite iff in local
coordinates

ω =
i

2

∑

k,l

hkl(z)dzk ∧ dzl,

where (hkl) is a Hermitian positive definite matrix.

Example 1. Let X = Cn, with ds2 =
∑n
k=1 dzk ⊗ dzk. As usual, if zk = xk + iyk, we have

(a) ℜ(ds2) =∑n
k=1(dx

2
k + dy2k), the ordinary Euclidean metric.

(b) ω = −(1/2)ℑ(ds2) = (i/2)
∑n

k=1 dzk ∧ dzk, a positive definite (1, 1)-form.
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Remark: Assume that f : Y → X is a complex analytic map and that we have an Hermitian metric on X .
Then, Df : TY → TX maps T 1,0

Y,y to T 1,0
X,f(y), for all y ∈ Y . We define an “inner product” on Y via

(
∂

∂yk
,
∂

∂yl

)

y

=

(
Df

∂

∂yk
, Df

∂

∂yl

)

f(y)

.

We get a Hermitian symmetric form on Y . If we assume that Df is everywhere an injection, then our
Hermitian metric, ds2, on X induces one on Y ; in particular, this holds if Y →֒ X .

Assume Df is injective everywhere. We have the dual map, f∗ : TDX → TDY , i.e., f∗ :
∧1,0

X → ∧1,0
Y .

Pick U small enough in Y so that

(1) TY ↾ U is trivial

(2) TX ↾ f(U) is trivial.

(3) We have a local coframe, ϕ1, . . . , ϕn, on TX ↾ f(U) and f∗(ϕm+1) = · · · = f∗(ϕn) = 0, where
m = dim(Y ) and n = dim(X).

Then,

f∗ωX = f∗

(
i

2

n∑

k=1

ϕk ∧ ϕk
)

=
i

2

m∑

k=1

f∗(ϕk) ∧ f∗(ϕk) = ωY .

Hence, the (1, 1)-form of the induced metric on Y (from X) is the pullback of the (1, 1)-form of the metric
on X .

Consequently (Example 1), on an affine variety, we get an induced metric and an induced form computable
from the embedding in some CN .

Example 2: Fubini-Study Metric on Pn. Let π be the canonical projection, π : Cn+1 − {0} → Pn, let
z0, . . . , zn be coordinates on Cn+1 and let (Z0 : · · · : Zn) be homogeneous coordinates on Pn. For a small
open , U , pick some holomorphic section, F : U → Cn+1 − {0}, of π (so that π ◦ F = idU ). For any p ∈ U ,
consider

‖F (p)‖2 =

n∑

j=0

Fj(p)Fj(p) 6= 0.

Pick U small enough so that log ‖F‖2 is defined. Now, set

ωF =
i

2π
∂∂ log ‖F‖2 .

We need to show that this definition does not depend on the choice of the holomorphic section, F . So, let
S be another holomorphic section of π over U . As π ◦ S = π ◦ F = id on U , we have

(S0(p) : · · · : Sn(p)) = (F0(p) : · · · : Fn(p)), for all p ∈ U,

so, there is a holomorphic function, λ, on U , so that

λ(p)S(p) = F (p), for all p ∈ U.

We have
‖F‖2 = FF = λλSS = λλ ‖S‖2 ,

so we get
log ‖F‖2 = logλ+ logλ+ log ‖F‖2 .



2.3. HODGE I, ANALYTIC PRELIMINARIES 93

Consequently,

ωF =
i

2π
∂∂(log λ+ logλ) + ωS = ωS ,

since λ is holomorphic, λ is anti-holomorphic, ∂(holo) = 0, ∂∂ = −∂∂ and ∂(anti-holo) = 0. Clearly, our
ωF are (1, 1)-forms. Now, cover Pn by opens, as above; pick any section on each such open, use a partition
of unity and get a global (1, 1)-form on Pn which is C∞. We still need to check positivity, but since the
unitary group, U(n+ 1), acts transitively on Cn+1, we see that PU(n) acts transitively on Pn and our form
is invariant. Therefore, it is enough to check positivity at one point, say (1 : 0 : · · · : 0). This point lies in
the open Z0 6= 0. Lift Z0 to Cn+1 − {0} via

F : (Z0 : · · · : Zn) 7→ (1, z1, . . . , zn), where zj =
Zj
Z0
.

Thus, ‖F‖2 = 1 +
∑n

k=1 zkzk, and we get

∂∂ log
(
1 +

n∑

k=1

zkzk

)
= ∂

( ∑n
k=1 zkdzk

1 +
∑n

k=1 zkzk

)

=

(∑n
k=1 dzk ∧ dzk

)(
1 +

∑n
k=1 zkzk

)
−
(∑n

k=1 zkdzk

)
∧
(∑n

l=1 zldzl

)

(
1 +

∑n
k=1 zkzk

)2 .

When we evaluate the above at (1 : 0 : · · · : 0), we get
∑n

k=1 dzk ∧ dzk and so

ωF (1 : 0 : · · · : 0) =
i

2π

n∑

k=1

dzk ∧ dzk,

which is positive. Therefore, we get a Hermitian metric on Pn, this is the Fubini-Study metric. As a
consequence, every projective manifold inherits an Hermitian metric from the Fubini-Study metric.

From now on, assume that X is compact manifold (or each object has compact support). Look at the
bundles

∧p,q
and choose once and for all an Hermitian metric on X and let ω be the associated positive

(1, 1)-form. So, locally in a coframe,

ω =
i

2

n∑

k=1

ϕk ∧ ϕk.

At each z, a basis for
∧p,q
z is just {ϕI ∧ ϕJ}, where I = {i1 < · · · < ip}, J = {j1 < · · · < jq} and

ϕI ∧ ϕJ = ϕi1 ∧ · · · ∧ ϕip ∧ ϕj1 ∧ · · · ∧ ϕjq .

We can define an orthonormal basis of
∧p,q
z if we decree that the ϕI ∧ ϕJ are pairwise orthogonal, and we

set
‖ϕI ∧ ϕJ‖2 = (ϕI ∧ ϕJ , ϕI ∧ ϕJ) = 2p+q.

This gives
∧p,q
z a C∞-varying Hermitian inner product. To understand where 2p+q comes from, look at C.

Then, near z, we have ϕ = dz, ϕ = dz, so

dz ∧ dz = (dx+ idy) ∧ (dx − idy) = −i(dx ∧ dy + dx ∧ dy) = −2i dx ∧ dy.

Therefore, ‖dz ∧ dz‖ = 2 and ‖dz ∧ dz‖2 = 4 = 21+1 (here, p = 1 and q = 1).

Let us write
∧p,q

(X) for the set of global C∞-sections, ΓC∞(X,
∧p,q

). Locally, on an open, U , we have

ω =
i

2

n∑

k=1

ϕk ∧ ϕk ∈
1,1∧

(U)
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and so, we deduce that

ωn =
( i
2

)n
n! (−1)(n2) ϕ1 ∧ · · · ∧ ϕn ∧ ϕ1 ∧ · · · ∧ ϕn.

We call Φ(z) = ωn(z)/n! = Cn ϕ1∧· · ·∧ϕn∧ϕ1∧· · ·∧ϕn the volume form and Cn = ( i2 )
n(−1)(n2) the twisting

constant . We can check that Φ is a real, positive form, so we can integrate w.r.t. to it. For ξ, η ∈ ∧p,q(X),
set

(ξ, η) =

∫

X

(ξ, η)z Φ(z) ∈ C.

This makes
∧p,q

(X) a complex (infinite-dimensional) inner-product space. We have

∂ :

p,q−1∧
(X)→

p,q∧
(X)

and say (as in the finite dimensional case) ∂ is a closed operator (i.e., Bp,q
∂

is closed in
∧p,q(X)). Pick some

ξ ∈ Zp,q
∂

, i.e., with ∂(ξ) = 0. All the cocyles representing the class of ξ (an element of Hp,q

∂
) form the

translates ξ +Bp,q
∂
⊆ ∧p,q(X). This translate is a closed and convex subset of

∧p,q
(X).

Does there exist a smallest (in the norm we’ve just defined) cocycle in this cohomology class—if so, how
to find it?

Now, we can ask if ∂ has an adjoint. If so, call it ∂
∗
and then, ∂

∗
:
∧p,q

(X)→ ∧p,q−1
(X) and

(∂
∗
(ξ), η) = (ξ, ∂(η)), for all ξ, η.

Then, Hodge observed the

Proposition 2.16 The cocycle, ξ, is of smallest norm in its cohomology class iff ∂
∗
(ξ) = 0.

Proof .

(⇐). Compute

‖ξ + ∂η‖2 = (ξ + ∂η, ξ + ∂η) = ‖ξ‖2 + ‖η‖2 + 2ℜ(ξ, ∂η).
But, (ξ, ∂η) = (∂

∗
(ξ), η) = 0, by hypothesis, so

‖ξ + ∂η‖2 = ‖ξ‖2 + ‖η‖2 ,

which shows the minimality of ‖ξ‖ in ξ +Bp,q
∂

and the uniqneness of such a ξ.

(⇒). We know that ‖ξ + ∂η‖2 ≥ ‖ξ‖2, for all our η’s. Make

f(t) = (ξ + t∂η, ξ + t∂η).

The function f(t) has a global minimum at t = 0 and by calculus, f ′(t) ↾t=0= 0. We get

(
(∂η, ξ + t∂η) + (ξ + t∂η, ∂η)

)
t=0

= 0,

that is, ℜ(ξ, ∂η) = 0. But, iη is another element of
∧p,q−1

X . So, let

g(t) = (ξ + it∂η, ξ + it∂η).

Repeating the above argument, we get ℑ(ξ, ∂η) = 0. Consequently, we have (ξ, ∂η) = 0, for all η. Since

(∂
∗
(ξ), η) = (ξ, ∂(η)), we conclude that (∂

∗
(ξ), η) = 0, for all η, so ∂

∗
(ξ) = 0, as required.

If the reasoning can be justified, then
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(1) In each cohomology class of Hp,q

∂
, there is a unique (minimal) representative.

(2)

Hp,q

∂
(X) ∼=

{
ξ ∈

p,q∧
X

∣∣∣∣
(a) ∂ξ = 0

(b) ∂
∗
ξ = 0

}
.

We know from previous work that Hp,q

∂
(X) ∼= Hq(X,ΩpX).

Making ∂
∗
. First, we make the Hodge ∗ operator:

∗ :
p,q∧
X →

n−p,n−q∧
X

by pure algebra. We want
(ξ(z), η(z))z Φ(z) = ξ(z) ∧ ∗ η(z) for all ξ.

We need to define ∗ on basis elements, ξ = ϕI ∧ ϕJ . We want

(ϕI ∧ ϕJ ,
∑

K,L

ηK,L ϕK ∧ ϕL)Cn ϕ1 ∧ · · · ∧ ϕn ∧ ϕ1 ∧ · · · ∧ ϕn = ϕI ∧ ϕJ ∧
∑

|M|=n−p
|N |=n−q

aM,N ϕM ∧ ϕN ,

where |I| = |K| = p and |J | = |L| = q. The left hand side is equal to

2p+q ηI,J Cn ϕ1 ∧ · · · ∧ ϕn ∧ ϕ1 ∧ · · · ∧ ϕn

and the right hand side is equal to

∑

|M|=n−p
|N |=n−q

aM,N ϕI ∧ ϕJ ∧ ϕM ∧ ϕN = aI0,J0 ϕI ∧ ϕJ ∧ ϕI0 ∧ ϕJ0 ,

where I0 = {1, . . . , n} − I and J0 = {1, . . . , n} − J . The right hand side has ϕ1 ∧ · · · ∧ ϕn ∧ ϕ1 ∧ · · · ∧ ϕn in
scrambled order. Consider the permutation

(1, 2, . . . , n; 1̃, 2̃, . . . , ñ) 7→ (i1, . . . , ip, j̃1, . . . , j̃q, i
0
1, . . . , i

0
n−p, j̃

0
1 , . . . , j̃

0
n−q).

If we write sgnI,J for the sign of this permutation, we get

aI0,J0 = 2p+q−n in(−1)(n2) ηI,J sgnI,J .

Therefore,

∗η = ∗
∑

K,L

ηK,L ϕK ∧ ϕL = 2p+q−n in(−1)(n2)
∑

|K0|=n−p
|L0|=n−q

sgnK,L ηK,L ϕK0 ∧ ϕL0 .

Now, set
∂
∗
= − ∗ ◦ ∂ ◦ ∗,

where ∂
∗
:
∧p,q

X
∗−→ ∧n−p,n−q

X
∂−→ ∧n−p,n−q+1

X
∗−→ ∧p,q−1

X .

I claim that − ∗ ◦ ∂ ◦ ∗ is the formal adjoint, ∂
∗
, we seek. Consider

(∂ξ, η) =

∫

X

(∂ξ, η)zΦ(z) =

∫

X

∂ξ ∧ ∗η,
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where ξ ∈ ∧p,q−1(X) and η ∈ ∧p,q(X). Now, ∂(ξ ∧ ∗η) = ∂ξ ∧ ∗η + (−1)p+qξ ∧ ∂(∗η), so we get
∫

X

∂(ξ ∧ ∗η) = (∂ξ, η) + (−1)p+q
∫

X

ξ ∧ ∂(∗η).

Also, ξ ∧ ∗η ∈ ∧p,q−1
(X) ∧∧n−p,n−q(X), i.e., ξ ∧ ∗η ∈ ∧n,n−1

(X). But, d = ∂ + ∂, so

d(ξ ∧ ∗η) = ∂(ξ ∧ ∗η) + ∂(ξ ∧ ∗η) = ∂(ξ ∧ ∗η),
and we deduce that ∫

X

∂(ξ ∧ ∗η) =
∫

X

d(ξ ∧ ∗η) =
∫

∂X

ξ ∧ ∗η = 0,

if either X is compact (in which case ∂X = ∅), or the forms have compact support (and hence, vanish on
∂X). So, we have

(∂ξ, η) = (−1)p+q
∫

X

ξ ∧ ∂(∗η).

Check (DX): For η ∈ ∧p,q(X), we have
∗∗ η = (−1)p+qη.

As ∗η ∈ ∧n−p,n−q(X), we have ∂(∗η) ∈ ∧n−p,n−q+1
(X), and so,

∗∗ ∂(∗η) = (−1)2n−p−q+1∂(∗η) = (−1)p+q−1∂(∗η). We conclude that

(∂ξ, η) = −
∫

X

ξ ∧ ∗∗ ∂(∗η)

=

∫

X

ξ ∧ ∗(− ∗ ∂ ∗ (η))

= (ξ,− ∗ ∂ ∗ (η)).

Therefore, ∂
∗
= − ∗ ∂ ∗, as contended.

Now, we define the Hodge Laplacian, or Laplace-Beltrami operator , , by:

= ∂
∗
∂ + ∂ ∂

∗
:

p,q∧
(X) −→

p,q∧
(X).

You check (DX) that is formally self-adjoint.

Claim: (ϕ) = 0 iff both ∂ϕ = 0 and ∂
∗
ϕ = 0.

First, assume (ϕ) = 0 and compute (ϕ, (ϕ)). We get

(ϕ, (ϕ)) = = (ϕ, ∂
∗
∂ϕ) + (ϕ, ∂ ∂

∗
ϕ)

= (∂
∗
∂ϕ, ϕ) + (∂

∗
ϕ, ∂

∗
ϕ)

= (∂ϕ, (∂ϕ) + ‖∂∗ϕ‖2

= ‖∂ϕ‖2 + ‖∂∗ϕ‖2.

Therefore, if (ϕ) = 0, then ∂ϕ = 0 and ∂
∗
ϕ = 0. The converse is obvious by definition of (ϕ).

Consequently, our minimality is equivalent to (ϕ) = 0, where is a second-order differential operator.

To understand better what the operator does, consider the special case where X = Cn (use compactly

supported “gadgets”), with the standard inner product, and
∧0,0

(X) = C∞0 . Pick f ∈ C∞0 , then again,

(f) ∈ C∞0 and on those f , we have ∂
∗
f = 0. Consequently,

(f) = ∂
∗
∂f = ∂

∗

(
n∑

j=1

∂f

∂zj
dzj

)
.
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We also have

∗
(

n∑

j=1

∂f

∂zj
dzj

)
= 21−nin(−1)(n2)

n∑

j=1

(
∂f

∂zj

)
dz1 ∧ · · · ∧ dzn ∧ dz{j}0 sgn∅,{j}

= 21−nin(−1)(n2)
n∑

j=1

∂f

∂zj
sgn∅,{j} dz1 ∧ · · · ∧ dzn ∧ dz{j}0 .

Taking ∂ of the above expression, we get

21−nin(−1)(n2)
n∑

k,j=1

∂2f

∂zk∂zj
sgn∅,{j} dzk ∧ dzj ∧ dz1 ∧ · · · ∧ dzn ∧ dz{j}0

= 21−nin(−1)(n2) (−1)n
n∑

j=1

∂2f

∂zj∂zj
sgn∅,{j} dz1 ∧ · · · ∧ dzn ∧ dzj ∧ dz{j}0 .

Taking −∗ of the above, we get

−2i2n(−1)(n2) (−1)n
n∑

j=1

∂2f

∂zj∂zj
= −2

n∑

j=1

∂2f

∂zj∂zj
.

But,
4∂2f

∂zj∂zj
=
∂2f

∂x2j
+
∂2f

∂y2j
,

and this implies that on
∧0,0

(X), (f) up to a constant (−1/2) is just the usual Laplacian.

Write Hp,q(X) for the kernel of on
∧p,q(X), the space of harmonic forms . Here is Hodge’s theorem.

Theorem 2.17 (Hodge, (1941)) Let X be a complex manifold and assume that X is compact. Then,

(1) The space Hp,q(X) is finite-dimensional.

(2) There exist a projection, H :
∧p,q(X) → Hp,q(X), so that we have the orthogonal decomposition

(Hodge decomposition)

p,q∧
(X) = Hp,q(X)

⊥∐
∂

p,q−1∧
(X)

⊥∐
∂
∗
p,q+1∧

(X).

(3) There exists a parametrix (= pseudo-inverse), G, (Green’s operator) for , and it is is uniquely
determined by

(a) id = H + G = H +G , and

(b) G∂ = ∂G, G∂
∗
= ∂

∗
G and G ↾ Hp,q(X) = 0.

Remarks: (1) If a decomposition “à la Hodge” exists, it must be an orthogonal decomposition. Say

ξ ∈ ∂∧p,q−1
(X) and η ∈ ∂∗∧p,q+1

(X), then

(ξ, η) = (∂ξ0, ∂
∗
η0) = (∂ ∂ξ0, η0) = 0,

and so, ∂
∧p,q−1

(X) ⊥ ∂∗∧p,q+1
(X). Observe that we can write the Hodge decomposition as

p,q∧
(X) = Hp,q(X)

⊥∐ p,q∧
(X).



98 CHAPTER 2. COHOMOLOGY OF (MOSTLY) CONSTANT SHEAVES AND HODGE THEORY

For, if ξ ∈ ∧p,q(X), then ξ = ∂(∂
∗
ξ0) + ∂

∗
(∂ξ0), and this implies

p,q∧
(X) ⊆ ∂

p,q−1∧
(X) + ∂

∗
p,q+1∧

(X).

However, the right hand side is an orthogonal decomposition and it follows that

Hp,q(X) +

p,q∧
(X) = Hp,q(X) + ∂

p,q−1∧
(X)

⊥∐
∂
∗
p,q+1∧

(X) =

p,q∧
(X).

For perpendicularity, as is self-adjoint, for ξ ∈ Hp,q(X), we have

(ξ, (η)) = ( (ξ), η) = 0,

since (ξ) = 0.

(2) We can give a n.a.s.c. that (ξ) = η has a solution, given η. Namely, by (3a),

η = H(η) + (G(η)).

If H(η) = 0, then η = (G(η)) and we can take ξ = G(η). Conversely, orhogonality implies that if η = (ξ),
then H(η) = 0. Therefore, H(η) is the obstruction to solving (ξ) = η.

How many solutions does (ξ) = η have?

The solutions of (ξ) = η are in one-to-one correspondence with ξ0 + Hp,q(X), where ξ0 is a solution
and if we take ξ0 ∈ Ker H, then ξ0 is unique, given by G(η).

(3) Previous arguments, once made correct, give us the isomorphisms

Hp,q(X) ∼= Hp,q

∂
∼= Hq(X,ΩpX).

Therefore, Hq(X,ΩpX) is a finite-dimensional vector space, for X a compact, complex manifold.

For the proof of Hodge’s theorem, we need some of the theory of distributions. At first, restrict to C∞0 (U)
(smooth functions of compact support) on some open, U ⊆ Cn. One wants to understand the dual space,
(C∞0 (U))D. Consider g ∈ L2(U), then for any ϕ ∈ C∞0 (U), we set

λg(ϕ) =

∫

U

ϕgdµ.

(Here, µ is the Lebesgue measure on Cn.) So, we have λg ∈ C∞0 (U)D. Say λg(ϕ) = 0, for all ϕ. Take
E, a measurable subset of U of finite measure with E compact. Then, as χE is L2, the function χE is
L2-approximable by C∞0 (U)-functions. So, there is some ϕ ∈ C∞0 (U) so that

‖ϕ− χE‖2 < ǫ.

As χE = χE − ϕ+ ϕ, we get

∫

E

gdµ =

∫

U

χEgdµ =

∫

U

(χE − ϕ)gdµ+

∫

U

ϕgdµ =

∫

U

(χE − ϕ)gdµ

(by hypothesis, λg(ϕ) = 0). Therefore,

∣∣∣∣
∫

E

gdµ

∣∣∣∣ ≤ ‖χE − ϕ‖2 ‖g‖2 < ‖g‖2 ǫ,
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which implies that g ≡ 0 almost everywhere. It follows that L2(U) →֒ (C∞0 (U))D. The same argument
applies for g ∈ C(U) and uniform approximations by C∞0 -functions, showing that C(U) →֒ (C∞0 (U))D.

Notation. Set

Dj =
1

i

∂

∂Xj
= −i ∂

∂Xj
,

where X1, . . . , Xn are real coordinates in Cn, and if α = (α1, . . . , αn), with αj ∈ Z and αj ≥ 0, set
Dα = Dα1

1 Dα2
2 · · ·Dαn

n and |α| = ∑n
j=1 αj . Also, for any n-tuple ξ = (ξ1, . . . , ξn) ∈ Cn, we let ξα =

ξα1
1 · · · ξαn

n and |ξ|α = |ξ1|α1 · · · |ξn|αn . The reason for the factor 1/i is this: Say v is a function and look at
Dj(v) = −i∂v/∂Xj. But,

Dj(v) = −i
∂v

∂Xj
= i

∂v

∂Xj
= −Dj(v).

Therefore,
Dj(uv) = (Dju)v + uDjv = (Dju)v − uDjv.

Consider u, v ∈ C∞0 (U); then,

(Dju, v) =

∫

U

(Dju)v =

∫

U

Dj(uv) +

∫

U

uDj(v).

The first term on the right hand side is zero as u and v have compact support, so we get

(Dju, v) =

∫

U

uDj(v) = (u,Djv),

which says that the Dj’s are formally self-adjoint. Repeated application of the above gives

(Dαu, v) = (u,Dαv)

and also ∫

U

(Dαu)v =

∫

U

u(Dαv).

Definition 2.4 Let D̃(U) = C∞0 (U)algD be the set of (complex-valued) linear functionals on C∞0 (U). Now
define, D(U), the space of distributions on U , so that λ ∈ D(U) iff λ ∈ C∞0 (U)algD and λ is “continuous”,
i.e., there is some k ≥ 0 and some Cλ, so that for all ϕ ∈ C∞0 (U),

|λ(ϕ)| ≤ Cλ max
|α|≤k

‖Dαϕ‖∞. (∗)

As an example of a distribution, if g ∈ C0(U), so g is bounded (all we need is boundedness and intergra-
bility), then

λg(ϕ) =

∫

U

ϕgdµ.

Then, we have
|λg(ϕ)| ≤ ‖ϕ‖∞ ‖g‖1 ,

so we can take Cλg = ‖g‖1 and we get a distribution. The intuition in (∗) is that the bigger k is, the “worse”
λ is as a distribution (k indicates how many derivatives we need to control).

We can differentiate distributions: Take g ∈ C1, we have

λg(ϕ) =

∫

U

ϕgdµ

and so,

λDjg(ϕ) =

∫

U

ϕDjgdµ =

∫

U

(Djϕ)gdµ = λg(Djϕ).

This gives the reason behind the
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Definition 2.5 If λ ∈ D(U), let Dαλ ∈ D̃(U), defined by

(Dαλ)(ϕ) = λ(Dαϕ).

Claim: If λ ∈ D(U), then Dαλ ∈ D(U).

Indeed, we have

|(Dαλ)(ϕ)| = |λ(Dαϕ)| ≤ Cλ max
|β|≤k

‖Dα+β(ϕ)‖∞ ≤ Cλ max
|γ|≤k+|α|

‖Dγ(ϕ)‖∞.

Therefore, Dαλ is again a distribution. Given a multi-index, α, write

σ(α) = |α|+
⌈n
2

⌉
+ 1.

This is the Sobolev number of α (n = dimension of the underlying space). Now, we can define the Sobolev
norm and the Sobolev spaces, Hs (s ∈ Z, s ≥ 0). If ϕ ∈ C∞0 (U), set

‖ϕ‖2s =
∑

|α|≤s

‖Dαϕ‖2L2 .

This is the Sobolev s-norm. It comes from an inner product

(ϕ, ψ)s =
∑

|α|≤s

(Dαϕ,Dαψ).

If we complete C∞0 (U) in this norm, we get a Hilbert space, the Sobolev space, Hs.

Say s > r, then for all ϕ ∈ C∞0 (U), we have

‖ϕ‖2r ≤ ‖ϕ‖2s.

Hence, if {ϕi} is a Cauchy sequence in the s-norm, it is also a Cauchy sequence in the r-norm and we get a
continuous embedding

Hs ⊆ Hr if s > r.

Let H∞ =
⋂
s≥0Hs.

Theorem 2.18 (Sobolev Inequality and Embedding Theorem) For all ϕ ∈ C∞0 (U), for all α, we have

‖Dαϕ‖∞ ≤ Kα‖ϕ‖σ(α) and Hs(U) ⊆ Cm(U),

provided U has finite measure, m ≥ 0 and σ(m) ≤ s. Furthermore, Hs(U) ⊆ L 2n
n−2 (U) if n > 2s.

(We have σ(m) ≤ s iff m < s−
⌈
n
2

⌉
.)

Theorem 2.19 (Rellich Lemma) The continuous embedding, ρrs : Hs →֒ Hr, (for s > r) is a compact
operator. That is, for any bounded set, B, the image ρrs(B) has a compact closure. Alternatively, if {ϕj} is
a bounded sequence in Hs, then {ρrs(ϕj)} possesses a converging subsequence in Hr.

To connect with distributions, we use the Fourier Transform. If ϕ ∈ C0(U), we set

ϕ̂(θ) =

(
1

2π

)n ∫

Cn

ϕ(x)e−i(x,θ) dx,
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where (x, θ) =
∑n

j=1 xjθj . (Recall that over R, we are in R2n.) The purpose of the fudge factor in front of
the integral is to insure that Fourier transform of the Gaussian

ϕ(x) = e−
‖x‖2

2

is itself. As ∫

Rn

e−
‖x‖2

2 dx =
(√

2π
)n

,

we determine that the “fudge factor” is (2π)−n. It is also interesting to see what D̂jϕ(θ) is. We have

D̂jϕ(θ) =

∫

Cn

(Djϕ)(x)e
−i(x,θ) dx =

∫

Cn

ϕ(x)Djei(x,θ) dx.

Now,
∂

∂xj
ei

∑
xkθk = iθke

i
∑
xkθk

and

Dje
i
∑
xkθk = −i ∂

∂xj
ei

∑
xkθk = θke

i
∑
xkθk .

It follows that
D̂jϕ(θ) = θjϕ̂(θ),

that is, Dj turns into multiplication by θj by the Fourier transform. We also get

Theorem 2.20 (Plancherel) If ϕ ∈ C∞0 , then

‖ϕ‖L2 = ‖ϕ̂‖L2.

As a consequence, we can compute the Sobolev norm using the Fourier transform:

‖ϕ̂‖2s =
∑

|α|≤s

‖D̂αϕ‖2L2

and

∑

|α|≤s

‖D̂αϕ‖2L2 =
∑

|α|≤s

∫

Cn

θαϕ̂(θ) θα ϕ̂(θ) dθ

=

∫

Cn

∑

|α|≤s

|θ|2α |ϕ̂(θ)|2 dθ

≤
∫

Cn

(1 + |θ|2)s |ϕ̂(θ)|2 dθ

≤ Const

∫

Cn

|θ|2α |ϕ̂(θ)|2 dθ = Const ‖ϕ‖2s.

(Using Plancherel in the last step.) Therefore, the norm

‖ϕ̂‖2s =
∫

Cn

(1 + |θ|2)s |ϕ̂(θ)|2 dθ

satisfies
‖ϕ‖2s ≤ ‖ϕ̂‖2s ≤ Const ‖ϕ‖2s ,
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that is, these norms are equivalent and we can measure ϕ by the Sobolev norm on the Fourier transform.

Observe that we can define H−s (s > 0) via the completion of C∞0 in the norm
∫
Cn(1 + |θ|2)−s |ϕ̂(θ)|2 dθ.

Clearly, we get the chain of inclusions

· · · ⊇ H−n ⊇ H−n+1 ⊇ · · · ⊇ H−1 ⊇ H0 = L2 ⊇ H1 · · · ⊇ Hn−1 ⊇ Hn ⊇ · · ·H∞.

This suggests defining H−∞ by

H−∞ =
⋃

n∈Z

Hn.

The Sobolev embedding lemma impliesH∞ ⊆ C∞(U) and C∞0 (U) ⊆ H∞. Now,H−s defines linear functionals
on Hs; say ψ ∈ H−s and ϕ ∈ Hs. Consider

ψ(ϕ) :=

∫
(ϕψ)(θ) dθ =

∫ √
(1 + |θ|2)sϕ 1√

(1 + |θ|2)s
ψ dθ.

By Cauchy-Schwarz,

|ψ(ϕ)| = |(ϕ, ψ)| =
∫
(ϕψ)(θ) dθ ≤ ‖ϕ‖s ‖ψ‖−s .

Therefore, we have a map H−s 7→ HD
s and it follows that H−s

∼= HD
s , up to conjugation.

Remark: If ϕ ∈ C∞0 (U) and λ ∈ D(U), then

|λ(ϕ)| ≤ Cλ max
|α|≤k

‖Dαϕ‖∞, for some k.

By Sobolev’s inequality,
|λ(ϕ)| ≤ CλKα‖ϕ‖σ(α),

for some suitable α so that |α| ≤ k. Thus, if λ ∈ D(U), then there exist some α such that λ is a continuous
functional on C∞0 (U) in the σ(α)-norm. But then, λ extends to an element of HD

σ(α) (by completion) and we

conclude that D(U) = H−∞.

Proof of Theorem 2.19 (Rellich Lemma). Given a bounded sequence, {ϕk}∞k=1, there is some C > 0 so that,
for every k, ∫

Rn

(1 + |θ|2)s|ϕ̂k(θ)|2dθ ≤ C.

Thus, for every θ, the sequence of (1 + |θ|2)s|ϕ̂k(θ)|2 is a bounded sequence of complex numbers. Therefore,
for every θ, we have a Cauchy subsequence in C. As there exists a countable dense subset of θ’s in Rn, the
ℵ0-diagonalization procedure yields a subsequence of the ϕk’s so that this subsequence is Cauchy at every θ
(i.e., (1 + |θ|2)s|ϕ̂k(θ)|2 is Cauchy at every θ) and, of course, we replace the ϕk’s by this subsequence. Now,
pick ǫ > 0, and write U0 for the set of all θ’s such that

1

(1 + |θ|2)s−r ≥ ǫ.

Look at

‖ϕk − ϕl‖2r =

∫

Rn

(1 + |θ|2)r|(ϕ̂k − ϕ̂l)(θ)|2dθ

=

∫

U0

(1 + |θ|2)r|(ϕ̂k − ϕ̂l)(θ)|2dθ +
∫

Rn−U0

(1 + |θ|2)r|(ϕ̂k − ϕ̂l)(θ)|2dθ.
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But, as {(1 + |θ|2)s|ϕ̂k(θ)|2} is Cauchy, there is some large N so that for all k, l ≥ N ,

(1 + |θ|2)r|(ϕ̂k − ϕ̂l)(θ)|2 ≤ (1 + |θ|2)s|(ϕ̂k − ϕ̂l)(θ)|2 < ǫ/µ(U0)

for all θ. Then, the first integral is at most ǫ. In the second integral,

(1 + |θ|2)r|(ϕ̂k − ϕ̂l)(θ)|2 =
(1 + |θ|2)s

(1 + |θ|2)s−r |(ϕ̂k − ϕ̂l)(θ)|
2 < ǫ numerator.

But then, ∫

Rn−U0

(1 + |θ|2)r|(ϕ̂k − ϕ̂l)(θ)|2dθ < ǫ

∫

Rn

numerator < Cǫ.

Therefore, {ϕk} is Cauchy in Hr, and since Hr is complete, the sequence {ϕk} converges in Hr.

Proof of Theorem 2.18 (Sobolev’s Theorem). Pick ϕ ∈ C∞0 (U) and take s = 1. Then, for every j, as

|ϕ(x)| ≤
∫ ∞

∞

|Djϕ(x)|dxj ,

we get

|ϕ(x)|n ≤
n∏

j=1

(∫ −∞

∞

|Djϕ(x)|dxj
)
.

Thus, we have

|ϕ(x)|n/(n−1) ≤
n∏

j=1

(∫ ∞

−∞

|Djϕ(x)|dxj
)1/(n−1)

. (∗)

We will use the generalized Hölder inequality: If

1

p1
+ · · ·+ 1

pm
= 1,

and if ϕj ∈ Lpj , for j = 1, . . . ,m, then ϕ1 · · ·ϕm ∈ L1 and

‖ϕ1 · · ·ϕm‖L1 ≤ ‖ϕ1‖Lp1 · · · ‖ϕm‖Lpm .

Assume that n ≥ 2 and set pj = n− 1, for 1 ≤ j ≤ n− 1. Integrate (∗) w.r.t. x1, x2, . . . , xn, but in between
integration, use the Hölder inequality:

∫ ∞

−∞

|ϕ(x)|n/(n−1)dx1 ≤
∫ ∞

−∞



[∫ ∞

−∞

|D1(ϕ)|dx1
]1/(n−1) n∏

j=2

[∫ ∞

−∞

|Dj(ϕ)|dxj
]1/(n−1)


 dx1

≤
[∫ ∞

−∞

|D1(ϕ)|dx1
]1/(n−1)




n∏

j=2

∫ ∞

−∞

∫ ∞

−∞

|Dj(ϕ)|dxjdx1



1/(n−1)

.

If we repeat this procedure, we get

∫

U

|ϕ(x)|n/(n−1)dx ≤




n∏

j=1

∫

U

|Dj(ϕ)|dx



1/(n−1)

.
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Raising the above to the power (n− 1)/n, we get

‖ϕ‖Ln/(n−1) ≤




n∏

j=1

∫

U

|Dj(ϕ)|dx




1/n

≤ 1

n




n∑

j=1

∫

U

|Dj(ϕ)|dx


 ,

by the arithmetic-geometric mean inequality. Apply this to ϕγ , for some approrpiate choice of γ. For the
rest of this argument, we need n > 2 and we choose γ to satisfy

γ

(
n

n− 1

)
= 2(γ − 1).

We deduce that

γ =
2(n− 1)

n− 2
> 0,

as n > 2. We plug ϕγ in the above and we get

‖ϕγ‖
L

n
n−1

≤ 1

n

n∑

j=1

∫

U

|Dj(ϕ
γ)| dx

=
γ

n

n∑

j=1

∫

U

|ϕγ−1| |Dj(ϕ)| dx

=
γ

n

n∑

j=1

∥∥ϕγ−1
∥∥
L2 ‖Dj(ϕ)‖L2 ,

by Cauchy-Schwarz. The left hand side is equal to

(∫

U

|ϕ γn
n−1 |dx

)n−1
n

=

(∫

U

|ϕ2(γ−1)|dx
)n−1

n

.

On the right hand side, the term ‖ϕγ−1‖L2 is common to the summands, so pull it out. This factor is

(∫

U

|ϕ2(γ−1)|dx
) 1

2

.

When we divide both sides by this factor, we get

(∫

U

|ϕ2(γ−1)| dx
)n−1

n − 1
2

≤ γ

n

n∑

j=1

‖Dj(ϕ)‖L2 .

But,

2(γ − 1) =
γn

n− 1
=

2n

n− 2

and
n− 1

n
− 1

2
=
n− 2

2n
.

We obtain (∫

U

∣∣ϕ 2n
n−2)

∣∣ dx
)n−2

2n

≤ 2(n− 1)

n(n− 2)

n∑

j=1

‖Dj(ϕ)‖L2 .

Therefore, we get the Sobolev inequality for the case s = 1 and n > 2: For every ϕ ∈ C∞0 (U), we have

‖ϕ‖
L

2n
n−2
≤ K(n) ‖ϕ‖1 , (∗)
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where K(n) = 2(n−1)
n(n−2) .

Now, say ψ ∈ H1, then there is a sequence, {ϕq}, converging to ψ in the ‖ ‖1-norm, with ϕq ∈ C∞0 (U).
Consequently, this is a Cauchy sequence in the ‖ ‖1-norm and so,

‖ϕq − ϕr‖1 < ǫ for all q, r sufficiently large

which implies that
‖ϕq − ϕr‖

L
2n

n−2
< ǫ for all q, r sufficiently large.

Therefore, the ϕq converge to a limit, ψ0 ∈ L
2n

n−2 .

(a) The map ψ 7→ ψ0 does not depend on the choice of the Cauchy sequence.

(b) This map is an injection.

As a consequence, we get the Sobolev embedding when s = 1:

H1 →֒ L
2n

n−2 , if n > 2.

If we pass to the limit in (∗), we get: For every ψ ∈ H1,

‖ψ‖
L

2n
n−2
≤ K(n) ‖ψ‖1 . (∗)

Now, we want the Sobolev inequality on ‖Dαϕ‖∞ when s = 1. In this case, σ(α) ≤ s implies
|α|+ 1 +

⌈
n
2

⌉
≤ 1. Thus, n = 1 and α = 0. Therefore, we have to prove

‖ϕ‖∞ ≤ K ‖ϕ‖1 .

In the present case, U ⊆ R and ϕ ∈ C∞0 (U). Then, we have

ϕ(x) =

∫ x

−∞

ϕ′(t)dt,

so

|ϕ(x)| ≤
∫ x

−∞

|ϕ′(t)| dt ≤ ‖1‖L2 ‖Dϕ‖L2 ≤
√
µ(U) ‖ϕ‖1 ,

where we used Cauchy Schwarz in the first inequality. If we take sup’s, we get the following Sobolev inequality
for the case s = n = 1:

‖ϕ‖∞ ≤ K ‖ϕ‖1 . (∗∗)

Next, consider the embedding property. Here, we have 0 ≤ m ≤ s −
⌈
n
2

⌉
, so m = 0. Take ψ ∈ H1 and, as

before, approximate ψ by some sequence, {ϕq}, where ϕq ∈ C∞0 (U). Then, (∗∗) implies that

‖ϕq − ϕr‖∞ ≤ K ‖ϕq − ϕr‖1 .

As the right hand side is smaller than ǫ for all q, r ≥ N (for some large N), we deduce that the ϕq converge
uniformly to some ψ0 ∈ C0(U). Then, again, the map ψ 7→ ψ0 is well-define and an embedding. Therefore,

H1(U) ⊆ C0(U),

which is the Sobolev embedding in the case s = n = 1.

To prove the general case, we use induction on s and iterate the argument. The induction hypothesis is
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(a) If n > 2s, then for all ϕ ∈ C∞(U),

‖ϕ‖
L

2n
n−2
≤ K(n) ‖ϕ‖s . (∗)

(a′) There is an embedding, Hs(U) →֒ L
2n

n−2 , so (∗) holds for all ψ ∈ H2.

(b) If 0 ≤ m ≤ s−
⌈
n
2

⌉
(σ(m) ≤ s), then

‖Dαϕ‖∞ ≤ K ‖ϕ‖σ(α) ≤ K ‖ϕ‖s . (∗∗)

(Here, σ(α) ≤ s.)

(b′) There is an embedding, Hs(U) →֒ Cm(U), i.e., (∗∗) holds for all ψ ∈ Hs.

(a) Actually, this part does not require induction. As the case s = 1 has been settled, we may assume
s > 1 (and n > 2s). We need to show that for any ϕ ∈ C∞0 (U),

‖ϕ‖
L

2n
n−2
≤ ‖ϕ‖s.

We have
‖ϕ‖1 ≤ ‖ϕ‖s

and as n > 2s > 2, by the s = 1 case,
‖ϕ‖

L
2n

n−2
≤ ‖ϕ‖1.

We conclude immediately that
‖ϕ‖

L
2n

n−2
≤ ‖ϕ‖s.

Note that (a′) is a consequence of (a) in the same way as before.

(b) Assume 0 ≤ m < s+1−
⌈
n
2

⌉
, i.e., m− 1 < s−

⌈
n
2

⌉
. Pick ϕ ∈ C∞0 (U) and look at Djϕ and σ(β) ≤ s.

Observe that m− 1 is such a |β|. By (∗∗),
∥∥DβDjϕ

∥∥
∞
≤ K ‖Djϕ‖σ(β) , for all j.

But all Dαϕ are of this form, for some β with σ(β) ≤ s. Therefore,

‖Dαϕ‖∞ ≤ K ‖Djϕ‖σ(β) ≤ K ‖ϕ‖s+1 , by (†)

which is exactly (∗∗). By the induction hypothesis, each Djϕ ∈ Cm−1(U) and we conclude that ϕ ∈ Cm(U).

Notion of a Weak Solution to, say ϕ = ψ.

Definition 2.6 Given ψ ∈ D(U) (but, usually, ψ ∈ C∞(U)), we call ϕ ∈ D(U) a weak solution of ϕ = ψ
iff for every η ∈ C∞0 (U), we have

ϕ( η) = ψ(η).

Motivation: We know that ϕ is defined by

( ϕ)(η) = ϕ( η).

Therefore, ϕ = ψ in D(U) when and only when ϕ is a weak solution.
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2.4 Hodge II, Globalization & Proof of Hodge’s Theorem

Let X be a manifold (real, not necessarily complex) and assume that we also have a C∞-complex vector
bundle, V , on X . We are interested in the sets of sections, Γ(U, V ), where U is an open in X . The
spaces TX and TDX are real vector bundles and we write TX,C and TDX,C for their complexification. We
need to differentiate sections of V . For this, we introduce connections. For any open subset, U , of X ,
the space of (C∞)-sections, Γ(U,

∧p
TDX ⊗ V ), of the bundle

∧p
TDX ⊗C∞(U) V is denoted by ApV (U) (with

A0
V (U) = Γ(U, V )). Elements of ApV (U) are called differential p-forms over U with coefficients in V . The

space of (C∞)-sections, Γ(U,
∧p

TDX ), of the bundle
∧p

TDX is denoted by ApX(U) (with A0
X(U) = C∞(U)).

For short, we usually write ApV for ApV (X) (global sections).

Definition 2.7 A connection, ∇, on V over X is a C-linear map

∇ : A0
V → A1

V ,

so that for every section s ∈ Γ(X,V ) and every f ∈ C∞(X), the Leibnitz rule holds:

∇(fs) = df ⊗ s+ f∇s.

From now on, when we write TX (or TDX ), it is always understood that we mean TX,C (or TDX,C). We can
be more general and require Leibnitz in this case: Say ξ ∈ ApX and η ∈ AqV (Note, the above case corresponds
to p = 0, q = 1). We require

∇(ξ ∧ η) = dξ ∧ η + (−1)degξ ξ ∧ ∇η.
Note that we are extending ∇ to a C-linear map ApV −→ Ap+1

V .

Look locally over an open U where V is trivial. Pick a frame, e1, . . . , en, for V over U (this means that
we have n sections, e1, . . . , en, over U , such that for every x ∈ U , the vectors e1(x), . . . , en(x) form a basis
of the fibre of V over x ∈ U). Then, we can write

∇ei =
n∑

j=1

θij ⊗ ej ,

where (θij is a matrix of 1-forms over U). The matrix (θij) is called the connection matrix of ∇ w.r.t. the
frame e1, . . . , en. Conversely, if (θij) is given, we can use Leibnitz to determine ∇ (over U). Say s ∈ Γ(U, V ),
then,

s =

n∑

i=1

siei,

with si ∈ Γ(U, C∞). We have

∇s =
n∑

i=1

∇(siei)

=

n∑

i=1

(dsi ⊗ ei + si∇ei)

=
n∑

j=1

dsj ⊗ ej +
n∑

i=1

si

n∑

j=1

θij ⊗ ej

=
n∑

j=1

(
dsj ⊗ ej +

( n∑

i=1

siθij

)
⊗ ej

)
,
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which can be written
∇s = ds+ s · θ.

In the general case where s ∈ ApV , we get (DX)

∇s = ds+ (−1)p s ∧ θ, where p = deg s.

Given a connection, ∇, we can differentiate sections. Given v ∈ Γ(U, TX), i.e., a vector field over U , then
for any section, s ∈ Γ(U, V ), we define ∇v(s) = covariant derivative w.r.t. v of s (= directional derivative
w.r.t. v) by:

∇v(s) = (∇s)(v),
where ∇s ∈ Γ(U, TDX ⊗ V ), and we use the pairing, Γ(U, TDX ) ⊗ Γ(U, TX) −→ C∞, namely, evaluation (=
contraction).

What happens when we change local frame (gauge transformtaion)? Let ẽ1, . . . , ẽn be a new frame, say

ẽi =

n∑

j=1

gijej

which can be written ẽ = g · e, in matrix form (where the gij are functions). We know

∇ẽi =
∑

j=1

θ̃ij ⊗ ẽj

and

∇ẽi =

n∑

j=1

∇(gijej)

=

n∑

j=1

(dgij ⊗ ej + gij∇ej)

=

n∑

k=1

(dgik ⊗ ek) +
n∑

j=1

n∑

k=1

gijθjk ⊗ ek

=

n∑

k=1


dgik ⊗ ek) +

( n∑

j=1

gijθjk

)
⊗ ek


 ,

which, in matrix form, says
∇ẽ = dg e+ gθe.

But, e = g−1ẽ, so
∇ẽ = dg g−1 e+ gθg−1ẽ,

and finally, we have the change of basis formula (gauge transformation)

θ̃ = dg g−1 + gθg−1.

For the general Leibnitz rule

∇(ξ ∧ η) = dξ ∧ η + (−1)deg ξ ξ ∧∇η,
(with ξ ∈ ApX , η ∈ AqV ), note that dξ ∧ η ∈ Ap+1

X ∧AqV and ξ ∧∇η ∈ ApX ∧Aq+1
V , so we can concatenate ∇,

that is, take ∇ again. We have

∇2(ξ ∧ η) = ∇(dξ ∧ η) + (−1)deg ξ ∇(ξ ∧∇η),
so ∇2 : Ap+qV → Ap+q+2

V . The operator, ∇2 (really, its part ∇2 : A0
V −→ A2

V ) is the curvature operator of ∇
(a C-linear map).
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Definition 2.8 A connection ∇ is flat iff ∇ vanishes, i.e., ∇2 = 0. That is, the infinite sequence

A0
V

∇−→ A1
V

∇−→ A2
V

∇−→ A3
V

∇−→ · · ·

is a complex.

Not only is ∇2 a C-linear map, it is C∞-linear. This is the lemma

Lemma 2.21 The curvature operator of a connection is C∞-linear. That is, for any f ∈ C∞(U) and
s ∈ Γ(U, V ), we have

∇2(f s) = f(∇2(s)).

Proof . We have

∇2(f s) = ∇(∇(f s))
= ∇(df ∧ s+ f ∧ ∇s)
= d(df) ∧ s− df ∧ ∇s+ df ∧ ∇s+ f ∧ ∇2s

= f ∧ ∇2s

= f∇2s,

which proves the lemma.

Consequently, the curvature, ∇2, is induced by a bundle map,

Θ: V −→
2∧
TDX ⊗ V,

and the latter is a global section of

Hom(V,

2∧
TDX ⊗ V ) ∼=

2∧
TDX ⊗ End(V ) ∼=

2∧
TDX ⊗ V D ⊗ V.

We will need to know how to compute the curvature in a local frame. Say e1, . . . , en is a frame for V over U
and eD1 , . . . , e

D
n is the dual frame in V D (over U). As the eDi ⊗ ej form a frame for V D ⊗ V over U , we see

that over this frame, Θ is given by a matrix of 2-forms, also denoted Θ. Thus, we can write

∇2(ei) =

n∑

i=1

Θij ⊗ ej,

where Θij is a matrix of 2-forms over U , called the curvature matrix w.r.t. local frame, e1, . . . , en. Say we
change basis to ẽ1, . . . , ẽn. We have

∇2(ẽi) =

n∑

i=1

Θ̃ij ⊗ ẽj,

with ẽi =
∑n

m=1Gim em, i.e., ẽ = Ge. Then, we get

∇2(ẽi) = ∇2(

n∑

m=1

Gimem) =

n∑

m=1

Gim∇2(em)

=
n∑

m=1

Gim

n∑

j=1

Θml ⊗ ej

=
n∑

j=1

( n∑

m=1

GimΘml

)
⊗ ej .
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The left hand side is Θ̃ ẽ = GΘe, but e = G−1ẽ, so Θ̃ ẽ = GΘG−1ẽ, i.e.,

Θ̃ = GΘG−1.

If θ is the connection matrix of ∇ w.r.t. some local frame for V over U , for any section, s ∈ Γ(U, V ), we
compute ∇2(s) as follows: First, we have

∇2(s) = ∇(∇(s)) = ∇(ds+ s ∧ θ)) = ∇(ds) +∇(s ∧ θ).

Now, as ds has degree 1 (since s has degree 0), we have

∇(ds) = d(ds)− ds ∧ θ

and
∇(s ∧ θ) = ds ∧ θ − s ∧ ∇θ.

As θ has degree 1 (θ is a 1-form),
∇θ = dθ − θ ∧ θ,

so we obtain
∇2(s) = d(ds)− ds ∧ θ + ds ∧ θ + s ∧ (dθ − θ ∧ θ),

i.e.,
∇2(s) = s ∧ (dθ − θ ∧ θ).

Therefore, we have the Maurer-Cartan’s equation (in matrix form):

Θ = dθ − θ ∧ θ.

Say X is a complex manifold and V is a holomorphic vector bundle over X . Then, while ∇ is not unique
on V , we can however uniquely extend ∂ to V .

Proposition 2.22 If V is a holomorphic vector bundle on the C∞-manifold, X, and if we define for a local
holomorphic frame, e1, . . . , en, of V and for s ∈ ApV ,

∂(s) = ∂
( n∑

i=1

ωi ⊗ ei
)
=

n∑

i=1

∂(ωi)⊗ ei,

then ∂ defined this way is independent of the local holomorphic frame. Hence, ∂ is well defined on ApV .

Proof . Let {ẽ1, . . . , ẽn} be another holomorphic frame for V over U . We have

ẽi =
n∑

j=1

gijej ,

where the gij are holomorphic functions on U . Then,

s =

n∑

i=1

ω̃i ⊗ ẽi =
n∑

i=1

ω̃i ⊗
n∑

j=1

gijej =

n∑

j=1

( n∑

i=1

ω̃igij

)
⊗ ej .

Now, ∂s (according to the ẽj ’s) =
∑n

i=1 ∂ ω̃i ⊗ ẽi, while
∂s (according to the ej’s) =

∑n
j=1 ∂

(∑n
i=1 ω̃igij

)
⊗ ej . The second term is equal to

n∑

j=1

( n∑

i=1

(∂ ω̃igij + ω̃i∂gij)
)
⊗ ej .
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But, ∂gij = 0, as the gij are holomorphic. Thus,

∂s (according to the ej’s) =
∑n

j=1

(∑n
i=1 ∂ ω̃igij

)
⊗ ej and

∂s (according to the ẽj’s) =
∑n
i=1

(
∂ ω̃i ⊗

∑n
j=1 gijej

)
=
∑n
j=1

(∑n
i=1 ∂ ω̃igij

)
⊗ ej. These expressions are

identical, which shows that ∂ is well defined.

As a corollary, the Dolbeault theorem is valid for vector bundles, that is

Theorem 2.23 (Dolbeault) If V is a holomorphic vector bundle over a complex manifold, X, then there is
an isomorphism

Hp,q

∂
(X,V ) −̃→ Hq(X,ΩpX ⊗OX(V )).

Suppose now that X is a complex manifold and V is a C∞-bundle which possesses an Hermitian metric.
That is, for all x, we have (ξx, ηx) ∈ C, for all ξx, ηx ∈ Vx and (ξx, ηx) varies C

∞ with x and is an Hermitian
inner product for all x.

Definition 2.9 If ∇ is a connection on a vector bundle, V , as above, then ∇ is a unitary connection (i.e.,
comptable with given metric) iff

d(ξx, ηx) = (∇ξx, ηx) + (ξx,∇ηx).

If instead X is a complex manifold but V is not holomorphic (yet), then the splitting

TDX = T
D (0,1)
X

∐
T
D (1,0)
X yields the splitting

A0
V

∇−→ A1
V −→ Γ(X,T

D (0,1)
X ⊗ V )

∐
Γ(X,T

D (1,0)
X ⊗ V ),

which gives the splitting ∇ = ∇1,0 +∇0,1.

Definition 2.10 If ∇ is a connection on a holomorphic vector bundle, V , over a complex manifold, X , then
∇ is a holomorphic connection (i.e., comptable with the complex structure) iff

∇0,1 = ∂.

Call a vector bundle, V , on a complex manifold, X , an Hermitian bundle iff it is both holomorphic and
possesses an Hermitian metric.

Theorem 2.24 Given an Hermitian vector bundle, V , on a complex manifold, X, there exists a unique
connection (the uniholo connection, also known as “Chern connection”) which is both holomorphic and
unitary. Denote it by ∇V .

Proof . Look locally at a holomorphic frame and take θ, the connection matrix of some connection, ∇. Then

∇(ei) =
n∑

j=1

θij ⊗ ej .

The connection ∇ will be holomorphic iff

∇0,1 ↾ U = ∂ on U,

i.e., ∇0,1(
∑n

i=1 si ⊗ ei) = ∂si ⊗ ei. Therefore (as ∂1 = 0), we must have ∇0,1(ei) = 0, for every ei. So, in
the frame, θ is a (1, 0)-matrix and the converse is clear.

For this ∇ to be unitary, we need

dbij = d(ei, ej) = (∇ei, ej) + (ei,∇ej).
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On the right hand side, we have

(( n∑

k=1

θikek

)
, ej

)
+

(
ei,
( n∑

r=1

θjrer

))
=

n∑

k=1

θik(ek, ej) +
n∑

r=1

θjr(ei, er)

=

n∑

k=1

θikbkj +

n∑

r=1

θjrbir

= (θB + θ
⊤
B)ij .

(Here B = (bij) = (ei, ej).) Now, dB = ∂B+ ∂B = θB+ θ∗B, from which we deduce (by equating the (1, 0)
pieces and the (0, 1) pieces) that

∂B = θB and ∂B = θ∗B.

(Here, θ∗ = θ
⊤
). The first equation has the unique solution

θ = ∂B ·B−1.

A simple calculation shows that it also solves the second equation (DX). By uniqueness, this solution is
independent of the frame and so, it patches to give the uniholo connection.

Corollary 2.25 (of the proof) For a holomorphic vector bundle, V , over a complex manifold, X, a connec-
tion ∇ is holomorphic iff in every holomorphic local frame its connection matrix is a matrix of (1, 0)-forms.

Corollary 2.26 For a vector bundle, V , with Hermitian metric a connection ∇ is unitary iff in each every
unitary local frame its connection matrix is skew-Hermitian.

Proof . By the proof, for a unitary frame, the connection ∇ is unitary iff

0 = dI = θI + θ∗I = θ + θ∗.

Therefore, θ∗ = −θ, as claimed.

Say s ∈ ApV (U), t ∈ AqV (U) and V is a unitary bundle with an Hermitian metric. For a local frame over
U , set

{s, t} =
∑

µ,ν

sµ ∧ tν (eµ, eν),

called the Poisson bracket , where s =
∑n

µ=1 sµeµ and t =
∑n

ν=1 tνeν . Then, we have

Corollary 2.27 A connection, ∇, on a unitary bundle is a unitary connection iff for all s, t (as above),
locally

d{s, t} = {∇s, t}+ (−1)deg s {s,∇t}.

Proof . (DX).

Corollary 2.28 If ∇ is a unitary connection on the unitary bundle, V , then the local curvature matrix, Θ,
in a unitary frame is skew Hermitian.

Proof . We know that Θ = dθ − θ ∧ θ and θ is skew Hermitian (DX).

Proposition 2.29 Say V and Ṽ are unitary and holomorphic vector bundles over a complex manifold, X,
and W is a holomorphic subbundle of V . Write, as usual, ∇V ,∇Ṽ , for the uniholo connections on V and

Ṽ . Then,
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(1) W is also an Hermitian vector bundle and if V = W
⊥∐
W⊥ in the metric decomposition for V , we

have

∇W = prW ◦ ∇V .

That is, the diagram

A0
V

∇V //

prW

��

A1
V

prW

��
A0
W

?�

incl

OO

∇W

// A1
W

commutes.

(2) V ⊗ Ṽ is again an Hermitian bundle in a canonical way. And for this structure,

∇V⊗Ṽ = ∇V ⊗ 1 + 1⊗∇Ṽ .

(3) Write V D for the dual bundle of V . Then, V D is again an Hermitian bundle in a canonical way and
∇V D is related to ∇V by the following local equation in a local frame:

d(ei, e
D
j ) = (∇V ei, eDj ) + (ei,∇V DeDj ).

Proof . In each case, make a candidate connection satisfying the appropriate formula. Check it is both
holomorphic and unitary and use uniqueness.

(1) Write ∇ = prW ◦ ∇V . It is clear that W inherits a metric from V . Check that ∇ is holomorphic.
Pick s ∈ Γ(U, V ) and embed s in Γ(U, V ). As ∇0,1 = prW ◦ ∇0,1

V , we have

∇0,1s = prW (∇0,1
V s) = prW (∂s) = ∂s,

by the way ∂ is defined (∂ does not touch basis vectors) and s =
∑k
i=1 ωi ⊗ ei. We need to check that

∇ = prW ◦∇V is the uniholo connection. As the metric on W is the restriction of the metric on V , we have

d(s, t)W = d(s, t)V = (∇V s, t) + (s,∇V s, t)
= (prW ◦ ∇V s, t) + (prW⊥ ◦ ∇V s, t) + (s, prW ◦ ∇V t) + (s, prW⊥ ◦ ∇V t).

As W is perpendicular to W⊥, the second and fourth terms in the right hand side are 0. Therefore, we get

d(s, t)W = (∇s, t) + (s,∇t).

This shows ∇ is also unitary. By uniqueness, ∇ = ∇W .

(2) Say V and W̃ are hermitian bundles. Metrize V ⊗ Ṽ as follows: Consider s⊗ s̃ and t ⊗ t̃, for some

sections smt of V and sections s̃, s̃ of Ṽ and define

(s⊗ s̃, t⊗ t̃) = (s, t)(s̃, t̃)

and extend by complex sesquilinearity. We get a hermitian form on V ⊗ Ṽ and (DX), it is positive definite.

The space V ⊗ Ṽ is also holomorphic as each is. Let

∇ = ∇V ⊗ 1 + 1⊗∇Ṽ .
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In order to check that ∇ is unitary, it suffices to check this on the special inner product (s ⊗ s̃, t ⊗ t̃). We
have

d(s⊗ s̃, t⊗ t̃) = d((s, t)(s̃, t̃))

= d(s, t) (s̃, t̃) + (s, t) d(s̃, t̃)

=
[
(∇V s, t) + (s,∇V t)

]
(s̃, t̃) + (s, t)

[
(∇Ṽ s̃, t̃) + (s̃,∇Ṽ t̃)

]

= (∇V s, t)(s̃, t̃) + (s,∇V t)(s̃, t̃) + (s, t)(∇Ṽ s̃, t̃) + (s, t)(s̃,∇Ṽ t̃)
= (∇V s⊗ s̃, t⊗ t̃) + (s⊗ s̃,∇V t⊗ t̃) + (s⊗∇Ṽ s̃, t⊗ t̃) + (s⊗ s̃, t⊗∇Ṽ t̃)
= ((∇V ⊗ 1 + 1⊗∇Ṽ )(s⊗ s̃), t⊗ t̃) + (s⊗ s̃, (∇V ⊗ 1 + 1⊗∇Ṽ )(t⊗ t̃)),

as required. Now, ∇0,1 = ∇0,1
V ⊗ 1 + 1⊗∇0,1

Ṽ
and the latter two are ∂. It follows that

∇0,1 = (∂ ⊗ 1 + 1⊗ ∂).

If (e1, . . . , em) is a holomorphic frame and s =
∑m

i=1 siei, and similarly, s̃ =
∑m

i=1 siẽi for (ẽ1, . . . , ẽn), then
as

∂(sis̃j) = (∂si)sj + si(∂sj) = (∂ ⊗ 1 + 1⊗ ∂)(si ⊗ s̃j).
Therefore, ∇ is uniholo and so, it is ∇V⊗Ṽ .

(3) For the dual bundle, say (e1, . . . , en) is a local unitary frame. Let eD1 , . . . , e
D
n be the dual frame and

decree it shall be unitary. We get an hermitian form on V D and this is independent of the choice of the
unitary frame. The bundle V D is clearly holomorphic, so V D is hermitian. Check (DX),

(s,∇V DtD) = d(s, tD)− (∇V s, tD)

define the uniholo connection in V D.

Now, say V is holomorphic and ∇ is a holomorphic connection. So, ∇0,1 = ∂, but we know ∂
2
= 0.

Therefore, ∇0,2 = (∇0,1)2 = 0. We deduce that

0 = ∇0,2ei =

n∑

j=1

Θ0,2
ij ej

and by linear independence, Θ0,2 = (0). If we change frame, Θ̃0,2 = BΘ0,2B−1, so Θ0,2 = 0 in any base. If
V is hermitian and ∇ is uniholo then we know Θ is skew hermitian in a unitary frame, i.e.,

Θ = −Θ∗ = −Θ⊤
.

Consequently, −(Θ2,0)⊤ = −Θ0,2
⊤
, which means that Θ2,0 = (0), too! Therefore, Θ is a (1, 1)-matrix. Now,

ω = −ω if ω is a (1, 1)-form, and since Θ is skew hermitian, we get

Proposition 2.30 For a holomorphic bundle and holomorphic connection, ∇, the curvature matrix, Θ, of
∇ in any frame has Θ0,2 = (0). If V is an hermitian bundle and if ∇ = ∇V is the uniholo connection, then
in a unitary frame, Θ is an hermitian matrix of (1, 1)-forms.

Now, look at V D, for V hermitian. Say θ is the connection matrix for ∇V in a unitary frame and θD the
connection matrix for ∇V D in the dual frame. We have

∇V (ei) =
n∑

j=1

θijej and ∇V D (eDk ) =
n∑

r=1

θDkre
D
r .
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Now, (ei, e
D
k ) = δik, which implies d(ei, e

D
k ) = 0,, for all i, k. It follows that

0 = d(ei, e
D
k ) = (∇V ei, eDk ) + (ei,∇V DeDk )

=
∑

j

θij(ej , e
D
k ) +

∑

r

θDkr(ei, e
D
r )

= θik + θDki.

Therefore, θDki = −θik, i.e., θD = −θ⊤.

Proposition 2.31 If V is a hermitian bundle, V D, its dual, and ∇V and ∇V D their uniholo connections,
in a unitary frame (and coframe) for V (and V D), the connection matrices satisfy θD = −θ⊤.

Back to the Sobolev theorem and Rellich lemma. Instead of ∂/∂Xi locally on a real manifold, X , use n
independent vector fields, v1, . . . , vn. If f is a C∞-function on X , locally on some open, U , for all x ∈ U , we
have

vi(x) =

n∑

j=1

a
(i)
j

∂

∂Xj
,

for some C∞ functions, a
(i)
j , and so,

vi(x)(f) =

n∑

j=1

a
(i)
j

∂f

∂Xj
.

Note that in general, vivk(f) 6= vkvi(f). Indeed, we have

vivk(f) = vi




n∑

j=1

a
(k)
j

∂f

∂Xj




=

n∑

r=1

a(i)r
∂

∂Xr




n∑

j=1

a
(k)
j

∂f

∂Xj




=

n∑

r,j=1

a(i)r a
(k)
j

∂2f

∂Xr∂Xj
+

n∑

r,j=1

a(i)r
∂a

(k)
j

∂Xr

∂f

∂Xj
.

Interchanging k and i, we have

vkvi(f) =

n∑

r,j=1

a(k)r a
(i)
j

∂2f

∂Xr∂Xj
+

n∑

r,j=1

a(k)r
∂a

(i)
j

∂Xr

∂f

∂Xj
.

We conclude that [vi, vj ](f) = vivk(f) − vkvi(f) = a sum involving only the ∂
∂Xj

’s, i.e., it is a first-order

differential operator = O1(∂, ∂).

If V is a vector bundle on X and ∇ is a connection, v1, . . . , vn are n independent vector fields and
vD1 , . . . , v

D
n are their duals, then in a local frame, e1, . . . , et, for V over U , for any section, s ∈ Γ(U, V ), if

s =
∑

j=1

sjej ,

then, by definition,

∇(s) =
∑

i,j

(∇vi(s))j vDi ⊗ ej
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defines the covariant derivative of s. Write ∇i for ∇vi . But, we have

∇(s) = ∇
( t∑

j=1

sjej

)

=

t∑

j=1

dsj ⊗ ej +
t∑

j=1

sj∇ej

=

t∑

j=1

dsj ⊗ ej +
t∑

j,r=1

sjθjr ⊗ er,

where the θjr are 1-forms involving the vDi . Furthermore,

dsj =
n∑

k=1

∂sj
∂Xk

dXk =
n∑

k,µ=1

∂sj
∂Xk

b
(µ)
k vDµ =

n∑

µ=1

vµ(sj) v
D
µ

and
dsj ⊗ ej =

∑

k

vk(sj) v
D
k ⊗ ej ,

so, we get

∇(s) =
∑

j,l

(∇j(s))l vDj ⊗ el =
t∑

j=1

n∑

l=1

vl(sj) v
D
l ⊗ ej +

t∑

j,r=1

sjθjr ⊗ er.

This shows that (∇i(s))j and vi(sj) differ at most by O0(∂, ∂) and (∇i(s))j involves the vi operating on sj+
a term using the connection matrix.

We can repeat this process with Γ(U, V ⊗TDX ) and get ∇i(∇j) and ∇j(∇i) and from before, we find that

∇i(∇j)−∇j(∇i) = O1(∂, ∂).

This can be extended to multi-indices. For α = (α1, . . . , αn), define

∇αf = ∇α1(∇α2(· · · (∇αnf) · · · )).

The above term is well define and is independent of the order taken, up to O<|α|(∂, ∂).

Say V has a(n hermitian) metric and ∇ is a unitary connection and assume X is compact. For any
f ∈ C∞(X,V ), we have ‖∇αf‖L2 , so we can define

‖f‖2s =
∑

|α|≤s

‖∇αf‖2L2 =
∑

|α|≤s

∫

X

|∇αf(x)|2Φ(x),

where Φ(x) is the volume form on X . This is the Sobolev s-norm on C∞(X,V ). Locally, where V is trivial,
the above computations show that this norm is equivalent to the Sobolev s-norm defined before using the
Dα’s. When we complete C∞(X,V ) w.r.t. the (global) s-Sobolev norm we get H(X,V )s, a Hilbert space.
Then, cover our compact space, X , by a finite number of opens where V is trivial, take a partition of unity
subordinate to our cover, {Uα}, use the sup of the finitely many constants relating global s-norm restricted
to Uα and local s-norm on Uα, and we get

Lemma 2.32 (Global Sobolev Embedding Lemma) If X is a compact (real or complex) manifold and
m ∈ Z≥0, V is a vector bundle with metric and unitary connection, ∇, then

H(X,V )σ(m) →֒ Cm(X,V ).

In particular,
⋂
sH(X,V )s = C∞(X,V ).
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We also get

Lemma 2.33 (Global Rellich Lemma) For X compact, V a vector bundle with metric and unitary connec-
tion, if s > r, then the embedding

H(X,V )s →֒ H(X,V )r

is a compact operator.

Now, we are going to apply the above theorem to TDX and
∧p,q

(X). Consider the spaces
∧p,q

(X) =
Γ(X,

∧p,q
TDX ) and suppose X is metrized (and compact), i.e., TX (hence TDX ) are bundles with a metric. If

we have a local unitary frame for TX over U , say e1, . . . , en, and dual coframe eD1 , . . . , e
D
n , for T

D
X , then we

know
∧p,q

(X) is a pre-Hilbert space. Recall that if |I| = p and |J | = q, then

{eDI ∧ eDJ }I,J

is a basis for
∧p,q

(U) and decree that the eDI ∧ eDJ are mutally orthogonal with size

‖eDI ∧ eDJ ‖2 = 2p+q.

We found that for ξ, η ∈ ∧p,q(X),

(ξ, η) =

∫

X

(ξx, ηx)Φ(x),

where Φ(x) is the volume form. If ω ∈ ∧p,q(X), we can form (as usual), ∇αω, for ∇ a unitary connection
on TDX , and thus, we have ‖∇αω‖2L2, where

‖∇αω‖2L2 =

∫

X

(∇αω,∇αω)xΦ(x).

Then,
∧p,q

(X) has the s-Sobolev norm:

‖ω‖2s =
∑

|α|≤s

‖∇αω‖2L2 =
∑

|α|≤s

∫

X

(∇αω,∇αω)xΦ(x),

where ω ∈ ∧p,q(X). Complete
∧p,q

(X) w.r.t. the s-Sobolev norm and get the Sobolev space, H(X)p,qs .

We even have another norm on (p, q)-forms in the complex, compact, case, the Dirichlet norm. Say
ξ, η ∈ ∧p,q(X), and set

(ξ, η)D = (ξ, η)L2 + (∂ξ, ∂η)L2 + (∂
∗
ξ, ∂

∗
η)L2 .

(Here, ∂
∗
is the formal adjoint of ∂.) The Dirichlet norm is given by

‖ξ‖2D = (ξ, ξ)D.

We can motivate the definition of the Dirichlet norm as follows: Observe that

(∂ξ, ∂η) = (ξ, ∂
∗
∂η) and (∂

∗
ξ, ∂

∗
η) = (ξ, ∂ ∂

∗
η),

from which we conclude that
(ξ, η)D = (ξ, η)L2 + (ξ, η)L2 .

Therefore,

(ξ, η)D = (ξ, (I + )η)L2 . (†)

The connection between the Dirichlet norm and the Sobolev 1-norm on
∧p,q(X) is
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Theorem 2.34 (G̊arding Inequality) If X is a compact, complex and Hermitian metrized, with its uniholo
connection, then for all ω ∈ ∧p,q(X), we have

‖ω‖1 ≤ C‖ω‖D,

where C > 0 is independent of ω. In fact, ‖ ‖1 and ‖ ‖D are equivalent norms on
∧p,q

(X).

Using the G̊arding inequality we can prove

Lemma 2.35 (Weyl’s Regularity Lemma (1940)) Say ξ ∈ H(X)p,qs and η ∈ H(X)p,q0 (actually, η ∈ H(X)p,q−t

will do for t > 0), so that η is a weak solution of η = ξ (i.e., for all ζ ∈ ∧p,q(X), we have (ξ, ζ) = (η, ζ).)
Then, η is actually in H(X)p,qs+2 (resp. η ∈ H(X)p,qs−t+2).

Applications of the Weyl Lemma:

Say η ∈ H(X)p,q0 is a (p, q)-eigenform (eigenvalue, λ ∈ C) for :

η = λη.

Now, η ∈ H(X)p,q0 implies λη ∈ H(X)p,q0 . By Weyl’s Regularity Lemma, η ∈ H(X)p,q2 . By repeating this
process, we see that η ∈ H(X)p,q∞ . Therefore

Corollary 2.36 Every L2 weak (p, q)-form for is actually C∞ and is an honest (p, q)-eigenform.

In particular, in the case λ = 0, which means η = 0, we get

Corollary 2.37 Every L2 weak harmonic (p, q)-form, η, is automatically C∞ and is a (p, q)-harmonic form
(η ∈ Hp,q(X)) in the standard sense.

Now, is self-adjoint (on
∧p,q

(X)), which implies that all eigenvalues are real . Let ω ∈ ∧p,q(X) be an
eigenform, with λ the corresponding eigenvalue. Then, we have

(ω, ω) = λ(ω, ω)

= (ω, ∂
∗
∂ω) + (ω, ∂ ∂

∗
ω)

= (∂ω, ∂ω) + (∂
∗
ω, ∂

∗
ω) ≥ 0.

Corollary 2.38 All the eigenvalues of are non-negative.

Corollary 2.39 The operator I + has zero kernel.

Proof . If (I + )(ω) = 0, then ω = −ω. Yet, the eigenvalues of are non-negative, so ω = 0.

We now have all the necessary analytic tools to prove Hodge’s theorem. Recall the statement of Hodge’s
Theorem:

Theorem 2.17 (W.V.D. Hodge, 1941) Let X be a complex manifold and assume that X is compact.
Then, for all p, q ≥ 0,

(1) The space Hp,q

∂
∼= Hp,q(X) is finite-dimensional.

(2) There exists a projection, H :
∧p,q(X) → Hp,q(X) (= Ker on

∧p,q(X)), so that we have the
orthogonal decomposition (Hodge decomposition)

p,q∧
(X) = Hp,q(X)

⊥∐
∂

p,q−1∧
(X)

⊥∐
∂
∗
p,q+1∧

(X).
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(3) There exists a parametrix (= pseudo-inverse), G, for , and it is is uniquely determined by

(a) id = H + G = H +G , and

(b) G∂ = ∂G, G∂
∗
= ∂

∗
G and G ↾ Hp,q(X) = 0.

Proof . All the statements of the theorem about orthogonal decomposition have been shown to be conse-
quences of the finite dimensionality of the harmonic space Hp,q(X) and the fact that

(a) id = H + G = H +G , and

(b) G∂ = ∂G, G∂
∗
= ∂

∗
G and G ↾ Hp,q(X) = 0.

Break up the rest of the proof into three steps.

Step I . (Main analytic step). I claim:

For every ϕ ∈ H(X)p,q0 = L2-(p, q)-forms, there is a unique ψ ∈ H(X)p,q1 , so that, for all η ∈ ∧p,q(X),

(ψ, (I + )(η))1 = (ϕ, η)0

and the map ϕ 7→ S(ϕ) = ψ is a bounded linear transformation H(X)p,q0 −→ H(X)p,q1 .

Consider (I+ )
∧p,q

(X) ⊆ ∧p,q(X). As I+ is a monomorphism, there is only one η giving (I+ )(η).
Look at the conjugate linear functional, l, on (I + )

∧p,q
(X) given by

l((I + )(η)) = (ϕ, η)0.

We have
|l((I + )(η))| = |(ϕ, η)0| ≤ ‖ϕ‖0 ‖η‖0 .

(By Cauchy-Schwarz.) Thus,

|l((I + )(η))| ≤ ‖ϕ‖0 ‖η‖0 ≤ ‖ϕ‖0 ‖I + )(η)‖0
and by G̊arding inequality, the D-norm is equivalent to the Sobolev 1-norm. Therefore, l is indeed a
bounded linear functional on (I + )

∧p,q
(X) →֒ H(X)p,q1 . By the Hahn-Banach Theorem, l extends to a

linear functional, with the same bound, on all of H(X)p,q1 . But, H(X)p,q1 is a Hilbert space, so, by Riesz
Theorem, there is some ψ ∈ H(X)p,q1 so that

l((I + )(η)) = (ψ, (I + )(η))1.

Check that ψ is unique (DX). Then, we have

(ψ, (I + )(η))1 = (ϕ, η)0

for every η ∈ ∧p,q(X). Write ψ = S(ϕ); then, formally, S is self-adjoint as I + is itself self-adjoint. For
boundedness of S, compute

‖Sϕ‖21 ≤ C ‖Sϕ‖
2
D ≤ C(Sϕ, (I + )Sϕ)0,

by G̊arding inequality, but S = 0, so

C(Sϕ, (I + )Sϕ)0 ≤ C(Sϕ, ϕ)0 ≤ ‖Sϕ‖0 ‖ϕ‖0 .

(By Cauchy-Schwarz.) Now, S inverts I + and therefore is an integral operator on L2-(p, q)-forms.
Therefore, there is some K > 0 so that

‖Sϕ‖0 ≤ K ‖ϕ‖0 ,
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and we conclude that
‖Sϕ‖21 ≤ CK ‖ϕ‖0 ‖ϕ‖0 = CK ‖ϕ‖20 ,

which shows that S is indeed a bounded operator from H(X)p,q0 to H(X)p,q1 .

Step II . (Application of spectral theory).

Consider
H(X)p,q0

S−→ H(X)p,q1 →֒ H(X)p,q0 ,

where the last map is a compact embedding. Apply Rellich’s lemma and find that our operator
H(X)p,q0 −→ H(X)p,q0 is a compact self-adjoint endomorphism. In this case, the spectral theorem says that
H(X)p,q0 splits into a countable orthogonal coproduct of eigenspaces for S, each of finite dimension, write
S(λm) for the λm-eigenspace of the operator S (i.e., S(λm) = {ϕ | S(ϕ) = λmϕ}),

H(X)p,q0 =
∐

m≥0

S(λm).

Now, Sϕ = 0 implies 0 = (Sϕ, (I + )(η)) = (ϕ, η)0, for all η ∈
∧p,q(X), so we deduce ϕ = 0, by denseness

of
∧p,q

(X) ⊆ H(X)p,q0 . Therefore, λm 6= 0, for all m. Look at ϕ ∈ S(λm), so S(ϕ) = λmϕ. Then,

(I + )Sϕ = ϕ = (I + )(λmϕ) = λmϕ+ λm( ϕ),

from which we get (
(1 − λm)

λm

)
ϕ = ϕ.

As we can reverse the argument, we conclude that there is an isomorphism between S(λm) and
(

(1−λm)
λm

)
.

Set µm = (1−λm)
λm

, so the µm are the eigenvalues of , and we know that they are real and positive. Arrange
the µm in ascending order

µ0 < µ1 < µ2 < · · · < µn < · · · .
As µm = (1−λm)

λm
we have λm = 1

(1+µm) and we see that µm ↑ ∞ and λm ↓ 0 and (µm) = S(λm). We

conclude

(a)

H(X)p,q0 =
∐

m≥0

(µm) = Hp,q(X)
⊥
∐

⊥∐

m≥1

(µm),

and each is a finite dimensional space, so Hp,q(X) is finite dimensional. Further

(b) Each subspace, (µm), consists of C∞ (p, q)-forms (by Weyl’s lemma).

Step III . (The Green’s operator).

On (Hp,q)⊥, we have

ϕ =
( ∞∑

n=1

ϕn

)
=

∞∑

n=1

ϕn =

∞∑

n=1

µnϕn,

so

‖ ϕ‖20 =
∞∑

n=1

µ2
n ‖ϕn‖20 ≥ µ2

1

∞∑

n=1

‖ϕn‖20 = µ2
1 ‖ϕ‖20 .

Therefore,
‖ ϕ‖20 ≥ µ2

1 ‖ϕ‖0
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on Hp,q(X), which implies that if we construct a parametrix, G, it is automatically bounded above, i.e.,
continuous.

Set G ≡ 0 on Hp,q(X) (by definition) and on (µm), set

G(ϕ) =
1

µm
ϕ.

Then, this G is compact (as H(X)p,q0 is an orthogonal coproduct of its eigenspaces and they are finite
dimensional, its bound is ≤ 1

µ1
),

G = G ,

as this holds on each piece. Consider ϕ ∈ H(X)p,q0 and look at ϕ− H(ϕ). We have

G (ϕ− H(ϕ)) = G(ϕ− H(ϕ)) = ϕ− H(ϕ).

As G(ϕ) = (Gϕ) = G(ϕ − H(ϕ)) = ϕ− H(ϕ), we get

ϕ = H(ϕ) + Gϕ

i.e., I = H + G.

We get a raft of corollaries.

Theorem 2.40 (Hodge–Dolbeault Isomorphism and Finiteness Theorem) If X is a complex and compact
manifold, then the spaces Hq(X,ΩpX) are finite dimensional for all p, q ≥ 0 and we have the isomorphisms

Hp,q(X) ∼= Hp,q

∂
(X) ∼= Hq(X,ΩpX) ∼= Ȟq(X,ΩpX).

(Recall that ϕ = 0, i.e., ϕ ∈ Hp,q(X), iff ∂ϕ = ∂
∗
ϕ = 0 iff ϕ is ∂-closed and ‖ϕ‖ is an absolute

minimum in its ∂-cohomology class.)

Corollary 2.41 (Riemann’s Theorem on Meromorphic Functions) Say X is a compact Riemann surface (1-
dimensional complex, compact, manifold). Given ζ1, . . . , ζt, distinct points in X and integers a1, . . . , at ≥ 0,
if
∑t
j=1 aj ≥ g + 1, where g = dimH1(X,OX), then there exists a non-constant meromorphic function, f ,

on X having poles only at ζ1, . . . , ζt and for all i, 1 ≤ i ≤ t, the order of the pole of f at ζi is at most ai.

Proof . Note that dimH1(X,OX) is finite by Hodge-Dolbeault (case p = 0, q = 1). At each ζi, pick a small
open neighborhood, Ui, and an analytic isomorphism, ϕi : Ui → ∆(0, 1), where ∆(0, 1) = {z ∈ C | |z| < 1}
and ϕi(ζi) = 0. Choose the Ui small enouh so that Ui ∩ Uj = ∅ whenever i 6= j. Let V = X − {ζ1, . . . , ζt}.
Then, {U1, . . . , Ut, V } is an open cover of X . We know

H1({Ui, V −→ X},OX) →֒ Ȟ1(X,OX) ∼= H1(X,OX).

Therefore, dimH1({Ui, V −→ X},OX) ≤ g. Consider the 1-cocycles

ψ
(i)
k =

(
1

ϕi

)k
on Ui ∩ V,

where 1 ≤ i ≤ t; 1 ≤ k ≤ ai. Consider k; then, we have a1 + · · ·+ at cocycles, which implies that there are
at least g + 1 cocycles. But, the dimension of H1({Ui, V −→ X},OX) is at most g, so these cocycles yield
linearly dependent cohomology classes and we deduce that there exist some cik ∈ C so that the sum

F =
∑

1≤i≤t
1≤k≤ai

cikψ
(i)
k
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is a coboundary. Therefore, F = gi − gV on Ui ∩ V , where gi ∈ Γ(Ui,OX) and gV ∈ Γ(V,OX), for all i.
Now, set

f =

{∑t,ai
i,k=1 cikψ

(i)
k − gl on Ul ∩ V

−gV on V .

Observe that f is meromorphic and the local definitions agree on the overlaps, Ul ∩ V , by choice, so f is

indeed globally defined. The poles of ψ
(i)
k are only ζi with order ≤ ai, which concludes the proof.

What is going on?

Say X is a complex manifold and letMX be the sheaf of germs of meromorphic functions. We have the
exact sequence

0 −→ OX −→MX −→ PX −→ 0, (∗)

where PX is the sheaf cokernel of the sheaf map OX −→MX . Pick an open, U , and look at Γ(U,PX). By
definition, σ ∈ Γ(U,PX) iff there is an open cover, {Uα −→ U}, so that σα = σ ↾ Uα. Lift each σα to a
meromorphic function, fα ∈ Γ(Uα,MX). On overlaps, fα − fβ goes to zero on passing to Γ(Uα ∩ Uβ ,PX).
It follows that fα − fβ ∈ Γ(Uα ∩ Uβ ,OX). Therefore, Γ(U,PX) is the set of pairs

{〈{Uα −→ U}, fα ∈ Γ(U,MX)〉 | fα − fβ ∈ Γ(Uα ∩ Uβ,OX)}.

This set is called Cousin data of type 1 for the open U .

Cousin Type 1 Problem: Given Cousin data of type 1 on U , does there exist a meromorphic function, f ,
where f ∈ Γ(U,MX), so that f ↾ Uα = fα?

Write down the cohomology sequence for (∗) over U :

0 −→ Γ(U,OX) −→ Γ(U,MX) −→ Γ(U,PX) δ−→ H1(U,OX).

Consequentely, Cousin 1 is solvable iff H1(U,OX) = (0).

Example 1. Take U = C1, then the Mittag-Leffler theorem holds iff H1(C1,OC1) = (0).

Example 2. U = Cn. Again, OK.

Corollary 2.42 (Case t = 1) Say X is a compact Riemann surface and ζ ∈ X. Write g = dimH1(X,OX).
Then, there exists a non-constant meromorphic function, f , on X having a pole only at ζ and the order of
the pole is at most g + 1.

Consider a compact, complex, manifold, X , with a metric, so we have ∗ and look at ∗ (on (p, q)-forms):

∗ = ∗(∂ ∂∗ + ∂
∗
∂)

= ∗∂(− ∗ ∂ ∗) + ∗(− ∗ ∂ ∗)∂
= −(∗ ∂ ∗)∂ ∗+(−1)p+q+1∂ ∗ ∂
= ∂

∗
∂ ∗+ ∂ ∗ ∂(−1)p+q+1

= ∂
∗
∂ ∗+ ∂(− ∗ ∂ ∗) ∗

= ∗ .

Say ξ ∈ Hp,q(X), then ξ = 0 implies ∗ (ξ) = 0, and from the above, (∗ξ) = 0. Therefore, ∗ξ ∈
Hn−p,n−q(X) and we get an isomorphism

∗ : Hp,q(X)→ Hn−p,n−q(X).

� This isomorphism depends on the metric.
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Is there a canonical choice? Answer: No.

Is there a duality? Answer: Yes.

Take p = q = 0, then we have

∗ : H0,0(X)→ Hn,n(X).

But, X is compact and connected, so H0,0(X) = C. As ∗1 = Φ (the volume form) in Hn,n(X), we deduce
that

Hn,n(X) = C · Φ.
Now, we have the pairing

ΩpX ⊗ Ωp
′

X −→ Ωp+p
′

X , where ξ ⊗ η 7→ ξ ∧ η.
The above induces the cup-product on cohomology:

H•(X,ΩpX)⊗H•(X,Ωp
′

X) −→ H•+•(X,Ωp+p
′

X ).

By Dolbeault, Hp,q

∂
(X) ∼= Hq(X,ΩpX). But, we have the pairing on the groups in the Dolbeault complex:

p,q∧
(X)⊗

p′,q′∧
(X) −→

p+p′,q+q′∧
(X), where ξ ⊗ η 7→ ξ ∧ η.

Moreover, ∂(ξ ∧ η) = ∂ξ ∧ η + (−1)deg ξ ξ ∧ ∂η, an this implies (DX, elementary homological algebra) that
we get the pairing

Hp,q

∂
(X)⊗Hp′,q′

∂
(X) −→ Hp+p′,q+q′

∂
(X)

and the diagram

Hp,q

∂
(X)⊗Hp′,q′

∂
(X)

�� ��

// Hp+p′,q+q′

∂
(X)

��

Hq(X,ΩpX)⊗Hq′(X,Ωp
′

X) // Hq+q′(X,Ωp+p
′

X )

commutes up to sign. This will give us the theorem

Theorem 2.43 (Serre Duality–First Case) Let X be a compact, complex manifold of complex dimension n,
then

(1) There exists a canonical isomorphism (trace map)

Hn(X,ΩnX)
tr∼= C,

and

(2) The cup-product pairings

Hq(X,ΩpX)⊗Hn−q(X,Ωn−pX ) −→ Hn(X,ΩnX)
tr−→ C

are perfect dualities of finite dimensional vector spaces.

Proof . Define tr : Hn(X,ΩnX) −→ C as follows: Take ζ ∈ Hn(X,ΩnX) and represent it by a C∞ (n, n)-form,
η ∈ ∧n,n(X). Define

tr(ζ) =

∫

X

η.
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Another lift is η + ∂ξ, where ξ ∈ ∧n,n−1(X). We have
∫

X

(η + ∂ξ) =

∫

X

η +

∫

X

∂ξ.

But, dξ = ∂ξ + ∂ξ and ∂ξ = 0 (since ξ ∈ ∧n,n−1(X)), so we deduce dξ = ∂ξ. Consequently,
∫

X

∂ξ =

∫

X

dξ =

∫

∂X

ξ = 0,

since X has no boundary (by Stokes). Therefore, the trace map exists canonically. Pick a metric on X , then
Hodge implies

Hn,n

∂
(X) ∼= Hn,n(X) = C · Φ,

and we conclude that

tr(Φ) =

∫

X

Φ = Vol(X) > 0.

Therefore, tr(Φ) 6= 0 and tr is a nonzero linear map between two 1-dimensional spaces, so it must be an
isomorphism.

(2) We already have our pairing:

ξ ⊗ η 7→
∫

X

ξ ∧ η.

Put a metric on X , then Hodge says our pairing is the same pairing but considered on

Hp,q(X)⊗Hn−p,n−q(X) −→ Hn,n(X).

Now, given ξ, take ∗ξ, then
ξ ⊗ ∗ξ 7→

∫

X

ξ ∧ ∗ξ = ‖ξ‖L2 > 0

(on (p, q)-forms). Since ξ 6= 0 implies that there is some η so that
∫
X
ξ∧η 6= 0, our pairing is nondegenerate.

Corollary 2.44 If X is the Riemann sphere, S2 = P1
C, then the genus of X is 0.

Proof . We must prove H1(X,OX) = (0). By Serre duality, this means H0(X,Ω1
X) = (0), i.e., the sphere

carries no nonzero global holomorphic 1-forms. Cover P1
C by its two patches, parameters z and w (opens,

U, V and on U ∩ V , w = 1/z). If ω is a global holomorphic 1-form, then

f ↾ U = f(z)dz, f entire on C

and
f ↾ V = g(w)dw, g entire on C.

On U ∩ V , as w = 1/z, we have dw = −(1/z2)dz, so

f(z)dz = g

(
1

z

)(
− 1

z2

)
dz,

i.e.,

f(z) = g

(
1

z

)(
− 1

z2

)
on U ∩ V .

If we let z go to ∞ (i.e., 1/z −→ 0), the right hand side goes to 0, as g is entire. Therefore, f is bounded
and entire and similarly, g is bounded and entire. By Liouville, both f and g are constant. But,

f = g

(
− 1

z2

)
on U ∩ V

only if f = g = 0.
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Corollary 2.45 On S2 = P1
C, for each ζ, there exists a non-constant meromorphic function, f , having

exactly a pole of order 1 at ζ and no other pole. The function f may be replaced by αf + β, for α, β ∈ C
and no other replacements are possible.

Proof . By Riemann, as g = 0, there is a meromorphic function, f , with a pole of order at most 1 at ζ and
no other poles. Consequently, this pole must be of order 1 at ζ. Say g is another function with the same
property. Near ζ, we have

f(z) =
a

z − ζ + holo. function and g(z) =
b

z − ζ + holo. function,

with a, b 6= 0. Then, g − b
a f has no pole at ζ and no other poles, which means that it must be constant.

Therefore, g = b
a f + β, as claimed.

Corollary 2.46 If X is a compact, complex manifold, then we have

(1) hn,n = 1, where n = dimCX.

(2) hp,q <∞, for all p, q ≥ 0.

(3) hn−p,n−q = hp,q,

where hp,q = dimCH
q(X,ΩpX) (the qp-th Hodge number of X).

The same kind of argument as we’ve used shows the pairing

Hr
DR(X,C)⊗Hn−r

DR (X,C) −→ C, where s⊗ t 7→
∫

X

s ∧ t (†)

is (for X compact) non-degenerate. Simply take, given s, the form t = ∗s, where ∗ is computed mutatis
mutandis for d just as for ∂. We’ll show (just below) these de Rham groups are finite dimensional vector
spaces over C. We deduce

Theorem 2.47 If X is a compact, complex manifold and n = dimCX, then the pairing (†) is an exact
duality of finite dimensional vector spaces.

We know from topology the Künneth formula for cohomology of a product

H l(X
∏

Y ) ∼=
∐

r+s=l

Hr(X)⊗Hs(Y ).

This actually holds for forms in the compact, complex case. Pick, X,Y , compact, complex, then we have
maps

Hq(X or Y,ΩpX or ΩpY ) −→ Hq(X
∏

Y,ΩpX
∏
Y ),

by pr∗1 , or pr
∗
2 . This gives a map

∐

p+p′=a
q+q′=b

Hq(X,ΩpX)⊗Hq′(Y,Ωp
′

Y ) −→ Hb(X
∏

Y,ΩaX
∏
Y ). (∗)

Theorem 2.48 (Künneth for forms (or ∂-cohomology)) If X,Y are compact, complex manifolds, then (∗)
is an isomorphism (for all p, p′, q, q′, a, b).
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Proof . Pick Hermitian metrics for X and Y and give X
∏
Y the product metric. Then, Hodge’s theorem

reduces (∗) to the statement:

∐

p+p′=a
q+q′=b

Hp,q(X)⊗Hp′,q′(Y ) −→ Ha,b(X
∏

Y ).

Step 1. (Enough forms). Notation: z’s and w’s for coordinates in X , resp. Y . If ξ is a (p, q)-form on X
and η is a (p′, q′)-form on Y , then

p,q∧
(X)⊗

p′,q′∧
(Y ) −→

p+p′,q+q′∧
(X
∏

Y ) via ξ ⊗ η 7→ ξ(z′s) ∧ η(w′s).

Call the forms in
∧a,b

(X
∏
Y ) of the right hand side decomposable or pure forms. I claim the decomposable

forms are L2-dense. Namely, choose ζ ∈ ∧a,b(X∏ Y ) and say

∫

X
∏
Y

ζ(z, w) ∧ ∗(ξ(z) ∧ η(w)) = 0, for all ξ, η.

if ζ(z0, w0) 6= 0, by multiplication by eiθ, for some θ, we get ℜ(ζ(z0, w0)) > 0. So, there is some neighborhood
of (z0, w0) where ℜ(ζ) > 0 and we can even assume that this neighborhood is U

∏
V , with z0 ∈ U and w0 ∈ V .

Pick forms, ξ, η with compact support in U , resp. V , and arrange (use another eiϕ) so that

ℜ(ζ(z0, w0) ∧ ∗(ξ(z0) ∧ η(w0))) > 0

and cut by a bump function so that the form ζ ∧ ∗(ξ ∧ η) = 0 outside U ′
∏
V ′, with U ′ ⊆ U , V ′ ⊆ V and

ℜ(form) > 0 on U ′
∏
V ′. Then,

0 =

∫

X
∏
Y

ζ ∧ ∗(ξ ∧ η) =
∫

U ′
∏
V ′
ζ ∧ ∗(ξ ∧ η) > 0,

a contradiction.

Step 2. ( X
∏
Y ). We know that we have the uniholo connections on X , Y and X

∏
Y , so that

∂X
∏
Y = ∂X + ∂Y . (††)

A unitary coframe for X
∏
Y (locally) has the form

(ϕ1(z), . . . , ϕl(z), ψ1(w), . . . , ψm(w)),

where the ϕi’s and ψj ’s are unitary coframes on the factors. The Hodge ∗ on X∏Y is computed separatly

from ∗ on X and ∗ on Y . Since ∂
∗

X = − ∗ ∂X∗ and ∂
∗

Y = − ∗ ∂Y ∗, we get

(a) ∂
∗
X

∏
Y = ∂

∗
X + ∂

∗
Y ;

(b) ∂
∗
X∂Y + ∂Y ∂

∗
X = 0;

(c) ∂
∗
Y ∂X + ∂X∂

∗
Y = 0.

The last two hold because ∂X∂Y + ∂Y ∂X = 0. Then (††) and (a), (b), (c) imply

X
∏
Y = ∂

∗

X
∏
Y ∂X

∏
Y + ∂X

∏
Y ∂

∗

X
∏
Y = X + Y ,

i.e.,

X
∏
Y (ξ ⊗ η) = ( Xξ)⊗ η + ξ ⊗ ( Y η).
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So, if X(ξ) = λξ and Y (η) = µη, we deduce

X
∏
Y (ξ ⊗ η) = λ(ξ ⊗ η) + µ(ξ ⊗ η) = (λ+ µ)(ξ ⊗ η).

As decomposable forms are dense, the equation X
∏
Y = X+ Y (on decomposables) determines X

∏
Y .

The decomposable eigenforms for X
∏
Y being dense by Step 1 and the density of the separate eigenforms

for X and Y show that

(i) The eigenvalues of X
∏
Y are exactly λi + µj , 0 ≤ i, j.

(ii) The decomposable eigenforms are an L2-basis on X
∏
Y .

Step 3. (Harmonicity). Take ζ, an harmonic X
∏
Y -form, say ζ = ξ ⊗ η. We have

0 = X
∏
Y (ζ) = (λ+ µ)(ξ ⊗ η) = (λ+ µ)ζ.

But, we know that λ, µ ≥ 0 and λ+ µ = 0 implies λ = µ = 0. Therefore, ξ and η are also harmonic.

Proposition 2.49 If X,Y are compact, complex manifolds, then

h(X
∏

Y )a,b =
∑

p+p′=a
q+q′=b

h(X)p,qh(Y )p
′,q′ .

Now, we have a double complex, for a complex manifold, X , (not necessarily compact)

p,q∧
(X) = Γ(X,

p,q∧
TDX ),

with (partial) differentials ∂, ∂ and total differential d = ∂ + ∂. Make the associated total complex, K•,
where

K l =
∐

p+q=l

p,q∧
(X).

It has differential d. We know that the cohomology of K• is exactly the de Rham cohomology of X (with
coefficients in C):

Hr(K•) = Hr
DR(X,C).

A double complex always comes with a filtration (actually two)

K l ⊇ F pK l =
∐

p′≥p
p′+q=l

p′,q∧
(X).

(Locally, a form is in F pK l iff it has degre l and at least p of the dz1, . . . , dzn). Check, F pK• ⊆ K• is a
subcomplex (under d). So, we get maps

Hr(F pK•) −→ Hr(K•) = Hr
DR(X,C).

By definition, the image of Hr(F pK•) is F pHr
DR(X,C) and this gives a decreasing filtration of Hr

DR(X,C),
for each r ≥ 0. This is the Hodge filtration on (de Rham) cohomology.

The double complex gives a spectral sequence from our Hodge filtration: The ending is

Ep,q∞ = grp,qH
•
DR(X,C) = F pHp+q

DR (X,C)/F p+1Hp+q
DR (X,C).
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It begins at the cohomology H•(gr(K•)) taken with respect to ∂. Recall

grs(K
l) =

∐

p≥s
p+q=l

p,q∧
(X)/

∐

p≥s+1
p+q=l

p,q∧
(X) =

s,q∧
(X),

with s+ q = l. Therefore, grs(K
•) =

∧s,•−s(X) and we take the cohomology w.r.t. ∂. Therefore, we have

Ep,q1 = Hp,q

∂
(X),

the Dolbeault cohomology. We deduce the

Theorem 2.50 (Fröhlicher) There exists for a complex manifold, X, a spectral sequence (the Hodge to de
Rham, S.S., notation HDRSS)

Hp,q

∂
(X) = Ep,q1 =⇒

p
Hp+q

DR (X,C).

Remarks:

(1) Assume that Ep,q1 = Hp,q

∂
(X) is finite-dimensional for all p, q ≥ 0, which holds if X is compact. We

know that Ep,q2 comes from Ep,q1 by using ∂ on Ep,q1 :

Ep,qr+1 = Zp,qr /Bp,qr ; where Bp,qr ⊆ Zp,qr ⊆ Ep,qr .

Therefore, dimCE
p,q
r+1 ≤ dimCE

p,q
r , for all r ≥ 1 and all p, q ≥ 0.

(2) dimCE
p,q
r+1 = dimCE

p,q
r , for all p, q ≥ 0, iff dr = 0.

(3) We have dimCE
p,q
∞ ≤ hp,q, for all p, q.

Let us look at the spaces Ep,q∞ , where p+ q = l. We have

F lH l
DR(X,C) = El,0∞ and F l−1H l

DR(X,C)/F
lH l

DR(X,C) = El−1,0
∞ , · · · .

We know bl = dimH l
DR(X,C) = l-th Betti number of X and so,

bl =

l∑

j=0

dimEj,l−j∞ ≤
∑

p+q=l

hp,q.

So, we get: HDRSS degenerates at r = 1 iff for every l, with 0 ≤ l ≤ 2dimCX , bl =
∑

p+q=l h
p,q and then,

(non-canonically, perhaps)

H l
DR(X,C) ←̃−

∐

p+q=l

Hp,q

∂
(X) ←̃−

∐

p+q=l

Hq(X,ΩpX).

We know for a complex, the Euler characteristic, if defined, is equal to the Euler characteristic using the
cohomology. As each Er is the cohomology of the previous Er−1, we get

χ(X,C) =
2dimCX∑

l=0

(−1)lbl =
∑

p,q

(−1)p+qhp,q.

Further, the inequality bl ≤
∑
p+q=l h

p,q implies in the compact case that all the de Rham cohomology
groups are finite dimensional. We summarize all this as:
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Theorem 2.51 (Fröhlicher) There exists a spectral sequence, the HDRSS,

Hp,q

∂
(X) = Ep,q1 =⇒

p
Hp+q

DR (X,C).

When X is compact we find that

(a) dimEp,q∞ ≤ hp,q, for all p, q ≥ 0.

(b) bl ≤
∑

p+q=l h
p,q (Fröhlicher inequality)

(c) χ(X,C) =
∑2dimCX

l=0 (−1)lbl =
∑

p,q(−1)p+qhp,q (Fröhlicher relation)

In the compact case, a n.a.s.c. that the HDRSS degenerates at r = 1 is that the inequalities in (b) are equal-
ities for all l (0 ≤ l ≤ 2dimCX) and in this case, we have the (perhaps non-canonical) Hodge decomposition

H l
DR(X,C) ←̃−

∐

p+q=l

Hq(X,ΩpX).

Remarks and Applications.

(A) Let X be a Riemann surface. Here, dimC = 1, so we only have h0,0 = 1, h0,1, h1,0 and h1,1 = 1. We
know if X is compact, b0 = 1, b2 ≥ 1 (there is a volume form), but b2 ≤ h1,1, by Fröhlicher, so b2 = 1. By
Serre duality, h0,1 = h1,0 = dimH1(X,OX) = g, the geometric genus of X . By Fröhlicher (c), we have

b0 − b1 + b2 = h0,0 − (h0,1 + h1,0) + h1,1,

i.e.,
2− b1 = 2− 2g,

So, we conclude b1 = 2g. Topologically, X is a sphere with m handles, therefore we get:

Corollary 2.52 For a compact Riemann surface, X, the three numbers

(a) g = dimH1(X,OX) = geometric genus;

(b) dimH0(X,Ω1
X) = analytic genus (number of linearly independent holomorphic 1-forms (Riemann),

and

(c) The topological genus = number of handles describing X

are the same and we have the Hodge decomposition

H l
DR(X,C) ←̃−

∐

p+q=l

Hq(X,ΩpX).

(B) X = a complex, compact surface, X : dimCX = 2. We have b0 = h0,0 = 1 and b4 ≤ h2,2 = 1; but,
b4 ≥ 1 (there is a volume form), so b4 = h2,2 = 1 (this is also true in dimension n). We have

b1 ≤ h1,0 + h0,1

b2 ≤ h2,0 + h1,1 + h0,2

b3 ≤ h2,1 + h1,2.

Poincaré duality says b1 = b3 and Serre duality says h1,0 + h1,0 = h2,1 + h1,2. Again, Serre duality says
h2,0 = h0,2 and further

χ(X,C) = b0 − b1 + b2 − b3 + b4

= 2− 2b1 + b2

= 2− 2(h1,0 + h0,1) + 2h2,0 + h1,1.

Hence, we have equivalent conditions for complex surfaces:
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(i) b1 = h1,0 + h0,1;

(ii) b2 = 2h2,0 + h1,1;

(iii) b3 = h2,1 + h1,2;

(iv) HDRSS degenerates at r = 1 and Hodge decomposition for de Rham cohomology.

The following nomenclature is customary:

1. pg = dimH2(X,OX) = h0,2 = geometric genus of X ;

2. q = dimH1(X,OX) = h0,1, the irregularity of X ;

3. pg − q = pa = arirthmetic genus = χ(X,OX)− 1.

(C) Some compact, complex surfaces. Look at λ ∈ R, with 0 < λ < 1 and C2 − {0}. Let Γ ∼= Z, i.e.,
Γ = {λn | n ∈ Z}. We make Γ act on C2 − {0} and we get Γ\(C2 − {0}) = Xλ, a complex surface. Now
C2 − {0} ∼= R+

∏
S3, and λ operates on the R+-factor. Therefore,

Xλ −̃→ S1
∏

S3,

a compact suface. We can compute cohomology by Künneth:

H0
DR(X,C) ∼= C;

H4
DR(X,C) ∼= C;

H1
DR(X,C) ∼=

∐

p+q=1

Hp
DR(S

1,C)⊗Hq
DR(S

3,C) ∼= C;

H3
DR(X,C) ∼= C; (Poincaré duality)

H2
DR(X,C) ∼=

∐

p+q=2

Hp
DR(S

1,C)⊗Hq
DR(S

3,C) = (0).

We know 1 = b1 ≤ h0,1 + h1,0 (at least one ≥ 1), 0 ≤ 2h0,0 + h1,1. Now, χ(X,C) = 0. Therefore,

2− 2(h0,1 + h1,0) + 2h2,0 + h1,1 = 0.

We can generalize Xλ as follows: Take complex λ1, λ2, with 0 ≤ |λ1| ≤ |λ2| < 1 and make the abelian
group Γ

z1 7→ λm1 z1, z2 7→ λn2 z2.

The group Γ acts on C2 − {0} and we get the complex surface Xλ1,λ2 = Γ\(C2 − {0}).
Slight variation, choose λ ∈ C, with 0 ≤ |λ| < 1; k ∈ N and act on C2 − {0} by

z1 7→ λz1, z2 7→ λz2 + zk1 .

We get a surface Xλ,k. These are the Hopf surfaces , Xλ1,λ2 and Xλ,k.

(D) If Xt is a family of compact, complex n-manifolds, all are diffeomorphic and metrically equivalent,
they may have different holomorphic (= complex) structures e.g., the Legendre family of elliptic curves

Y 2 = X(X − 1)(X − t)).

All the de Rahm cohomology is the same, but the Hodge filtrations change, giving variations of the Hodge
structure.
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We can make from d and the metric, d∗ and similarly, we can make from ∂ and the metric, ∂∗, and we
can make from ∂ and the metric, ∂

∗
. So, we get d, ∂ and ∂ = . In general, there are no relations

among the three.

Even for the same manifold and the same ∂, the wedge of two harmonic forms may be (in general is) not
harmonic. Now, say Y →֒ X (with X,Y compact), where Y is a complex submanifold, X metrized and Y
has the induced structure, still a harmonic form on X when restricted to Y need not be harmonic. Such
bad behavior does not happen with Kähler manifolds, the object of study of the next section.

2.5 Hodge III, The Kähler Case

Assume X is a hermitian manifold (= metrized and holomorphic). Both TX and TDX are metrized bundles
on X . We have the unique uniholo connection, ∇ on TX and ∇D on TDX :

∇D : Γ(X, C∞(X)) −→ Γ(X,TD1,0
X ⊗ TDX ) ∼= Γ(X,TD1,0

X ⊗ TD1,0
X )

∐
Γ(X,TD1,0

X ⊗ TD0,1
X ).

Compare ∇D with d:

d : Γ(X,TD1,0
X ) −→ Γ(X,TD2,0

X )
∐

Γ(X,TD1,0
X ⊗ TD0,1

X ).

As ∇D 0,1 = ∂, we get the same image on the second factor.

Write ds2 =
∑

i,j hij dzi ⊗ dzj =
∑

k ϕk ⊗ ϕk, for the metric.

Claim. Everywhere locally, there exists a unique (given by the coordinates, zj) matrix of 1-forms, ψij ,
so that

∂ϕi =
∑

j

ψij ∧ ϕj

and the ψij are computable in terms of the Gram-Schmidt matrix taking the dzj’s to the ϕk’s.

Since the ϕj form a basis, existence and uniqueness is clear. Let α be the Gram-Schmidt matrix given
by

ϕi =
∑

j

αijdzj .

We get

∂ϕi =
∑

j

∂αij ∧ dzj .

But,

dzj =
∑

k

α−1
jk ϕk,

so we get

∂ϕi =
∑

j,k

∂αij ∧ α−1
jk ϕk =

∑

k

(∑

j

∂αij α
−1
jk

)
∧ ϕk.

Therefore,
ψ = ∂α · α−1.

Make a skew-hermitian matrix from ψ, call it Ψ, via:

Ψ0,1 = ψ; Ψ1,0 = −ψ⊤ and Ψ = Ψ0,1 +Ψ1,0.

Clearly, Ψ = −ψ⊤ + ψ and it follows that

Ψ⊤ = (−ψ⊤ + ψ)⊤ = −ψ + ψ⊤ = −(ψ − ψ⊤) = −(ψ − ψ⊤) = −Ψ.
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This show that Ψ is indeed skew-hermitian. We also have

dϕi = ∂ϕi + ∂ϕi = ∂ϕi +
∑

j

Ψ0,1
ij ∧ ϕj

= ∂ϕi −
∑

j

Ψ1,0
ij ∧ ϕj +

∑

j

Ψij ∧ ϕj

= τi +
∑

j

Ψij ∧ ϕj .

where τi = ∂ϕi −
∑
j Ψ

1,0
ij ∧ ϕj is a (2, 0)-form.

The vector τ = (τ1, . . . , τn) is the torsion of the metric and its compoenents are the torsion components .
Hence, the torsion of the metric vanishes iff

∂ϕi =
∑

j

Ψ1,0
ij ∧ ϕj

and we always have

∂ϕi =
∑

j

Ψ0,1
ij ∧ ϕj .

Let θ (resp. θD) be the connection matrix for ∇ (resp. ∇D) in a unitary frame and its dual, ϕi. We know

(1) θD = −(θD)⊤;

(2) θ = −(θD)⊤;

(3) Ψ = −Ψ⊤
(by construction);

Now, ∇D 0,1 = ∂
0,1

and, locally in the coframe, the left hand side is wedge with θD 0,1 and the right hand
side is wedge with Ψ0,1 and both are skew-hermitian. Therefore, θD = Ψ, i.e., θ = −Ψ⊤. Hence we proved:

Proposition 2.53 If X is a hermitian manifold with metric ds2 and if in local coordinates z1, . . . , zn, we
have ds2 =

∑
i,j hij dzi ⊗ dzj and ϕ1, . . . , ϕn form a unitary coframe for ds2 with ϕ =

∑
j αijdzj (where

α = Gram-Schmidt matrix), then for the uniholo connections ∇ and ∇D on TX and TDX with connection
matrices θ and θD in the unitary frame and coframe, we have:

(1) The matrix Ψ = −ψ⊤ + ψ, where ψ = ∂α · α−1 is skew-hermitian and

(2) ∂ϕi =
∑

j Ψ
0,1
ij ∧ ϕj while ∂ϕi =

∑
j Ψ

1,0
ij ∧ ϕj + τi and τ is a (2, 0)-form;

(3) dϕi =
∑

j Ψij ∧ ϕj + τi;

(4) θ = −Ψ⊤ and θD = Ψ;

(5) h = α⊤ · α.

Moreover, τ = 0 iff dϕi =
∑

j Ψ
1,0
ij ∧ ϕj .
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Proof . Only statement (5) remains to be proved. We know

ds2 =
∑

i,j

hij dzi ⊗ dzj =
∑

k

ϕk ⊗ ϕk

=
(∑

l

αkldzj

)
⊗
(∑

m

αkmdzm

)

=
∑

k,l

αkl αkm dzj ⊗ dzm

=
∑

k,l

α⊤
lk αkm dzj ⊗ dzm

= (α⊤ · α)lm dzj ⊗ dzm.

Therefore, h = α⊤ · α.

Example. Let X be a Riemann surface, not necessarily compact. There is a single local coordinate, z,
and ϕ = αdz, where we may assume α > 0 after multiplication by some suitable complex number of the
form eiβ . Thus,

ds2 = ϕ⊗ ϕ = α2 dz ⊗ dz,
and h = α2. We also have

ψ = ∂α · α−1 = ∂(logα).

It follows that ψ⊤ = ∂(logα), so

Ψ = (∂ − ∂)(logα) and θ = (∂ − ∂)(logα).

Since the curvature form, Θ, is given by

Θ = dθ − θ ∧ θ

and

θ =
∂ logα

∂z
dz − ∂ logα

∂z
dz,

we deduce that θ ∧ θ = 0. Therefore, Θ = dθ, i.e., Θ = (∂ + ∂)(∂ − ∂)(logα) and we get

Θ = −2∂∂(logα) = −2∂
2 logα

∂z∂z
dz ∧ dz.

But, dz ∧ dz = −2idx ∧ dy, so
Θ = 4i

∂2 logα

∂z∂z
dx ∧ dy

and

∆(logα) = 4
∂2 logα

∂z∂z
,

so we obtain
Θ = i∆(logα) dx ∧ dy.

Recall that the (1, 1)-form, ω, associated with ds2 is given by

ω =
i

2
ϕ ∧ ϕ =

i

2
α2 dz ∧ dz = α2 dx ∧ dy,

so
iΘ = −∆(logα) dx ∧ dy = Kω,
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where

K = −∆(logα)

α2
,

the Gaussian curvature. As dimCX = 1, we get τ = 0, for any Riemann surface.

Pick any hermitian metric, ds2, on the complex manifold, X , and let

ω =
i

2

∑

k

ϕk ∧ ϕk =
i

2

∑

i,j

hij dzi ∧ dzj

(in a unitary coframe, ϕi) be the corresponding (1, 1)-form (determining ds2).

Definition 2.11 The metric ds2 =
∑

i,j hij dzi ∧ dzj is Kähler iff ω is a closed form (i.e, dω = 0). The
complex hermitian manifold, X , is a Kähler manifold iff it possesses at least one Kähler metric.

Examples. Not every (even compact) complex manifold is Kähler, there are topological restrictions in the
Kähler case. Say X is compact, Kähler and look at ω and ωk, with 0 ≤ k ≤ n. As each ωk is closed we get
a de Rham cohomology class in H2k

DR(X,C). Now,
1
n!ω

n, the volume form, is given by

1

n!
ωn =

∧

1≤j≤n

i

2
dzj ∧ dzj det(hij) = det(hij)dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn > 0.

So, ∫

X

1

n!
ωn = Vol(X) ∈ H2n

DR(X,C) ∼= C, with Vol(X) > 0.

It follows that
∫
X ω

k ∧ ωn−k 6= 0, so ωk defines a nonzero class in H2k
DR(X,C). We get

Proposition 2.54 If X is a compact, complex, Kähler manifold, then for every k, 0 ≤ k ≤ n, we have
H2k

DR(X,C) 6= (0).

The Hodge surface, Xλ, is compact, yet it is not Kähler, because H2
DR(X,C) = H2

DR(X,R)⊗R C = (0).

Remarks:

(1) Every Riemann surface is Kähler. For, ω is a 2-form and dimRX = 2, so dω = 0 (it is a 3-form).

(2) PnC is Kähler, for every n ≥ 1. We know that the Fubini-Study metric has an ω given by

ω =
i

2π
∂∂ log ‖F‖2 ,

where F is a holomorphic section: U ⊆ PnC −→ Cn+1 − {0}. We have

dω = (∂ + ∂)(∂∂( )) = ∂∂∂( ) = −∂∂ ∂( ) = 0.

(3) If X is Kähler and Y is a complex submanifold of X , then Y is Kähler in the induced metric. Because
the (1, 1)-form of the induced metric is the pullback of the (1, 1)-form of the parent metric, Y is Kähler
and (2) & (3) imply (4):

(4) Every (compact) complex manifold embeddable in PnC, in particular, each projective algebraic variety,
is Kähler.

(5) If X is Kähler and Y is Kähler then so is X
∏
Y in the product metric.
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Theorem 2.55 If X is a complex manifold and ds2 is a metric on it with associated (1, 1)-form ω, then the
following are equivalent:

(1) dω = 0, i.e., ds2 is Kähler.

(2) Locally everywhere, there exists a C∞-function, α, so that ω = ∂∂(α). The function α is called a
Kähler potential.

(3) The torsion of the metric, τ , vanishes.

(4) The metric ds2 is tangent everywhere up to order 2 to the local Euclidean metric. That is, near z0,

∑

i,j

hij dzi ⊗ dzj =
∑

i,j

(δij + gij) dzi ⊗ dzj ,

where gij vanishes up to (not including) order 2 terms in the Taylor series at z0.

Before giving the proof, observe: ds2 is Kähler iff ∂ω = 0 iff ∂ω = 0. Indeed, we know ds2 is Kähler iff
dω = 0 iff (∂+∂)ω = 0, i.e., ∂ω+∂ω = 0. As the first is a (2, 1)-form and the second is a (1, 2)-form, dω = 0
iff ∂ω and ∂ω both vanish. But, ω is real, so

∂ω = ∂ω = ∂ ω,

i.e., ∂ω = 0 iff ∂ω = 0.

Now, recall that

ω =
i

2

∑

i,j

hij dzi ∧ dzj ,

so we get

∂ω =
i

2

∑

i,j,k

∂hij
∂zk

dzk ∧ dzi ∧ dzj .

Therefore, dω = 0 iff ∂ω = 0 iff

∂hij
∂zk

=
∂hkj
∂zi

, for all i, j, k. (†)

Proof of Theorem 2.55. (1)⇐⇒ (2). The metric ds2 is Kähler iff dω = 0. Apply ∂∂-Poincaré, to get dω = 0
iff ω = ∂∂(α), locally everywhere.

(1)⇐⇒ (3). Write

ω =
i

2

∑

j

ϕj ∧ ϕj ,

in a unitary coframe, ϕj . We know

dϕj =
∑

k

Ψjk ∧ ϕk + τj .

But then,

dω =
i

2

(∑

j

dϕj ∧ ϕj −
∑

l

ϕl ∧ dϕl
)
,

so we deduce
2

i
dω =

∑

j,k

Ψjk ∧ ϕk ∧ ϕj +
∑

j

τj ∧ ϕj −
∑

l,k

ϕl ∧Ψlk ∧ ϕk −
∑

l

ϕl ∧ τ l.
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Now, Ψlk = −Ψkl, so we deduce

−
∑

l,k

ϕl ∧Ψlk ∧ ϕk =
∑

l,k

ϕl ∧Ψkl ∧ ϕk = −
∑

l,k

Ψkl ∧ ϕl ∧ ϕk,

from which we get
2

i
dω =

∑

j

τj ∧ ϕj −
∑

j

ϕj ∧ τ j .

By type, dω = 0 iff both ∑

j

τj ∧ ϕj = 0 and
∑

j

ϕj ∧ τ j = 0.

As the ϕj are everywhere locally linearly independent, we get τj = 0 (and τ j = 0) for all j, i.e., τ = 0.

(4) =⇒ (1). Say

ds2 =
∑

i,j

(δij + gij)dzi ⊗ dzj ,

where gij = 0 at z0 up to and including first derivatives. Then,

dω =
i

2

∑

i,j

dgij ∧ dzi ∧ dzj

and dω(z0) = right hand side at z0, which vanishes, so (1) holds.

(1) =⇒ (4). We have

ω =
i

2

∑

i,j

hij dzi ∧ dzj

and we can always pick local coordinates so that hij(z0) = δij (by Gram-Schmidt at z0). Find a change of
coordinates and by Taylor and our condition, we are reduced to seeking a change of the form

zj = wj +
1

2

∑

r,s

cjrswrws, (∗)

and we may assume cjrs = cjsr . Write (Taylor for hij)

hij = δij +
∑

k

(aijkzk + bijkzk) +O(2). (∗∗)

Since hij is hermitian, hij = hji, so

aijkzk + bijkzk = ajikzk + bjikzk,

and we conclude that
bijk = ajik,

i.e., the a’s determine the b’s.

Since (1) holds, i.e., dω = 0, we have

i

2

∑

i,j

dhij ∧ dzi ∧ dzj = 0,

that is,
i

2

(∑

i,j,k

aijk dzk ∧ dzi ∧ dzj + similar terms with b’s +O(2)
)
= 0.
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We conclude that
aijk = akji.

We now use (∗) and (∗∗) in ω:
i

2
ω =

∑

i,j,k

(δij + aijkzk + bijkzk)
(
dwi +

1

2

∑

r,s

cirs(wsdwr +wrdws)
)
∧
(
dwj +

1

2

∑

m,n

cjmn(wndwm+wmdwn

)

+O(2).

Thus, we get

i

2
ω =

∑

i,j,k

(δij + aijkzk + bijkzk)
(
dwi ∧ dwj + dwi ∧

∑

m,n

cjmnwmdwn − dwj ∧
∑

r,s

cirswrdws

)
+O(2)

i.e.,

i

2
ω =

∑

i,j,k

δijdwi ∧ dwj +
∑

i,j,k

aijkwkdwi ∧ dwj +
∑

j,m,n

cjmnwmdwj ∧ dwn

+
∑

j,r,s

cjrswrdws ∧ dwj +
∑

i,j,k

bijkwkdwi ∧ dwj +O(2).

It suffices to take
cjki = −aijk

and then, since bijk = ajik , the other two terms also cancel out. So, (4) is achieved.

The main use of the above is in the corollary below:

Corollary 2.56 If X is a complex manifold and ds2 is an hermitian metric on X, then the metric is Kähler
iff for all z0, there is an open, U , with z0 ∈ U and we can choose a unitary coframe, ϕ1, . . . , ϕn, so that
dϕj(z0) = 0, for j = 1, . . . , n.

Remark: As

ω =
i

2

∑

j

ϕj ∧ ϕj ,

we have

dω =
i

2

(∑

j

dϕj ∧ ϕj −
∑

j

ϕj ∧ dϕj ;
)

consequently, dω(z0) = 0 iff dϕj(z0) = 0, for j = 1, . . . , n (by linear independence of the coframe and
decomposition into types).

Say we know (what we’re about to prove): If X is compact and Kähler, then HDRSS degenerates at E1.
Then, Ep,q1 = Ep,q∞ = (p, q)th graded piece of the Hodge filtration of Hp+q

DR (X,C). We know that Ep,q1 = Ep,q∞

implies that
Ep,q∞ = Hp,q

∂
(X).

Also, F pHp+q
DR /F p+1Hp+q

DR = Ep,q∞ . This implies this is an inclusion

Ep,0∞ →֒ Hp+q
DR (X,C).

In the Kähler case, we get
H0(X,ΩpX) = Ep,01 = Ep,0∞ →֒ Hp+q

DR (X,C).
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Corollary 2.57 If X is compact, Kähler, then every global holomorphic p-form is d-closed and never exact
(unless = 0).

Interesting (DX): Prove this directly from the Kähler condition.

To prove degeneration of the HSRSS, we prove the Hodge identities. First introduce (à la Hodge)

dc =
i

4π
(∂ − ∂).

As d = ∂ + ∂, we get

ddc = (∂ + ∂)
i

4π
(∂ − ∂) = i

4π
(∂∂ + ∂∂) =

i

2π
∂∂,

so
ωFS = ddc(log ‖F‖2)

(where ωFS is the (1, 1)-form associated with the Fubini-Study metric) and

dcd =
i

4π
(∂ − ∂)(∂ + ∂) =

i

4π
(∂∂ + ∂∂) =

i

2π
∂∂ = −ddc.

Therefore,
dcd = −ddc.

Both d and dc are real operators (i.e., they are equal to their conjugate).

Now, for any metric, ds2, introduce (à la Lefschetz) the operators L and Λ:

L :

p,q∧
(X) −→

p+1,q+1∧
(X), L(ξ) = ω ∧ ξ,

where ω is the (1, 1)-form associated with ds2 and

Λ:

p,q∧
(X) −→

p−1,q−1∧
(X), with Λ = L∗, the adjoint of L.

The main necessary fact is this:

Proposition 2.58 (Basic Hodge Identities) If X is Kähler, then

(1) [Λ, d] = −4π(dc)∗;

(2) [L, d∗] = 4πdc;

(3) [Λ, ∂] = −i∂∗;

(4) [Λ, ∂] = i∂
∗
;

and (1)–(4) are mutually equivalent.

Proof . First, we prove the equivalence of (1)–(4). We have

[Λ, d] = [Λ, ∂ + ∂] = [Λ, ∂] + [Λ, ∂]

and

(dc)∗ =
i

4π
(∂ − ∂)∗ = − i

4π
(∂

∗ − ∂∗).

Consequently, (1) iff [Λ, ∂] + [Λ, ∂] = i(∂
∗ − ∂∗). By types, (1) iff both (3) and (4).
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(3)⇐⇒ (4). We have Lξ = ξ ∧ ω and ω is real, so L is real and Λ = L∗ is real as well. It follows that

[Λ, ∂] = [Λ, ∂] = [Λ, ∂].

Consequently, (3) iff [Λ, ∂] = −i∂∗ iff [Λ, ∂] = i∂
∗
iff [Λ, ∂] = i∂

∗
, i.e., (4).

We conclude that (1)–(3) are all equivalent. As

[Λ, d]∗ = (Λd− dΛ)∗ = d∗Λ∗ − Λ∗d∗ = −[L, d∗],

we see that (1) and (2) are equivalent. Therefore, (1)–(4) are all equivalent.

Next, we prove (4) for Cn and the standard ω, i.e.,

ω =
i

2

∑

j

dzj ∧ dzj ,

where z1, . . . , zn are global coordinates on Cn. Since every form on Cn is uniformly approximable (on
compact sets) up to any preassigned number of derivatives by forms with compact support, we may assume
all forms to be delt with below to have compact support. Break up all into components on

∧p,q
0 (X) and

define operators, ek, ek, fk, fk as follows:

ek(dzI ∧ dzJ) = dzk ∧ dzI ∧ dzJ
ek(dzI ∧ dzJ) = dzk ∧ dzI ∧ dzJ

fk = e∗k

fk = e∗k.

Observe, ek, ek, fk, fk are C∞-linear. I claim

(A) fkek + ekfk = 2, for all k;

(B) fkej + ejfk = 0, for all j 6= k;

(C) f jek + ekf j = 0, for all j 6= k.

Observe that trivially (by definition),

ejek + ekej = 0 and fjfk + fkfj = 0, for all j, k

and similarly for ek, fk. To prove (A)–(C), by C∞-linearity, it is enough to check them on a basis dzI ∧dzJ .
First, let us compute fk(dzI ∧ dzJ). Say k /∈ I, then

(fk(dzI ∧ dzJ ), dzR ∧ dzS) = (dzI ∧ dzJ , ek(dzR ∧ dzS)) = (dzI ∧ dzJ , dzk ∧ dzR ∧ dzS) = 0,

by our definition of the inner product. Therefore, as R and S are arbitrary,

fk(dzI ∧ dzJ) = 0 if k /∈ I.

Similarly,

fk(dzI ∧ dzJ) = 0 if k /∈ J.
The case k ∈ I is taken care of as follows. First, assume dzI = dzk ∧ dzI′ , then

(fk(dzk ∧ dzI′ ∧ dzJ ), dzR ∧ dzS) = (dzk ∧ dzI′ ∧ dzJ , dzk ∧ dzR ∧ dzS) = 2(dzI′ ∧ dzJ , dzR ∧ dzS)
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so we get

(fk(dzk ∧ dzI′ ∧ dzJ), dzR ∧ dzS) =
{
0 if I ′ 6= R or J 6= S
2(dzI′ ∧ dzJ , dzI′ ∧ dzJ) if I ′ = R and J = S.

It follows that
fk(dzk ∧ dzI′ ∧ dzJ) = 2dzI′ ∧ dzJ if k ∈ I

and so,

fkek(dzI ∧ dzJ ) = fk(dzk ∧ dzI ∧ dzJ) =
{
2dzI ∧ dzJ if k /∈ I
0 if k ∈ I.

We also have

ekfk(dzI ∧ dzJ) =
{
(−1)bekfk(dzk ∧ dzI′ ∧ dzJ) if k ∈ I
0 if k /∈ I.

But,

ekfk(dzI ∧ dzJ ) = (−1)bekfk(dzk ∧ dzI′ ∧ dzJ)
= 2(−1)bek(dzI′ ∧ dzJ)
= 2(−1)bdzk ∧ dzI′ ∧ dzJ
= 2dzI ∧ dzJ ,

if k ∈ I, and we conclude that fkek + ekfk = 2, for all k.

(B) Take j 6= k. If k /∈ I, then

fkej(dzI ∧ dzJ) = fk(dzj ∧ dzI ∧ dzJ ) = 0.

If k ∈ I, then

fkej(dzI ∧ dzJ) = (−1)bfk(dzj ∧ dzk ∧ dzI′ ∧ dzJ)
= (−1)b+1fk(dzk ∧ dzj ∧ dzI′ ∧ dzJ)
= 2(−1)b+1dzj ∧ dzI′ ∧ dzJ .

We also have

ejfk(dzI ∧ dzJ ) =
{
0 if k /∈ I
2(−1)bdzj ∧ dzI′ ∧ dzJ if k ∈ I,

and we conclude that fkej + ejfk = 0.

(C) The proof is similar.

Now, we have

L(ξ) = ξ ∧ ω =
i

2

∑

j

ξ ∧ dzj ∧ dzj

=
i

2

∑

j

dzj ∧ dzj ∧ ξ

=
i

2

∑

j

(ejej)(ξ),

that is L = i
2

∑
j ejej , so we get Λ = − i

2

∑
j fjfj =

i
2

∑
j fjfj.

If ξ =
∑

I,J ϕIJdzI ∧ dzJ , set
∂k(ξ) =

∑

I,J

∂ϕIJ
∂zk

dzI ∧ dzJ ,
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and

∂k(ξ) =
∑

I,J

∂ϕIJ
∂zk

dzI ∧ dzJ .

This is now the part where we need compact support. Namely, I claim:

(D) ∂∗k = −∂k and ∂∗k = −∂k.

Using integration by parts, we have

(∂∗k(ξ), gdzR ∧ dzS) = (ξ, ∂k(gdzR ∧ dzS))

= (ϕRSdzR ∧ dzS ,
∂g

∂zk
dzR ∧ dzS)

= 2|R|+|S|

∫

Cn

ϕRS
∂g

∂zk

= 2|R|+|S|

∫

Cn

ϕRS
∂g

∂zk

= −2|R|+|S|

∫

Cn

∂ϕRS
∂zk

g

=
(
−∂ϕRS

∂zk
dzR ∧ dzS , gdzR ∧ dzS

)

= (−∂k(ξ), gdzR ∧ dzS).

The second identity follows by taking complex conjugates.

What are ∂ and ∂ in these terms? We have

∂(ξ) = ∂
(∑

I,J

ϕIJdzI ∧ dzJ
)
=
∑

I,J

∂ϕRS
∂zk

dzk ∧ dzI ∧ dzJ =
∑

k

∂kek(ξ) =
∑

k

ek∂k(ξ).

Therefore,

∂ =
∑

k

∂kek =
∑

k

ek∂k.

From this, we deduce that

∂ =
∑

k

∂kek =
∑

k

ek∂k,

and

∂∗ =
∑

k

∂∗ke
∗
k = −

∑

k

∂kfk = −
∑

k

fk∂k

as well as

∂
∗
= −

∑

k

∂kfk = −
∑

k

fk∂k.



142 CHAPTER 2. COHOMOLOGY OF (MOSTLY) CONSTANT SHEAVES AND HODGE THEORY

Finally, we have

[Λ, ∂] = Λ∂ − ∂Λ

=
i

2

(∑

j,k

fjf j∂kek −
∑

j,k

∂kekfjf j

)

=
i

2

(∑

j,k

∂kfjf jek −
∑

j,k

∂kekfjf j

)

= − i
2

(∑

j,k

∂kf jfjek +
∑

j,k

∂kf jekfj

)

= − i
2

(∑

j 6=k

∂kf j(fjek + ekfj) +
∑

j=k

∂jf j(fjej + ejfj)
)

= −i
∑

j

∂jf j = i∂
∗
,

by (A) and (B), as claimed. This proves the identity for Cn.

in the general case (Kähler case, not necessarily compact), we have to show

[Λ, ∂](z0) = i∂
∗
(z0), for every z0 ∈ X.

At z0, pick a local unitary coframe, ϕ1, . . . , ϕn, so that, near z0,

ω =
i

2

∑

j

ϕj ∧ ϕj ,

and, asX is Kähler, a previous Corollary shows that we can choose ϕ1, . . . , ϕn so that dϕj(z0) = dϕj(z0) = 0.
As before, we set

L =
i

2

∑

k

ejej and Λ =
i

2

∑

k

fjf j .

(Here, ejξ = ϕj ∧ ξ). We make the same computations as before (A)–(D) and we get the same results on
commutativity, except for extra terms involving the differentials of the ϕj ’s. However, at z0, these differentials
vanish and we get (A)–(D) as the error term, dϕj(z0) is 0 for all j. Therefore, (1)–(4) are correct at z0. But,
z0 is arbitrary, so the theorem is proved.

Corollary 2.59 If X is Kähler (not necessarily compact) then d = dd∗ + d∗d (d-Laplacian) commutes
with L and Λ.

Proof . Write for d and observe that

[ ,Λ]∗ = [Λ∗, ∗] = [L, ],

so [ ,Λ] = 0 iff [L, ] = 0 and it suffices to prove [Λ, ] = 0. Let us check that [L, d] = 0. Pick any ξ, then

[L, d](ξ) = (Ld− dL)(ξ)
= L(dξ)− d(Lξ)
= dξ ∧ ω − d(ξ ∧ ω)
= dξ ∧ ω − dξ ∧ ω ± ξ ∧ dω = 0,

since dω = 0 and so, [L, d] = 0. by adjointness, [Λ, d∗] = 0. Then, we have

[Λ, ] = Λ − Λ = Λdd∗ + Λd∗d− dd∗Λ− d∗dΛ.
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Use [Λ, d∗] = 0 in the middle terms to get

[Λ, ] = Λdd∗ − dΛd∗ + d∗Λd− d∗dΛ
= [Λ, d]d∗ + d∗[Λ, d] (by Basic Hodge)

= −4πdc∗d∗ − 4πd∗dc∗

= −4π(dc∗d∗ + d∗dc∗).

But, ddc = −dcd; by applying ∗, we have dc∗d∗ + d∗dc∗ = 0, and the proof is complete.

Corollary 2.60 If X is Kähler (not necessarily compact) then

d = 2 ∂ = 2 ∂ .

Proof . It will be enough to show ∂ = ∂ . To see this compute d = dd∗ + d∗d. We have

d = (∂ + ∂)(∂∗ + ∂
∗
) + (∂∗ + ∂

∗
)(∂ + ∂)

= ∂∂∗ + ∂ ∂∗ + ∂∂
∗
+ ∂ ∂

∗
+ ∂∗∂ + ∂∗∂ + ∂

∗
∂ + ∂

∗
∂

= ∂ + ∂ + ∂ ∂∗ + ∂∗∂ + ∂∂
∗
+ ∂

∗
∂.

I claim that ∂∂
∗
+ ∂

∗
∂ = 0. If so, its conjugate is also zero, i.e., ∂ ∂∗ + ∂∗∂ = 0, and we deduce that

d = ∂ + ∂ .

By Basic Hodge (4), we have [Λ, ∂] = i∂
∗
, i.e., −i[Λ, ∂] = ∂

∗
. Then,

∂∂
∗
+ ∂

∗
∂ = −i

(
∂[Λ, ∂] + [Λ, ∂]∂

)
= −i

(
∂Λ∂ − ∂∂Λ+ Λ∂∂ − ∂Λ∂

)
= 0.

Therefore, d = ∂ + ∂ . If we prove that ∂ = ∂ , we are done. We have

∂ = ∂ ∂
∗
+ ∂

∗
∂

= −i
(
∂[Λ, ∂] + [Λ, ∂]∂

)
(by Basic Hodge)

= −i
(
∂ Λ∂ − ∂ ∂Λ + Λ∂∂ − ∂Λ∂

)
.

Now, by Basic Hodge (3), [Λ, ∂] = −i∂∗ (and recall ∂ ∂ = −∂∂), so

∂ = −i
(
∂ Λ∂ − Λ∂ ∂ + ∂∂ Λ− ∂Λ∂

)

= −i
(
−[Λ, ∂]∂ − ∂[Λ, ∂]

)

= −i
(
i∂∗∂ + i∂∂∗

)

= ∂∗∂ + ∂∂∗ = ∂ ,

and this concludes the proof of the corollary.

Corollary 2.61 If X is Kähler (not necessarily compact), then any and all of d, ∂, ∂ commute with

all of ∗, ∂, ∂∗, ∂, ∂∗, L and Λ.

Proof . (DX)

Corollary 2.62 If X is Kähler (not necessarily compact), then the de Rham Laplacian, d, preserves
bidegree. That is, the diagram

∧
(X)

d //

prp,q

��

∧
(X)

prp,q

��∧p,q
(X)

d

// ∧p,q(X)

commutes.
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Proof . We have d = 2 ∂ and ∂ preserves bidegree.

Theorem 2.63 (Hodge Decomposition, Kähler Case) Assume X is a complex, compact Kähler manifold.
Then, there is a canonical isomorphism

∐

p+q=r

Hq(X,ΩpX) −̃→ Hr
DR(X,C).

Moreover, we have
Hq(X,ΩpX) = Hp(X,ΩqX),

so hp,q = hq,p.

Proof . Pick a Kähler metric, d, on X and make = d (using the metric) and set

Hp,qd = {ξ ∈
p,q∧

(X) | (ξ) = 0}

and

Hrd = {ξ ∈
r∧
(X) | (ξ) = 0}.

Both of these groups depend on the metric. Pick ξ ∈ ∧r(X) and write

ξ =
∑

j

ξj , where ξj ∈
j,r−j∧

(X).

Then, (ξ) =
∑
j (ξj). But, (ξj) ∈

∧j,r−j
(X), by Corollary 2.62. Therefore, (ξ) =

∑
j (ξj) is the

type decomposition of (ξ). Hence, (ξ) = 0 iff (ξj) = 0, for every j. Hence,

Hrd =
∐

p+q=r

Hp,qd .

But, = 2 ∂ (Corollary 2.60), so Hp,qd = Hp,q
∂

. By the ∂-Hodge Theorem (X is compact), we know

Hp,q
∂
∼= Hp,q

∂
∼= Hq(X,ΩpX).

In the same way, by Hodge’s Theorem for d (on the compact, X), we get

Hrd ∼= Hr
DR(X,C)

and for some isomorphism, ∐

p+q=r

Hq(X,ΩpX) −̃→ Hr
DR(X,C).

Let

Kp,q = Zp,qd /d(

•∧
(X) ∩ Zp,qd ).

Note, Kp,q = all cohomological (de Rham) classes having a (p, q)-representative. The set Kp,q depends only
on the complex structure (hence, the topology—independent of any metric). When X is Kähler and we
choose a metric, then

Hp,q ⊆ Kp,q

and we know Hq(X,ΩpX) ∼= Hp,q. Pick ξ ∈ Kp,q and write ξ, again, for a Zp,q-representative. The d-Hodge
Theorem yields

ξ = H(ξ) + d(d∗G(ξ)) + d∗(dG(ξ)).
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But, commutes with d, so G commutes with d, and as dξ = 0, we get

ξ = H(ξ) + d(d∗G(ξ)).

But, G preserves (p, q)-type, so ξ as element of Kp,q is H(ξ). As H(ξ) ∈ Hp,q, we see that Kp,q ⊆ Hp,q, from
which we conclude that

Kp,q = Hp,q.
For the conjugation, pick ξ ∈ Hq(X,ΩpX) and represent it by H(ξ) ∈ Hp,qd (the unique harmonic represen-

tative). Take η = H(ξ) and observe that as d is real, (η) = (η). Therefore, η is harmonic (i.e., ξ
is harmonic iff ξ is harmonic). But, ξ ∈ ∧p,q(X) iff ξ ∈ ∧q,p(X), and our map ξ 7→ ξ is a sesquilinear
isomorphism

Hq(X,ΩpX) −→ Hp(X,ΩqX),

which concludes the proof.

Corollary 2.64 If X is a compact, Kähler manifold, in particular if X is a nonsingular complex projective
variety, then the odd-degree Betti numbers of X are even integers.

Proof . We have

H2r+1
DR (X,C) ∼=

∐

p+q

Hq(X,ΩpX) ∼=
∐

0≤p≤r
p+r=2r+1

Hq(X,ΩpX) ∐
∐

r+1≤p≤2r+1
p+r=2r+1

Hq(X,ΩpX)

and each term has an isomorphic term in the other sum, so

b2r+1 = 2
∑

0≤p≤r
p+r=2r+1

hp,q

which is even.

Code all the informatin in the Hodge diamond (shown in Figure 2.2). At height r, you insert hp,q at
position (p, q) where p+ q = r.

(0, 0)

(n, n)

(0, n)(n, 0)

(r, 0) (0, r)

(Y )

Figure 2.2: The Hodge Diamond

(a) The sum of the row numbers at height r is br (the rth Betti number).
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(b) hp,q = hq,p, which means that the diamond is the same on either side of the vertical (as a mirror).

(c) ∗ (Serre duality) says there is symmetry about the central point.

(d) If X is Calabi-Yau and Y is its mirror, then the Hodge diamond of Y is that for X reflected (as a
mirror) in the line (Y ).

Corollary 2.65 If X = PnC, then h
p,q = 0 if p 6= q and hp,p = 1, if 0 ≤ p ≤ n.

Proof . Remember that P1
C = C ∪ {pt}, P2

C = C2 ∪ P1
C = C2 ∪ C1 ∪ C0 and generally,

PnC = Cn ∪ Cn−1 ∪ · · · ∪C1 ∪ C0.

By elementary topology,

Hr(P
n
C,Z) =

{
(0) if r is odd or r ≥ 2n
Z if r ≤ 2n is even.

Then,

Hr(PnC,Z) =

{
(0) if r is odd or r ≥ 2n
Z if r ≤ 2n is even

and this implies

Hr(PnC,C) =

{
(0) if r is odd or r ≥ 2n
C if r ≤ 2n is even.

We deduce
b2r+1(P

n
C) = 0, b2r(P

n
C) = 1, 0 ≤ r ≤ n.

But, br =
∑

p+q=r h
p,q, so hp,q = 0 if p+ q is odd. We also have

b2r =
∑

p+q=2r

hp,q = hr,r +
∑

0≤p≤r−1

hp,2r−p +
∑

r+1≤p≤2r

hp,2r−p = hr,r + 2
∑

0≤p≤r−1

hp,2r−p.

But, b2r = 1, which implies hr,r = 1 and hp,2r−p = 0, for 0 ≤ p ≤ r − 1.

Corollary 2.66 On a Kähler manifold, for any Kähler metric, a global holomorphic p-form is always har-
monic.

Proof . For any ξ ∈ H0(X,ΩpX), by Dolbeault, H0(X,ΩpX) →֒ ∧p,0
(X) and in fact, ξ is given by ∂ξ = 0.

Now, ∂
∗ ≡ 0 on

∧0,0
. Therefore, ∂ξ = ∂

∗
ξ = 0, which means that ξ is harmonic.

Say Y ⊆ X ⊆ PNC , with X,Y some analytic (= algebraic) smooth varieties. Say Y is codimension t in

X and dimCX = n. So, dimC Y = n− t. The inclusion, i : Y →֒ X , yields the map, i∗ : (T 1,0
X )D → (T 1,0

Y )D,
i.e., i∗ : Ω1

X → Ω1
Y . Therefore, we get a map

n−t∧
Ω1
X = Ωn−tX −→ Ωn−tY =

n−t∧
Ω1
Y ,

so we get a map
H•(X,Ωn−tX ) −→ H•(X,Ωn−tY ) = H•(Y,Ωn−tY ).

By Serre duality, we get

Hn−t(X,Ωn−tX ) −→ Hn−t(Y,Ωn−tY )
tr∼= C.

Therefore, Y gives an element, lY ∈ Hn−t(X,Ωn−tX )D. By Serre duality, the latter group is

Ht(X,ΩtX) = Ht,t

∂
(X).
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Hence, each Y of codimension t in X gives a cohomology class, lY ∈ Ht,t

∂
(X), called its cohomology class .

Alternatively: Since dimR Y = 2(n− t), the variety Y is a 2(n− t)-chain in X and in fact, it is a cycle.
Thus, it gives an element of H2(n−t)(X). We get a linear form on H2(n−t)(X) and, by Poincaré duality,

H2(n−t)(X)D ∼= H2t(X). So, Y gives λY ∈ H2t(X). In fact, λY = lY in Ht,t

∂
(X).

Hodge Conjecture: If X →֒ PNC , then H2t(X,Q) ∩Ht,t

∂
(X) is generated by the cohomology classes lY as

Y ranges over codimension t smooth subvarieties of X .

2.6 Hodge IV: Lefschetz Decomposition & the Hard Lefschetz

Theorem

Proposition 2.67 (Basic Fact) Say X is a Kähler manifold, then on
∧p,q

(X), the operator [L,Λ] is just
multiplication by p + q − n, where n = dimCX. Therefore, [L,Λ] on

∧•
(X) is a diagonal operator, its

eigenspaces are the
∧r(X) and the eigenvalue on this eigenspace is r − n.

Proof . Both L and Λ are algebraic operators so don’t involve either ∂ or ∂. By the Kähler principle, we may
assumeX = Cn with the standard Kähler metric and prove it there. Revert to the component decomposition:

L =
i

2

∑

j

ejej , Λ =
i

2

∑

j

f jfj ,

so

[L,Λ] = LΛ− ΛL =
1

4

(∑

j,k

ejejfkfk − fkfkejej
)
.

Recall our commutation relations:

(A) fkek + ekfk = 2, for all k;

(B) fkej + ejfk = 0, for all j 6= k;

(C) f jek + ekf j = 0, for all j 6= k.

For j 6= k, we have

ejejfkfk − fkfkejej = ejejfkfk − ejfkfkej
= ejejfkfk − ejejfkfk = 0.

Consequently,

[L,Λ] =
1

4

(∑

j

ejejf jfj − f jfjejej
)
.
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As fjej = 2− ejfj , we get

[L,Λ] =
1

4

(∑

j

ejejf jfj − f jejfjej − 2f jej

)

=
1

4

(∑

j

ejejf jfj − f jejejfj − 2f jej

)

=
1

4

(∑

j

ejejf jfj − ejf jejfj − 2f jej

)

=
1

4

(∑

j

ejejf jfj − ejejf jfj + 2ejfj − 2f jej

)

=
∑

j

(
1− 1

2
(fjej + f jej)

)

= n− 1

2

∑

j

(fjej + f jej).

Now, take ξ ∈ ∧p,q(X) and compute [L,Λ](ξ). We may assume ξ = dzI ∧ dzJ , with |I| = p and |J | = q. As

fjej(dzI ∧ dzJ) =
{
0 if j ∈ I
2dzI ∧ dzJ if j /∈ I

and

f jej(dzI ∧ dzJ) =
{
0 if j ∈ J
2dzI ∧ dzJ if j /∈ J

we get

∑

j

(fjej + f jej)(dzI ∧ dzJ) =
∑

j /∈I

2dzI ∧ dzJ +
∑

j /∈J

2dzI ∧ dzJ = (2(n− p) + 2(n− q))dzI ∧ dzJ .

We deduce that

−1

2

∑

j

(fjej + f jej) = p+ q − 2n on
∧p,q(X),

and so,
[L,Λ] = n+ p+ q − 2n = p+ q − n on

∧p,q
(X),

finishing the argument.

Set
H = [Λ, L], X = [H, L], Y = [H,Λ].

For any ξ ∈ ∧r(X), observe that H on
∧r

(X) is just (n− r)I (by Lefschetz). Futhermore, as

X(ξ) = (HL− HL)(ξ))

we have L(ξ) ∈ ∧r+2
(X), so

X(ξ) = (n− (r + 2))L(ξ)− (n− r)L(ξ) = −2L(ξ).

Therefore,
[H, L] = −2L.

Taking adjoints, we get
[Λ,H∗] = −2Λ
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and as H∗ = H, we deduce
[H,Λ] = 2Λ.

In summary, we have the identities

[H, L] = −2L
[H,Λ] = 2Λ

[Λ, L] = H.

This means that we should look at the Lie algebra sl(2,C) (of 2× 2 complex matrices with zero trace). Its
generators are

x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

We check that
[x, y] = h, [h, x] = 2x, [h, y] = −2y.

So, send h 7→ H, x 7→ Λ and y 7→ L, then we get a representation of sl(2,C) on
∧•(X), i.e., a Lie algebra

map

sl(2,C) −→ EndC∞(

•∧
(X)).

Now, d commutes with Λ and L, so our representation gives a representation on harmonic forms. By
Hodge, we get a representation

sl(2,C) −→ H•(X).

(Recall, if X is compact, then H•(X) is a finite-dimentional vector space over C.)

Remark: On EndC∞(
∧•

(X)), we could use the “graded commutator”

[A,B] = AB − (−1)abBA,
where a = degA and b = degB. But, L, Λ, [L,Λ] have even degree, so everything is the same.

Say we have a representation of sl(2,C) on V (some finite-dimensional C-linear space), i.e., a Lie algebra
map

sl(2,C) −→ EndC(V ).

Since SL(2,C) is connected and simply-connected, we get a map of Lie groups

SL(2,C) −→ GL(2,C).

This is a representation of SL(2,C). Conversely, given a representation, SL(2,C) −→ GL(2,C), the tangent
map at the identity yields a Lie algebra representation

sl(2,C) −→ EndC(V ).

Therefore, there is a one-to-one correspondence between group representations of SL(2,C) and Lie algebra
representations of sl(2,C).

Say G is a compact Lie group and V is a finite-dimensional C-space and put a hermitian metric, h, on
V . Write dσ for the Haar measure on G and define (after Weyl)

h0(v, w) =

∫

G

h(σv, σw)dσ.

Check: h0 is a left-invariant hermitian metric on V .

Say W ⊆ V is a G-submodule (a subrepresentation of V ), then we can form W⊥ (w.r.t. h0), it is a
subrepresentation as h0 is G-invariant. Therefore,

V =W ∐W⊥ in G-mod.
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Lemma 2.68 (Weyl-Hurwitz) For any compact Lie group G, every finite-dimensional representation is a
coproduct of G-irreducible representations.

Now, SU(2,C) is compact and its complexification is SL(2,C). Therefore, Lemma 2.68 holds for SL(2,C)
and thus, for sl(2,C).

Corollary 2.69 Every finite-dimensional complex representation of SL(2,C) is a finite coproduct of finite-
dimensional irreducible representations of SL(2,C).

Now, we study the finite-dimensional irreducible sl(2,C)-modules, say V . The crucial idea is to examine
the eigenspaces of h on V . Let Vλ be the eigenspace where h(v) = λv. If v is an eigenvector of h, then
x(v) ∈ Vλ+2 and y(v) ∈ Vλ−2. Indeed,

h(x(v)) = [h, x](v) + xh(v) = 2x(v) + λx(v) = (λ+ 2)x(v),

and similarly for y(v). We get

hxr(v) = (λ+ 2r)xr(v) and hyr(v) = (λ− 2r)yr(v).

But, V is finite-dimensional, so both x and y are nilpotent on the eigenvectors of h in V .

Definition 2.12 (Lefschetz) An element, v, of the finite-dimensional representation space, V , for sl(2,C) is
primitive iff it is an eigenvector for h and x(v) = 0.

As V is a finite-dimensional C-space, a primitive element must exist. Indeed, h has at least some
eigenvalue, λ, and if v ∈ Vλ, then xr(v) ∈ Vλ+2r , for all r. Since Vλ+2r ∩ Vλ+2s = (0), for r 6= s and V is
finite-dimensional, there is a smallest r so that xr(v) 6= 0 and xr+1(v) = 0. The vector xr(v) is a primitive
element.

Proposition 2.70 Say V is a finite-dimensional irreducible representation space for sl(2,C). Pick any
primitive vector, v, in V . Then, the vectors

v, y(v), y2(v), . . . , yt(v),

where yt+1(v) = 0, form a basis for V . Hence,

(1) dimC V = t+ 1 = index of nilpotence of Y on V .

(2) Any two primitive v’s give the same index of nilpotence.

Proof . Consider
W = span(v, y(v), y2(v), . . . , yt(v)).

If we show that h, x, y take W to itself, irreducibility of V implies W = V . Clearly, y(W ) ⊆W . As

hyr(v) = (λ− 2r)yr(v), if h(v) = λv,

we also have h(W ) ⊆W . For x, we prove by induction on l that xyl(v) ∈ W . When l = 0, we get x(v) = 0,
and the claim holds trivially. Assume the claim holds for l− 1. We have

xyl(v) = xy yl−1(v)

= (h+ yx)(yl−1(v))

= (λ − 2(l− 1))yl−1(v) + y(xyl−1(v)),

and xyl−1(v) ∈ W , by the induction hypothesis. So, both terms on the right hand side are in W and the
induction step is done. Now, v, y(v), y2(v), . . . , yt(v) are eigenvectors with distinct eigenvalues, so they must
be linearly independent. Therefore, they form a basis of V . The rest is obvious.

Call an eigenspace for h on any (finite-dimensional) representation space a weight space and the weight
is just the eigenvalue. We get
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Corollary 2.71 Every irreducible finite-dimensional representation, V , of sl(2,C) is a finite coproduct of
one-dimensional weight spaces, Vλ,

V =
∐

λ

Vλ.

The “highest weight space” consists of 0 and all the primitive vectors (each a multiple of the other).

Proposition 2.72 Say V is a finite-dimensional sl(2,C)-module, then every eigenvalue of V is an integer.
If V is irreducible, these are

−t,−t+ 2, . . . , t− 2, t,

where dimC V = t + 1 = index of nilpotence of Y on V . Therefore, the irreducible sl(2,C)-modules are in
one-to-one correspondence with the non-negative integers, t, via

t 7→ V (t) =
∐

0≤2j≤t

V−t+2j ∐
∐

0≤2j≤t

Vt−2j

with dimC V = t+ 1.

Proof . As V is finite-dimensional, there is a primitive element, v, and let λ be its weight (eigenvalue). Look
at xyl(v). I claim:

xyl(v) = (lλ− l(l − 1))yl−1(v).

This is shown by induction on l. For l = 0, this is trivial (0 = 0). Assume the claim hols for l. We have

xyl+1(v) = xy(yl(v))

= h(yl(v)) + yx(yl(v))

= (λ− 2l)yl(v) + y(lλ− l(l− 1))yl−1(v)

= (λ− 2l+ lλ− l2 + l)yl(v)

= ((l + 1)λ− (l + 1)l)yl(v),

proving the induction hypothesis. Now, we know that there is some t ≥ 0 so that yt(v) 6= 0 and yt+1(v) = 0,
so let l = t+ 1. We get

0 = xyt+1(v) = ((t+ 1)λ− (t+ 1)t)yl(v),

that is,
(t+ 1)λ− (t+ 1)t = 0,

which means that λ = t, an integer. Now, say V is irreducible and t is the maximum weight in V . If V
has weight t, then x(v) has weight t + 2, a contradiction, unless x(v) = 0. Therefore, v is primitive. Now,
Proposition 2.70 implies that V is as claimed.

A useful alternate description of V (t) is: V (t) = Symt(C2), with the natural action. For, a basis of
Symt(C2) is

ξ0ηt, ξ1ηt−1, . . . , ξtη0.

Also,

h(ξiηj) = (i− j)ξiηj
x(ξiηj) = ξi+1ηj−1

y(ξiηj) = ξi−1ηj+1.

Now, say we look at Vk (the k weight space for some sl(2,C)-module, V ). Observe that

yk : Vk → V−k, xk : V−k → Vk,



152 CHAPTER 2. COHOMOLOGY OF (MOSTLY) CONSTANT SHEAVES AND HODGE THEORY

and each is an isomorphism.

Suppose V is some finite-dimensional sl(2,C)-module (not necessarily irreducible). Define PV = the
primitive part of V by

PV = Ker x.

We get

V = PV
∐

yPV
∐

y2PV
∐
· · · ,

the Lefschetz decomposition of V . We also have

(Ker x) ∩ Vk = Ker (yk+1 : Vk −→ V−k−2).

We can apply the above to X , a compact Kähler manifold and

V = H•
DR(X,C) =

∐

0≤r≤2n

Hr(X),

where n = dimCX . The maps
h 7→ [Λ, L], x 7→ Λ, y 7→ L

give a representation of sl(2,C) on H•
DR(X,C). Now, H

r(X) is a weight space and the weight is n− r, so

Hr(X) = Vn−r.

Then,
Ln−r : Hr(X) −̃→ Vr−n = H2n−r(X)

and if we let

Pn−k(X) = (KerΛ) ∩Hn−k(X) = Ker (Lk+1 : Hn−k(X) −→ Hn+k+2(X)),

then the Lefschetz decomposition says

Hr(X) = P r(X)
∐

LP r−2(X)
∐
· · ·
∐

L[ r2 ]P r−[ r2 ](X).

As a consequence, we get

Theorem 2.73 (Hard Lefschetz Theorem) If X is a compact, Kähler manifold, then

(1) Lk : Hn−k(X) −→ Hn+k(X) is an isomorphism, 0 ≤ k ≤ n.

(2) The cohomology has the Lefschetz decomposition

Hr(X) = P r(X)
∐

LP r−2(X)
∐
· · ·
∐

LkP r−2k(X)
∐
· · · ,

where Pn−k(X) = (KerΛ) ∩Hn−k(X) = Ker (Lk+1 : Hn−k(X) −→ Hn+k+2(X)).

(3) The primitive cohomology commutes with the (p, q)-decomposition, that is: If P p,q = P r ∩Hp,q, then

P r =
∐

p+q=n

P p,q,

and a cohomology class is primitive iff each (p, q)-piece is primitive.
(Recall, P r(X) = Hr(X) ∩Ker Λ = Hr(X) ∩Ker Ln+1−r.)
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Proof . We already proved (1) and (2). But, (3) is clear as L and Λ commute with bidegree ((1, 1) and
(−1,−1)).

Interpretation à la Lefschetz

Say X →֒ PNC is a closed complex submanifold of PNC equipped with the Fubini-Study metric, ω and let
n = dimCX . Recall that ω is given locally by

ω =
i

2π
∂∂ log ‖F‖2 ,

where F : U ⊆ PNC → Cn+1 − {0} is any holomorphic local lifting. We know that ω is a real (1, 1)-form and
it is d-closed but not d-exact. Let [ω] be the cohomology class of ω in H2

DR(X,R).
By the duality between homology and cohomology,

H2
DR(X,R)

D ∼= H2(X,R) ∼= H2(X,Z)⊗Z R

where the pairing is: Given [α] ∈ H2
DR(X,R) and [η] ∈ H2(X,R),

([α], [η]) =

∫

η

α ∈ R.

We also know that Hk
DR(X,R) and H

2n−k
DR (X,R) are Poincaré dual and this is given by

([α], [β]) =

∫

X

α ∧ β.

By duality, we get the a pairing
Hk(X,R)⊗H2n−k(X,R) −→ R,

a nondegenerate pairing and, geometrically, this is the intersection pairing

([α], [β]) 7→ [α ∩ β].

Poincaré duality shows [ω] is a homology class in H2N−2(PN ,R). But, a generator for the latter group is the
class of H , where H is a hyperplane. Consequently, there is some λ ∈ R so that [ω] = λ[H ]. Take a complex
line, l, then we have the pairing

([l], [H ]) ∈ H0(P
N ,R),

namely (as above), this number is #([H ∩ l]) = 1. Therefore,

([ω], [l]) = λ.

But, ([ω], [l]) is computable. We can take l to be the line

z2 = z3 = · · · = zn = 0.

So, l is given by (z0 : z1 : 0 · · · : 0) and l is covered by U0 ∩ l and U1 ∩ l. Now l = (U0 ∩ l) ∪ {pt}, so
∫

l

ω =

∫

U0∩l

ω

and a lifting on U0 ∩ l is just
F ((1 : z : 0 : · · · : 0)) = (1, z, 0, · · · , 0).

Consequently, ‖F‖2 = 1 + |z|2 = 1 + zz. We get

∂ log ‖F‖2 = ∂ log(1 + zz) =
zdz

1 + zz
,
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and

∂∂ log ‖F‖2 =
(1 + zz)dz ∧ dz − zdz ∧ zdz

(1 + zz)2
=

dz ∧ dz
(1 + zz)2

.

As dz = dx+ idy and dz = dx− idy, we get dz ∧ dz = −2idx ∧ dy. Now, l ∩ U0 = C, so
∫

l∩U0

ω =
i

2π

∫

C

−2idx ∧ dy
1 + x2 + y2)2

.

If we use polar coordinates, then the right hand side is just

i

2π
(−i)

∫ 2π

0

∫ ∞

0

2rdrdθ

(1 + r2)2
=

∫ ∞

0

2rdr

(1 + r2)2
=

∫ ∞

1

du

u2
=

[
− 1

u

]∞

1

= 1.

Therefore, λ = 1, and [ω] = [H ] ∈ H2N−2(PN ,Z). Of course ω = ω ↾ X = [H ∩X ]. Therefore,

Lk : Hn−k(X,C) −̃→ Hn+k(X,C)

becomes in homology, ⋂
with PN−k : Hn+k(X,C) −̃→ Hn−k(X,C).

This is the geometric interpretation of Hard Lefschetz.

How about primitive cohomology (or homology)?

By definition, the sequence

0 −→ Pn−k(X) −→ Hn−k(X)
Lk+1

−→ Hn+k+2(X) is exact.

When we dualize, we get

Hn+k+2(X)
∩ PN−(k+1)

//

∩H ''NN
NN

NN
NN

NN
N

Hn−k(X) // Pn−k(X) // 0

Hn+k(X)

∩ PN−k

88qqqqqqqqqq

Therefore, a cycle of dimension n − k is primitive iff it does not cut the “hyperplane at infinity”, i.e., if it
arise from Hn−k(X −X ∩H) in the map

Hn−k(X −X ∩H) −→ Hn−k(X).

(These are the “finite cycles”)

We now consider the “Hodge-Riemann bilinear relations”. Given X , compact, Kähler, we have the
Poincaré duality

Hn−k(X,R)⊗Hn+k(X,R) −→ H2n(X,R) ∼= R,

where dimCX = n, given by

([α], [β]) 7→
∫

X

α ∧ β.

By the hard Lefschetz Theorem, β = Lk(γ), for some unique γ ∈ Hn−k(X), so we can define a bilinear
pairing on Hn−k(X) via

Qn−k(α, γ) =

∫

X

α ∧ γ ∧ ωk.

The following properties hold:
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(1) If n− k is even, then Qn−k is symmetric. Indeed,

Qn−k(γ, α) =

∫

X

γ ∧ α ∧ ωk

= (−1)deg(α)deg(γ)
∫

X

α ∧ γ ∧ ωk

= Qn−k(α, γ).

(2) If n− k is odd, then Qn−k is alternating.

(3) Qn−k is a real form. This is because

Qn−k(α, β) =

∫

X

α ∧ γ ∧ ωk

=

∫

X

α ∧ γ ∧ ωk

= Qn−k(α, γ).

(Recall, ω is real.)

By Hodge,

Hn−k(X,C) =
∐

p+q=n−k

Hp,q.

Claim. For all α ∈ Hp,q and all β ∈ Hp′,q′ , we have Q(α, β) = 0 unless p = q′ and p′ = q.

We have p+ q = p′ + q′ = n− k and

Q(α, β) =

∫

X

α ∧ β ∧ ωk

with α ∧ β ∧ ωk ∈ Hp+p′+k,q+q′+k. As the only 2n form on X is an (n, n)-form, Q(α, β) 6= 0 implies
p+ p′ + k = n = q + q′ + k, i.e., p+ p′ = q + q′. Hence (together with p+ q = p′ + q′) we deduce

(4) Q(α, β) 6= 0 implies p = q′ and p′ = q.

(1)-(4) suggest we consider
Wn−k(α, β) = in−kQn−k(α, β).

(5) Wn−k is an Hermitian form on Hn−k(X,C).

Now, when n− k is even, we have

Wn−k(β, α) = in−kQn−k(β, α) = in−kQn−k(α, β),

and so,

Wn−k(β, α) = in−kQn−k(α, β) = (−1)n−kin−kQn−k(α, β) = in−kQn−k(α, β) =W (α, β),

as n− k is even. A similar argument applies when n− k is odd, and Wn−k is an Hermitian form. We will
need the following lemma:

Lemma 2.74 If X is a compact, Kähler manifold of dimension dimCX = n and η ∈ ∧p,q(X) ⊆ ∧k(X)
(with p+ q = k) with η primitive, then

∗η = (−1)(k+1
2 )ip−q

1

(n− k)!L
n−kη.
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Proof . A usual computation either to be supplied or for Homework. Let us check that, at least, both sides

are of the same type. Indeed, the left hand side belongs to
∧n−p,n−q

X =
∧n−q,n−p

X . Moreover,

Ln−kη ∈
p+n−k,q+n−k∧

X.

If we put p+ q = k, then p− k = −q and q − k = −p, so we have Ln−kη ∈ ∧n−q,n−pX .

Theorem 2.75 (Hodge-Riemann Bilinear Relations) Let X be compact, Kähler, with dimCX = n, and
examine Hn−k(X,C) (0 ≤ k ≤ n).

(1) The form Wn−k makes both the Lefschetz and Hodge decomposition orthogonal coproducts.

(2) On P p,q ⊆ Hn−k(X,C), the form

(−1)(n−k
2 )ip−q−(n−k)Wn−k

is positive definite. That is,

(−1)(n−k
2 )ip−qQn−k(α, α) > 0

whenever α ∈ Pn−k(X) and α 6= 0.

(3) When Wn−k is restricted to LlPn−k−2l, it becomes (−1)lWn−k−2l.

Proof . (1) The Hodge components are orthogonal as W (α, β) = Q(α, β) and use (4) above.

Observe that Wr(ξ, η) = cQr(ξ, η), so we can replace Wr by Qr. Then, we get

Qr(ξ, η) = Qr−2(ξ
′, η′),

where ξ = Lξ′ and η = Lη′. Now assume ξ = Lmξ′, η = Ltη′, with ξ, η′ primitive and m 6= t. We may
assume m < t. We have ξ′ ∈ ∧r−2m

(X) and η′ ∈ ∧r−2t
(X) and as ξ′ is primitive, Ln+1−r+2mξ′ = 0. Then,

Q(ξ, η) = Q(Lmξ′, Ltη′) =

∫

X

ξ′ ∧ η′ ∧ ωn−r+m+t.

Now, as m < t, we have 2m < m+ t, so 2m+ 1 ≤ m+ t and

ξ′ ∧ η′ ∧ ωn−r+m+t = Ln−r+m+tξ′ ∧ η′

and n− r +m+ t ≥ n− r + 2m+ 1; As Ln+1−r+2mξ′ = 0, we also have Ln−r+m+tξ′ ∧ η′ = 0.

(2) (Bilinear Relations). Pick ξ ∈ P p,q and compute: By Lemma 2.74 (for k),

∗ξ = (−1)(k+1
2 )ip−q

1

(n− k)!L
n−kξ,

so we get

∗ξ = (−1)(k+1
2 )(−1)p−qip−q 1

(n− k)!L
n−kξ,

and
Ln−kξ = (−1)(k+1

2 )(−1)p−qiq−p(n− k)! ∗ ξ.
If we replace k by n− k, as ξ ∈ ∧n−k(X), we get

Lkξ = (−1)(n−k+1
2 )(−1)p−qiq−pk! ∗ ξ.
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But, (
n− k + 1

2

)
=

(
n− k
2

)
+ p+ q

(since n− k = p+ q), so

(−1)(n−k+1
2 )(−1)p−q = (−1)(n−k

2 )(−1)2p = (−1)(n−k
2 ),

which means that
Lkξ = (−1)(n−k

2 )iq−pk! ∗ ξ.
As

Wn−k(α, β) = in−kQn−k(α, β),

we have

(−1)(n−k
2 ))ip−q−(n−k)W (ξ, ξ) = (−1)(n−k

2 ))ip−qQ(ξ, ξ)

= (−1)(n−k
2 ))ip−q

∫

X

ξ ∧ ξ ∧ ωk

= (−1)(n−k
2 ))ip−q

∫

X

ξ ∧ Lkξ

= (−1)(n−k
2 ))ip−q(−1)(n−k

2 ))iq−pk!

∫

X

ξ ∧ ∗ξ

= k! ‖ξ‖2L2 > 0, as ξ 6= 0.

(3) We have

Wr(ξ, η) = irQr(ξ, η)

= irQr−2l(ξ
′, η′)

=
ir

ir−2l
Wr−2l(ξ

′, η′)

= (−1)lWr−2l(ξ
′, η′),

which proves (3).

Remarks:

(1) For all p ≥ 0, we have Hp,0 = P p,0 and H0,p = P 0,p. It is enough to prove it for one of the two
equations. Take ξ ∈ Hp,0. Then, ξ is primitive iff Lxξ = 0, where x + p = n + 1. We deduce
x = n+ 1− p and then,

Lxξ = Ln+1−pξ ∈
n+1,n+1−p∧

(X) = (0),

as dimCX = n.

(2) Lefschetz says

Hp,q =
∐

0≤k≤[ p+q
2 ]

LkP p−k,q−k,

a coproduct of lower primitive cohomologies. But, Hp−1,q−1 itself is the coproduct of its lowr primitives,
which are strictluy lower primitives of Hp,q. Therefore, we conclude that

Hp,q = P p,q ∐Hp−1,q−1.

(with p+ q ≤ n). Therefore, we have
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(a) hp,q = dimP p,q + hp−1,q−1 (p+ q ≤ n)
(b) Hp,q ≥ hp−1,q−1, for p+ q ≤ n.

We have our pairing

Qn−k : H
n−k ⊗Hn−k → Hn−k ∼= C,

given by

Qn−k(ξ, η) =

∫

X

ξ ∧ η ∧ ωk.

When n− k is even, our pairing is symmetric and when n− k is odd, it is alternating. The most important
case is when k = 0, in which case,

Q = Qn : H
n ⊗Hn → C

is given by

Q(ξ, η) =

∫

X

ξ ∧ η,

the intersection pairing (in homology).

Corollary 2.76 If X is compact, Kähler, the forms Qr on Hr(X,C) are always nondegenerate.

Proof . We have

Hr =
∐

0≤k≤[ r2 ]

LkP r−2k,

a Q-orthogonal decomposition. We need only look at the cofactors. On the cofactors, Q is Qlower and this
is (up to a constant) positive or negative, so each Qlower is nondegenerate.

For n = 2r and dimCX = n = 2r (so, dimR X ≡ 0 (4)) our form Q on Hn is symmetric, nondegenerate
and real. By Sylvester’s inertia theorem, Q is known if we know its signature (= sgn(Q)).

The index of X , denoted I(X) is by definition the signature, sgn(Q), where Q is the intersection form
on the middle cohomology, Hn(X,C), when n is even. So, I(X) makes sense if dimR X ≡ 0 (4).

Theorem 2.77 (Hodge Index Theorem) If X is an even (complex) dimensional, compact, Kähler manifold,
say dimCX = n = 2r, then

I(X) =
∑

p,q

(−1)php,q =
∑

p+q even

(−1)php,q.

Proof . From the Lefschetz decomposition for Hn(X,C), we have

Hn(X,C) =
∐

0≤k≤n
2

LkPn−2k(X).

Since this is a Q (and also a W ) orthogonal decomposition, we have

I(X) = sgn(Q) =
∑

0≤k≤ n
2

sgn(Q) ↾ Pn−2k =
∑

0≤k≤ n
2

sgn(W ) ↾ Pn−2k.

Again, the (p, q)-decomposition is orthogonal, so

I(X) =
∑

0≤k≤ n
2

∑

p+q=n−2k

sgn(W ) ↾ P p,q.
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But, we know that dimP p,q = hp,q − hp−1,q−1, by Remark (2) and W on P p,q is definite, with sign

(−1)(p+q
2 )ip−q. (∗)

As ip−q = (−1) p−q
2 , we have

(−1)(p+q
2 ) = (−1) (p+q)(p+q−1)

2 = (−1) p+q
2 (−1) p+q

2 (p+q),

so
(∗) = (−1) p−q

2 (−1) p+q
2 (−1) p+q

2 (p+q) = (−1)p,
as p+ q = n− 2k and n is even. Thus,

I(X) =
∑

p+q even
p+q≤n

(−1)dimP p,q

=
∑

p+q even
p+q≤n

(−1)p(hp,q − hp−1,q−1)

=
∑

p+q=n

(−1)php,q −
∑

p+q=n

(−1)php−1,q−1 +
∑

p+q=n−2

(−1)php,q −
∑

p+q=n−2

(−1)php−1,q−1 + · · ·

=
∑

p+q=n

(−1)php,q + 2
∑

p+q even
p+q<n

(−1)php,q.

But, as n is even and by duality,

(−1)n−phn−p,n−q = (−1)phn−p,n−q = (−1)php,q,

so the right hand side above is ∑

p+q=n

(−1)php,q +
∑

p+q even
p+q 6=n

(−1)php,q,

so we get

I(X) =
∑

p+q even

(−1)php,q.

Now, we show that ∑

p+q odd

(−1)php,q = 0.

Since X is Kähler, we know that hp,q = hq,p. Therefore,

(−1)php,q = (−1)phq,p = −(−1)qhq,p,

since −1 = (−1)p+q = (−1)p(−1)q, as p+ q is odd. But,

∑

p+q odd

(−1)php,q =
∑

p+q odd

(−1)qhq,p = −
∑

p+q odd

(−1)php,q.

So,
∑

p+q odd(−1)php,q = 0, as claimed.

Example: The case of a complex, Kähler surface. In this case, n = dimCX = 2, so

I(X) =
∑

p+q even

(−1)php,q = h0,0 + h2,0 − h1,1 + h0,2 + h2,2,
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i.e.,
I(X) = 2 + 2h0,2 − h1,1.

We know that h0,2 = dimCH
2(X,OX) = pg = geometric genus . So,

I(X) = 2 + 2pg − h1,1.

The number q = dimCH
1(X,OX) = 1

2b1 is called the irregularity of X . By Lefschetz, we also have

h1,1 = p1,1 + 1,

where pr,s = dimC P
r,s.

Let’s look at Q restricted to H1,1(X). Now,

H1,1 = P 1,1
⊥∐
LP 0,0 = P 1,1

⊥∐
LH0,0.

So, sgn(Q) ↾ H1,1 = sgn(Q) ↾ P 1,1 + sgn(Q) ↾ H0,0. We know that on P 1,1, the form (−1)(22)i1−1Q(α, β) is
positive. Thus, Q is negative on P 1,1. On H0,0 (up by L in H1,1), we have Q > 0. Therefore,

sgn(Q) ↾ H1,1 = 1− dimC P
1,1

and the one positive eigenvector (i.e., corresponding to the positive eigenvalue) is [ω] = [H ∩X ], where H is
a hyperplane of PNC . Therefore, we get

Corollary 2.78 (Hodge Index for Holomorphic Cycles on a Surface) If X is a Kähler, compact, surface
then in H1,1 we can choose a basis so that:

(a) The first basis vector is a multiple of [ω] = [H ∩X ].

(b) the matrics of Q on H1,1 is diag(1,−1,−1, · · · ,−1).

Let’s examine Q on H1,0 and H0,1, this is Riemann’s case: We know P 1,0 = H1,0; P 0,1 = H0,1. Now,

Q ↾ H1,0 = (−1)(12)i1−0Q > 0, which means that

iQ(ξ, ξ) > 0 if ξ is a (1, 0) form.

We also have Q ↾ H0,1 = (−1)(12)i0−1Q > 0, which means that

−iQ(ξ, ξ) > 0 if ξ is a (0, 1) form.

Say X is a Kähler, complex, compact manifold. We have the exact sequence of sheaves

0 −→ Z −→ OX exp−→ O∗
X −→ 0,

where exp(f) = e2πif . If we apply cohomology, we get

0 // Z // C // C∗

EDBC
GF@A

//̀``` H1(X,Z) // H1(X,OX) // H1(X,O∗
X) EDBC

GF
c

@A
// H2(X,Z) // H2(X,OX) // · · ·



2.6. HODGE IV: LEFSCHETZ DECOMPOSITION & THE HARD LEFSCHETZ THEOREM 161

We get the exact sequence

0 −→ H1(X,Z) −→ H1(X,OX) −→ H1(X,O∗
X)

c−→ H2(X,Z).

The group H1(X,O∗
X) is called the (analytic) Picard group of X ; notation: Pic(X).

I claim: The group H1(X,Z) is a lattice in H1(X,OX) ∼= Cq, where b1(X) = 2q.

To see this, look at the inclusions
Z →֒ R →֒ C →֒ OX

and examine first H1(X,Z) →֒ H1(X,R). We compute these groups by Čech cohomology and all takes place
for finite covers and opens that are diffeomorphic to convex opens. It follows (DX) that H1(X,Z) is a lattice
in H1(X,R). Examine the commutative diagram

0 // R //

��

∧0 d //

��

d //

��

∧1 d //

��

∧2 d //

��

· · ·

0 // C //

��

∧0 d //

��

d //

��

∧1 d //

��

∧2 d //

��

· · ·

0 // OX // ∧0,0 ∂ // ∧0,1 ∂ // ∧0,2 ∂ // · · ·

where the vertical maps between the first two rows are complexification and the maps between the second
and the third row are projection on (0,−). This implies that our maps come from de Rham and Dolbeault.
But,

H1(X,C) = H1(X,R)z ∐H1(X,R)z

and H1(X,C) −→ H1(X,OX) is the map

H1(X,R)z ∐H1(X,R)z −→ H1(X,R)z,

so, the composite map
H1(X,R) →֒ H1(X,C) −→ H1(X,OX)

is an isomorphism over R. Therefore, the claim is proved.

Since rkH1(X,Z) = 2q (where q = dimRH
1(X,R)), we deduce that

H1(X,OX)/H1(X,Z) ∼= Cq/Z2q.

Therefore, H1(X,OX)/H1(X,Z) is a q-dimensional complex torus. This torus, denoted Pic0(X), is called
the Picard manifold of X . The image of c into H2(X,Z) is called the Néron-Severi group of X ; it is
denoted NS(X). Observe that NS(X) →֒ H2(X,Z) = a finitely generated abelian group, as X is compact.
Consequently, NS(X) is a finitely generated abelian group. Moreover, the sequence

0 −→ Pic0(X) −→ Pic(X) −→ NS(X) −→ 0 is exact.
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2.7 Extensions of Results to Vector Bundles

Say X is a complex manifold and E is a holomorphic vector bundle on X . Put hermitian metrics on X and

E. We know (
∧p,q

TDX )x gets an inner product and Ex has one too; so,
(∧p,q

TDX

)
⊗E has an inner product.

We have a pairing

E ⊗ ED //

&&MM
MM

MM
MM

MM
MM

EndOX (E)

tr

��
OX

a nondegenerate bilinear form. We also have a nondegenerate pairing

(p,q∧
TDX

)
⊗
(n−p,n−q∧

TDX

)
−→

n,n∧
TDX
∼= C (∗)

(The isomorphism
∧n,n

TDX
∼= C is given by the volume form.) Using the metric, we have an isomorphism

((p,q∧
TDX

)
⊗ E

)D
∼=
(p,q∧

TDX

)
⊗ E.

From (∗), we have the pairing
((p,q∧

TDX

)
⊗ E

)
⊗
((n−p,n−q∧

TDX

)
⊗ ED

)
−→

(n,n∧
TDX

)
⊗OX ∼= OX ,

so, we have the isomorphism

((p,q∧
TDX

)
⊗ E

)D
∼=
(n−p,n−q∧

TDX

)
⊗ ED.

The composite isomorphism

(p,q∧
TDX

)
⊗ E ∼=

((p,q∧
TDX

)
⊗ E

)D
∼=
(n−p,n−q∧

TDX

)
⊗ ED,

is the Hodge ∗ in the case of a v.b.:

∗E :
(p,q∧

TDX

)
⊗ E −→

(n−p,n−q∧
TDX

)
⊗ ED.

If X is compact, as
(ξ, η)x(vol. form)x = ξx ∧ ∗ηx,

by definition, we set

(ξ, η) =

∫

X

ξ ∧ ∗η =

∫

X

(ξ, η)x(vol. form)x.

This gives ΓC∞(X, (
∧p,q

TDX ) ⊗ E) an inner product. let ∇E be the uniholo connection on E. Then,

−∗E ◦∇E ◦ ∗E is the formal adjoint of ∇E , denoted ∇∗
E . We have as well ∇1,0

E , ∇0,1
E = ∂E and ∇∗ 1,0

E = ∂
∗
E .

We define E ;
1,0
E ; 0,1

E ; via:

E = ∇E∇∗
E +∇∗

E∇E
1,0
E = ∇1,0

E ∇∗, 1,0
E +∇∗ 1,0

E ∇1,0
E

0,1
E = ∇0,1

E ∇∗, 0,1
E +∇∗ 0,1

E ∇0,1
E .
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Theorem 2.79 (Dolbeault’s Theorem, V.B. Case) If X is a complex manifold and E is a holomorphic vector
bundle, then

Hq(X,ΩpX ⊗ E) ∼= Hp,q

∇0,1
E

(X,E).

(Here, ΩpX = Γ(X,
∧p,0 TDX ).)

Theorem 2.80 (Hodge’s Theorem, compact manifold, V.B. Case) If X is a complex, compact manifold and
E is a holomorphic vector bundle on X, both X and E having hermitian metrics, then

ΓC∞

(
X,
(p,q∧

TDX
)
⊗ E

)
= Hp,q

⊥∐
Im∇0,1

E

⊥∐
Im∇∗, 0,1

E

where this is an orthogonal coproduct and

Hp,q = Ker 0,1
E

and Hp,q is finite dimensional, for all p, q.

We also have

Theorem 2.81 (Serre Duality, V.B. Case) If X is a complex, compact manifold of dimension n = dimCX
and E is a holomorphic vector bundle on X, then the pairing

(ξ, η) 7→
∫

X

ξ ∧ η

is a nondegenerate pairing of finite dimensional vector spaces

Hp,q(X,OX(E))⊗Hn−p,n−q(X,OX(ED)) −→ C,

where Hp,q(X,OX(E)) = Hq(X,ΩpX ⊗ E). That is, we have the isomorphism

Hn−q(X,Ωn−qX ⊗ ED) ∼= (Hq(X,ΩpX ⊗ E))D.

When p = 0, set ωX = ΩnX , then

Hn−q(X,ωX ⊗ ED) ∼= (Hq(X,E))D.

Theorem 2.82 (Hodge’s Theorem, Kähler and V.B. Case) If X is a complex, compact, Kähler manifold
(of dimension n = dimCX) and E is a holomorphic vector bundle on X with a flat connection (i.e., the
curvature of the connection is identically zero), then there is a canonical isomorphism

∐

p+q=k

Hp,q(X,OX(E)) ∼= Hk(X,OX(E))

and moreover, there are isomorphisms

(a) Hp,q
BC(X,OX(E)) ∼= Hp,q(X,OX(E))

(where, Hp,q
BC(X,OX(E)) = (Ker ∇E on

∧p,q(X,E))/(Im∇1,0
E ∇

0,1
E from

∧p−1,q−1(X,E)).)

(b) Hp,q
BC(X,OX(E)) ∼= Hq,p(X,OX(ED)).
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The proof is the same as before.

A nice example of the Hodge Index theorem

Let X be a compact, Kähler surface (so, dimCX = 2). Then, we already saw that

I(X) = 2 + 2h0,0 − h1,1.

Let

χtop(X) = Euler-Poincaré(X) =

2∑

i=0

(−1)ibi =
2∑

p,q=0

(−1)p+qhp,q = 2− 4h0,1 − 2h0,2 + h1,1.

Observe that

I(X) + χtop(X) = 4− 4h0,1 + 4h0,2

= = 4(dimH0(X,OX)− dimH1(X,OX) + dimH2(X,OX))

= 4(1− q + pg)

= 4(1 + pa) = 4χ(X,OX).

(Recall pa = pg − q.) Now, the Hirzebruch-Riemann-Roch Theorem (HRR) for X is equivalent with

χ(X,OX) =
1

12
(c21 + c2),

where c1, c2 are the Chern classes of T 1,0
X , with cj ∈ H2j(X,Z) and one shows that χtop(X) = c2. In fact,

for any compact, complex manifold, X , of complex dimension n, the top Chern class of T 1,0
X , namely, cd (the

Euler class) is equal to χtop(X). Therefore,

I(X) + c2 =
1

3
(c21 + c2),

iff HRR holds. Consequently,

I(X) =
1

3
(c21 − 2c2) iff HRR holds.

This last statement is the Hirzebruch signature theorem for a complex, compact surface and the Hirzebruch
signature theorem is equivalent to HRR.

Case of a Compact Riemann Surface

Compute c1 = the highest Chern class of T 1,0
X . We have

c1 = χtop(X)

= b0 − b1 + b2

= 2− b1
= 2(1− h0,1)
= 2((dimH0(X,OX)− (dimH1(X,OX))

= 2χ(X,OX).

We get a form of the Riemann-Roch theorem:

χ(X,OX) =
1

2
c1.

Since χ(X,OX) = 1− g (by definition, g = dimH1(X,OX)), we get

c1 = 2− 2g.



Chapter 3

The Hirzebruch-Riemann-Roch
Theorem

3.1 Line Bundles, Vector Bundles, Divisors

From now on, X will be a complex, irreducible, algebraic variety (not necessarily smooth). We have

(I) X with the Zariski topology and OX = germs of algebraic functions. We will write X or XZar.

(II) X with the complex topology and OX = germs of algebraic functions. We will write XC for this.

(III) X with the complex topology and OX = germs of holomorphic functions. We will write Xan for this.

(IV) X with the complex topology and OX = germs of C∞-functions. We will write XC∞ or Xsmooth in this
case.

Vector bundles come in four types: Locally trivial in the Z-topology (I); Locally trivial in the C-topology
(II, III, IV).

Recall that a rank r vector bundle over X is a space, E, together with a surjective map, p : E → X , so
that the following properties hold:

(1) There is some open covering, {Uα −→ X}, of X and isomorphisms

ϕα : p
−1(Uα)→ Uα

∏
Cr (local triviality )

We also denote p−1(Uα) by E ↾ Uα.

(2) For every α, the following diagram commutes:

p−1(Uα)
ϕα //

p
##H

HH
HH

HH
HH

Uα
∏

Cr

pr1
{{vv
vv
vv
vv
v

Uα

165
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(3) Consider the diagram

p−1(Uα)
ϕα // Uα

∏
Cr

p−1(Uα ∩ Uβ)
?�

OO

ϕα // (Uα ∩ Uβ)
∏

Cr
?�

OO

gβα
��

p−1(Uβ ∩ Uα)� _

��

ϕβ // (Uβ ∩ Uα)
∏

Cr
� _

��
p−1(Uβ)

ϕβ // Uβ
∏

Cr

where gβα = ϕβ ◦ ϕ−1
α ↾ p

−1(Uα ∩ Uβ). Then,

gβα ↾ Uα ∩ Uβ = id and gβα ↾ C
r ∈ GLr(Γ(Uα ∩ Uβ,OX))

and the functions gβα in the glueing give type II, III, IV.

On triple overlaps, we have

gγβ ◦ gβα = gγα and gαβ = (gβα)
−1.

This means that the {gβα} form a 1-cocycle in Z1({Uα −→ X},GLr). Here, we denote by GLr(X), or simply
GLr, the sheaf defined such that, for every open, U ⊆ X ,

Γ(U,GLr(X)) = GLr(Γ(U,OX)),

the group of invertible linear maps of the free module Γ(U,OX)r ∼= Γ(U,OrX). When r = 1, we also denote
the sheaf GL1(X) by Gm, or O∗

X .

Say {ψα} is another trivialization. We may assume (by refining the covers) that {ϕα} and {ψα} use the
same cover. Then, we have an isomorphism, σα : Uα

∏
Cr → Uα

∏
Cr:

Uα
∏

Cr

σα

��

p−1(Uα)

ϕα

99rrrrrrrrrr

ψα %%LL
LL

LL
LL

LL

Uα
∏

Cr

We see that {σα} is a 0-cochain in C0({Uα −→ X},GLr). Let {hβα} be the glueing data from {ψα}. Then,
we have

ϕβ = gβα ◦ ϕα
ψβ = hβα ◦ ψα
ψα = σα ◦ ϕα.

From this, we deduce that σβ ◦ ϕβ = ψβ = hβα ◦ σα ◦ ϕα, and then

ϕβ = (σ−1
β ◦ hβα ◦ σα) ◦ ϕα,
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so

gβα = σ−1
β ◦ hβα ◦ σα.

This gives an equivalence relation, ∼, on Z1({Uα −→ X},GLr). Set

H1({Uα −→ X},GLr) = Z1/ ∼ .

This is a pointed set. If we pass to the right limit over covers by refinement and call the pointed set from
the limit Ȟ1(X,GLr), we get

Theorem 3.1 If X is an algebraic variety of one of the types T = I, II, III, IV, then the set of isomorphism
classes of rank r vector bundles, VectT,r(X), is in one-to-one correspondence with Ȟ1(X,GLr).

Remarks:

(1) If F is some “object” and Aut(F ) = is the group of automorphisms of F (in some catgeory), then an
X-torsor for F is just an “object, E, over X”, locally (on X) of the form U

∏
F and glued by the

pairs (id, g), where g ∈ Maps(U ∩ V,Aut(F )) on U ∩ V . The theorem says: Ȟ1(X,Aut(F )) classifies
the X-torsors for F .

Say F = PrC, we’ll show that in the types I, II, III, Aut(F ) = PGLr, where

0 −→ Gm −→ GLr+1 −→ PGLr −→ 0 is exact.

(2) Say 1 −→ G′ −→ G −→ G′′ −→ 1 is an exact sequence of sheaves of (not necessarily commutative)
groups. Check that

1 // G′(X) // G(X) // G′′(X) EDBC
GF

δ0

@A
// Ȟ1(X,G′) // Ȟ1(X,G) // Ȟ1(X,G′′)

is an exact sequence of pointed sets. To compute δ0(σ) where σ ∈ G′′(X), proceed as follows: Cover
X by suitable Uα and pick sα ∈ G(Uα) mapping to σ ↾ Uα in G′′(Uα). Set

δ0(σ) = sαs
−1
β on Uα ∩ Uβ/ ∼.

We find that δ0(σ) ∈ Ȟ1(X,G′). When G′ ⊆ Z(G), we get the exact sequence

1 // G′(X) // G(X) // G′′(X) EDBC
GF

δ0

@A
// Ȟ1(X,G′) // Ȟ1(X,G) // Ȟ1(X,G′′) EDBC

GF
δ1

@A
// Ȟ2(X,G′)

(3) Apply the above to the sequence

0 −→ Gm −→ GLr+1 −→ PGLr −→ 1.
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If X is a projective variety, we get

0 −→ Γ(X,O∗
X) −→ GLr+1(Γ(X,OX)) −→ PGLr(Γ(X,OX)) −→ 0,

because Γ(X,O∗
X) = C∗ and Γ(X,OX) = C. Consequently, we also have

0 −→ Ȟ1(X,O∗
X) −→ Ȟ1(X,GLr+1) −→ Ȟ1(X,PGLr) −→ Ȟ2(X,O∗

X) = Br(X),

where the last group, Br(X), is the cohomological Brauer group of X of type T . By our theorem,
Ȟ1(X,O∗

X) = Pic(X) classifies type T line bundles, Ȟ1(X,GLr+1) classifies type T rank r + 1 vector
bundles and Ȟ1(X,PGLr) classifies type T fibre bundles with fibre PrC (all on X).

Let X and Y be two topological spaces and let π : Y → X be a surjective continuous map. Say we have
sheaves of rings OX on X and OY on Y ; we have a homomorphism of sheaves of rings, OX −→ π∗OY . Then,
each OY -module (or OY -algebra), F , gives us the OX -module (or algebra), π∗F on X (and more generally,
Rqπ∗F) as follows: For any open subset, U ⊆ X ,

Γ(U, π∗F) = Γ(π−1(U),F).

So, Γ(π−1(U),OY ) acts on Γ(π−1(U),F) and commutes to restriction to smaller opens. Consequently, π∗F
is a π∗OY -module (or algebra) and then OX acts on it via OX −→ π∗OY . Recall also, that Rqπ∗F is the
sheaf on X generated by the presheaf

Γ(U,Rqπ∗F) = Hq(π−1(U),F).

If F is an algebra (not commutative), then only π∗ and R1π∗ are so-far defined.

Let’s look at F and Γ(Y,F) = Γ(π−1(X),F) = Γ(X, π∗F). Observe that

Γ(Y,−) = Γ(X,−) ◦ π∗.

So, if π∗ maps an injective resolution to an exact sequence, then the usual homological algebra gives the
spectral sequence of composed functors (Leray spectral sequence)

Ep,q2 = Hp(X,Rqπ∗F) =⇒ H•(Y,F).

We get the exact sequence of terms of low degree (also called edge sequence)

1 // H1(X, π∗F) // H1(Y,F) // H0(X,R1π∗F) EDBC
GF

δ0

@A
// H2(X, π∗F) // H2(Y,F) //

In the non-commutative case, we get only

1 // H1(X, π∗F) // H1(Y,F) // H0(X,R1π∗F).

Application: Let X be an algebraic variety with the Zariski topology, let OX be the sheaf of germs of
algebraic functions and let Y = XC also with OY = the sheaf of germs of algebraic functions. The map
π : Y → X is just the identity, which is continuous since the Zariski topology is coarser than the C-topology.
Take F = (possibly noncommutative) GLr.

Claim: R1id∗GLr = (0), for all r ≥ 1.
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Proof . It suffices to prove that the stalks are zero. But these are the stalks of the corresponding presheaf

lim−→
U∋x

H1
C(U,GLr)

where U runs over Z-opens and H1 is taken in the C-topology. Pick x ∈ X and some ξ ∈ H1
C(U,GLr) for

some Z-open, U ∋ x. So, ξ consists of a vector bundle on U , locally trivial in the C-topology. There is some
open in the C-topology, call it U0, with x ∈ U0 and U0 ⊆ U where ξ ↾ U0 is trivial iff there exists some
sections, σ1, . . . , σr, of ξ over U0, and σ1, . . . , σr are linearly independent everywhere on U0. The σj are
algebraic functions on U0 to Cr. Moreover, they are l.i. on U0 iff σ1 ∧ · · · ∧ σr is everywhere nonzero on U0.
But, σ1 ∧ · · · ∧ σr is an algebraic function and its zero set is a Z-closed subset in X . So, its complement, V ,
is Z-open and x ∈ U0 ⊆ V ∩ U . It follows that ξ ↾ V ∩ U is trivial (since the σj are l.i. everywhere); so, ξ
indeed becomes trivial on a Z-open, as required.

Apply our exact sequence and get

Theorem 3.2 (Comparison Theorem) If X is an algebraic variety, then the canonical map

VectrZar(X) ∼= Ȟ1(XZar,GLr) −→ Ȟ1(XC,GLr) ∼= VectrC(X)

is an isomorphism for all r ≥ 1 (i.e., a bijection of pointed sets).

Thus, to give a rank r algebraic vector bundle in the C-topology is the same as giving a rank r algebraic
vector bundle in the Zariski topology.

� If we use OX = holomorphic (analytic) functions, then for many X , we get only an injection
VectrZar(X) →֒ VectrC(X).

Connection with the geometry inside X :

First, assume X is smooth and irreducible (thus, connected). Let V be an irreducible subvariety of
codimension 1. We know from Chapter 1 that locally on some open, U , there is some f ∈ Γ(U,OX) = OU
such that f = 0 cuts out V in U . Furthermore, f is analytic if V is, algebraic if V is. Form the free abelian
group on the V ’s (we can also look at “locally finite” Z-combinations in the analytic case); call these objects
Weil divisors (W -divisors), and denote the corresponding group, WDiv(X).

A divisor D ∈ WDiv(X) is effective if D =
∑

α aαVα, with aα ≥ 0 for all α. This gives a cone inside
WDiv(X) and partially orders WDiv(X).

Say g is a holomorphic (or algebraic) function near x. If V passes through x, in OX,x–which is a UFD
(by Zariski) we can write

g = fag̃, where (g̃, f) = 1.

(The equation f = 0 defines V near x so f is a prime of OX,x.) Notice that if p = (f) in Γ(U,OX) = OU ,
then g = fag̃ iff g ∈ pa and g /∈ pa+1 iff g ∈ pa(OU )p and g /∈ pa+1(OU )p. The ring (OU )p is a local ring
of dimension 1 and is regular as X is a manifold (can be regular even if X is singular). Therefore, a is
independent of x. The number a is by definition the order of vanishing of g along V , denoted ordV (g). If g
is a meromorphic function near x, we write g = g1/g2 locally in (OU )p, with (g1, g2) = 1 and set

ordV (g) = ordV (g1)− ordV (g2).

We say that g has a zero of order a along V iff ordV (g) = a > 0 and a pole of order a iff ordV (g) = −a < 0.
If g ∈ Γ(X,Mer(X)∗), set

(g) =
∑

V ∈WDiv(X)

ordV (g) · V.

Claim. The above sum is finite, under suitable conditions:



170 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

(a) We use algebraic functions.

(b) We use holomorphic functions and restrict X (DX).

Look at g, then 1/g vanishes on a Z-closed, W0. Look at X −W0. Now, X −W0 is Z-open so it is a
variety and g ↾ X −W0 is holomorphic. Look at V ⊆ X and ordV (g) = a 6= 0, i.e., V ∩ U 6= ∅. Thus,
(g) = pa in (OU )p, which yields (g) ⊆ p and then V ∩ (X −W0) = V (p) ⊆ V ((g)). But, V (g) is a union of
irreducible components (algebraic case) and V is codimension 1, so V is equal to one of these components.
Therefore, there are only finitely many V ’s arising from X −W0.

The function 1/g vanishes onW0, so writeW0 as a union of irreducible components. Again, there are only
finitely many V arising from W0. So, altogether, there are only finitely many V ’s associated with g where g
has a zero or a pole. We call (g) ∈WDiv(X) a principal divisor . Given any two divisors D,E ∈WDiv(X),
we define linear (or rational) equivalence by

D ∼ E iff (∃g ∈Mer(X))(D − E = (g)).

The equivalence classes of divisors modulo ∼ is the Weil class group, WCl(X).

Remark: All goes through for any X (of our sort) for which, for all primes, p, of height 1, the ring (OU )p is
a regular local ring (of dimension 1, i.e., a P.I.D.) This is, in general, hard to check (but, OK if X is normal).

Cartier had the idea to use a general X but consider only the V ’s given locally as f = 0. For every open,
U ⊆ X , consider AU = Γ(U,OX). Let SU be the set of all non-zero divisors of AU , a multiplicative set. We
get a presheaf of rings, U 7→ S−1

U AU , and the corresponding sheaf, Mer(X), is the total fraction sheaf of
OX . We have an embedding OX −→ Mer(X) and we let Mer(X)∗ be the sheaf of invertible elements of
Mer(X). Then, we have the exact sequence

0 −→ O∗
X −→Mer(X)∗ −→ DX −→ 0,

where DX is the sheaf cokernel.

We claim that if we define DX = Coker (O∗
X −→Mer(X)∗) in the C-topology, then it is also the kernel

in the Z-topology.

Take σ ∈ Γ(U,DX) and replace X by U , so that we may assume that U = X . Then, as σ is liftable locally
in the C-topology, there exist a C-open cover, Uα and some σα ∈ Γ(U,Mer(X)∗) so that σα 7→ σ ↾ Uα.
Make the Uα small enough so that σα = fα/gα, where fα, gα are holomorphic. It follows that σα is defined

on a Z-open, Ũα ⊇ Uα. Look at Ũα ∩ Ũβ ⊇ Uα ∩ Uβ . We know σα/σβ is invertible holomorphic on Uα ∩ Uβ
and so,

σα
σβ
· σβ
σα
≡ 1 on Uα ∩ Uβ.

It follows that σα/σβ is invertible on Ũα ∩ Ũβ and then, restricting slightly further we get a Z-open cover
and σα’s on it lifting σ.

Definition 3.1 A Cartier divisor (for short, C-divisor) onX is a global section of DX . Two Cartier divisors,
σ, τ are rationally equivalent , denoted σ ∼ τ , iff σ/τ ∈ Γ(X,Mer(X)∗). Of course, this means there is a C or
Z-open cover, Uα, of X and some σα, τα ∈ Γ(Uα,Mer(X)∗) with σα/τα invertible holomorphic on Uα ∩ Uβ .
The group of Cartier divisors is denoted by CDiv(X) and the corresponding group of equivalence classes
modulo rational equivalence by Cl(X) (the class group).

The idea is that if {(Uα, σα)}α defines a C-divisor, then we look on Uα at

σ0
α − σ∞

α = (locus σα = 0)− (locus
1

σα
= 0).
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When we have the situation where WDiv(X) exists, then the map

{(Uα, σα)}α 7→ {σ0
α − σ∞

α }

takes C-divisors to Weil divisors. Say σα and σ′
α are both liftings of the same σ, then on Uα we have

σ′
α = σαgα where gα ∈ Γ(X,O∗

X).

Therefore,

σ
′0
α − σ

′∞
α = σ0

α − σ∞
α

and the Weil divisors are the same (provided they make sense). If σ, τ ∈ CDiv(X) and σ ∼ τ , then there is
a global meromorphic function, f , with σ = fτ . Consequently

σ0
α − σ∞

α = (f)0 − (f)∞ + τ0α − τ∞α ,

which shows that the corresponding Weil divisors are linearly equivalent. We get

Proposition 3.3 If X is an algebraic variety, the sheaf DX is the same in either the Zariski or C-topology
and if X allows Weil divisors (non-singular in codimension 1), then the map CDiv(X) −→WDiv(X) given
by σ 7→ σ0

α − σ∞
α is well-defined and we get a commutative diagram with injective rows

CDiv(X)
� � //

��

WDiv(X)

��
Cl(X)

� � // WCl(X).

If X is a manifold then our rows are isomorphisms.

Proof . We only need to prove the last statement. Pick D =
∑

α nαVα, a Weil divisor, where each Vα is
irreducible of codimension 1. As X is manifold, each Vα is given by fα = 0 on a small enough open, U ; take
for σ ↾ U , the product

∏
α f

nα
α and this gives our C-divisor.

We can use the following in some computations.

Proposition 3.4 Assume X is an algebraic variety and Y →֒ X is a subvariety. Write U = X − Y , then
the maps

σ ∈ CDiv(X) 7→ σ ↾ U ∈ CDiv(U),

resp. ∑

α

nαVα ∈WDiv(X) 7→
∑

α

nα(Vα ∩ U) ∈WDiv(U)

are surjections from CDiv(X) or WDiv(X) to the corresponding object in U . If codimX(Y ) ≥ 2, then our
maps are isomorphisms. If codimX(Y ) = 1 and Y is irreducible and locally principal, then the sequences

Z −→ CDiv(X) −→ CDiv(U) −→ 0 and Z −→WDiv(X) −→WDiv(U) −→ 0

are exact (where the left hand map is n 7→ nY ).

Proof . The maps clearly exist. Given an object in U , take its closure in X , then restriction to U gives back
the object. For Y of codimension at least 2, all procedures are insensitive to such Y , so we don’t change
anything by removing Y . A divisor ξ ∈ CDiv(X) (or WDiv(X)) goes to zero iff its “support” is contained
in Y . But, Y is irreducible and so are the components of ξ. Therefore, ξ = nY , for some n.
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Recall that line bundles on X are in one-to-one correspondence with invertible sheaves, that is, rank 1,
locally free OX -modules. If L is a line bundle, we associate to it, OX(L), the sheaf of sections (algebraic,
holomorphic, C∞) of L.

In the other direction, if L is a rank 1 locally free OX -module, first make LD and the OX -algebra,
SymOX

(LD), where
SymOX

(LD) =
∐

n≥0

(LD)⊗n/(a⊗ b− b⊗ a).

On a small enough open, U ,
SymOX

(LD) ↾ U = OU [T ],
so we form Spec(SymOX

(LD) ↾ U) ∼= U
∏

C1, and glue using the data for LD. We get the line bundle,
Spec(SymOX

(LD)).
Given a Cartier divisor, D = {(Uα, fα)}, we make the submodule, OX(D), ofMer(X) given on Uα by

OX(D) ↾ Uα =
1

fα
OX ↾ Uα ⊆Mer(X) ↾ Uα.

If {(Uα, gα)} also defines D (we may assume the covers are the same by refining the covers if necessary),
then there exist hα ∈ Γ(Uα,Mer(X)∗), with

fαhα = gα.

Then, the map ξ 7→ 1
hα
ξ takes 1

fα
to 1

gα
; so, 1

fα
and 1

gα
generate the same submodule ofMer(X) ↾ Uα. On

Uα ∩ Uβ , we have
fα
fβ
∈ Γ(Uα ∩ Uβ ,O∗

X),

and as
fα
fβ
· 1

fα
=

1

fβ
,

we get
1

fα
OUα ↾ Uα ∩ Uβ =

1

fβ
OUβ

↾ Uα ∩ Uβ .

Consequently, our modules agree on the overlaps and so, OX(D) is a rank 1, locally free subsheaf ofMer(X).

Say D and E are Cartier divisors and D ∼ E. So, there is a global meromorphic function,
f ∈ Γ(X,Mer(X)∗) and on Uα,

fαf = gα.

Then, the map ξ 7→ 1
f ξ is an OX -isomorphism

OX(D) ∼= OX(E).

Therefore, we get a map from Cl(X) to the invertible submodules ofMer(X).

Given an invertible submodule, L, of Mer(X), locally, on U , we have L ↾ U = 1
fU
OU ⊆ Mer(X) ↾ U .

Thus, {(U, fU )} gives a C-divisor describing L. Suppose L andM are two invertible submodules ofMer(X)
and L ∼=M; say ϕ : L →M is an OX -isomorphism. Locally (possibly after refining covers), on Uα, we have

L ↾ Uα ∼=
1

fα
OUα and M ↾ Uα ∼=

1

gα
OUα .

So, ϕ : L ↾ Uα →M ↾ Uα is given by some τα such that

ϕ
( 1

fα

)
= τα

1

gα
.
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Consequently, ϕα ↾ Uα is multiplication by τα and ϕβ ↾ Uβ is multiplication by τβ . Yet ϕα ↾ Uα and ϕβ ↾ Uβ
agree on Uα ∩ Uβ, so τα = τβ on Uα ∩ Uβ . This shows that the τα patch and define a global τ such that

τ ↾ Uα = τα = gαϕ
( 1

fα

)
and τ ↾ Uβ = τβ = gβϕ

( 1

fβ

)

on overlaps. Therefore, we can define a global Φ via

Φ = gαϕ
( 1

fα

)
∈Mer(X),

and we find ξ 7→ 1
Φ ξ gives the desired isomorphism.

Theorem 3.5 If X is an algebraic variety (or holomorphic or C∞ variety) then there is a canonical map,
CDiv(X) −→ rank 1, locally free submodules ofMer(X). It is surjective. Two Cartier divisors D and E are
rationally equivalent iff the corresponding invertible sheaves OX(D) and OX(E) are (abstractly) isomorphic.
Hence, there is an injection of the class group, Cl(X) into the group of rank 1, locally free OX-submodules
of Mer(X) modulo isomorphism. If X is an algebraic variety and we use algebraic functions and if X is
irreducible, then every rank 1, locally free OX-module is an OX(D). The map D 7→ OX(D) is just the
connecting homomorphism in the cohomology sequence,

H0(X,DX)
δ−→ H1(X,O∗

X).

Proof . Only the last statement needs proof. We have the exact sequence

0 −→ O∗
X −→Mer(X)∗ −→ DX −→ 0.

Apply cohomology (we may use the Z-topology, by the comparison theorem): We get

Γ(X,Mer(X)∗) −→ CDiv(X) −→ Pic(X) −→ H1(X,Mer(X)∗).

But, X is irreducible and in the Z-topologyMer(X) is a constant sheaf. As constant sheaves are flasque,
Mer(X) is flasque, which implies thatH1(X,Mer(X)∗) = (0). Note that this shows that there is a surjection
CDiv(X) −→ Pic(X).

How is δ defined? Given D ∈ H0(X,DX) = CDiv(X), if {(Uα, fα)} is a local lifting of D, the map δ
associates the cohomology class [fβ/fα], where fβ/fα is viewed as a 1-cocycle on O∗

X . On the other hand,
when we go through the construction of OX(D), we have the isomorphisms

OX(D) ↾ Uα =
1

fα
OUα

∼= OUα ⊇ OUα ∩ OUβ
(mult. by fα)

and

OX(D) ↾ Uβ =
1

fβ
OUβ

∼= OUβ
⊇ OUα ∩ OUβ

(mult. by fβ)

and we see that the transition function, gβα, on OUα ∩ OUβ
is nonother that multiplication by fβ/fα. But

then, both OX(D) and δ(D) are line bundles defined by the same transition functions (multiplication by
fβ/fα) and δ(D) = OX(D).

Say D = {(Uα, fα)} is a Cartier divisor on X . Then, the intuition is that the geometric object associated
to D is

(zeros of fα − poles of fα) on Uα.

This leads to saying that the Cartier divisor D is an effective divisor iff each fα is holomorphic on Uα. In this
case, fα = 0 gives on Uα a locally principal, codimension 1 subvariety and conversely. Now each subvariety,
V , has a corresponding sheaf of ideals, IV . If V is locally principal, given by the fα’s, then IV ↾ Uα =
fαOX ↾ Uα. But, fαOX ↾ Uα is exactly OX(−D) on Uα if D = {(Uα, fα)}. Hence, IX = OX(−D). We get
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Proposition 3.6 If X is an algebraic variety, then the effective Cartier divisors on X are in one-to-one
correspondence with the locally principal codimension 1 subvarieties of X. If V is one of the latter and if D
corresponds to V , then the ideal cutting out V is exactly OX(−D). Hence

0 −→ OX(−D) −→ OX −→ OV −→ 0 is exact.

What are the global sections of OX(D)?

Such sections are holomorphic maps σ : X → OX(D) such that π ◦ σ = id (where π : OX(D)→ X is the
canonical projection associated with the bundle OX(D)). If D is given by {(Uα, fα)}, the diagram

OX(D) ↾ Uα fαOX ↾ Uα
×fα // OX ↾ Uα

OX(D) ↾ Uα ∩ Uβ
?�

OO

OX ↾ Uα ∩ Uβ
gβα
��

?�

OO

OX(D) ↾ Uβ ∩ Uα� _

��

OX ↾ Uβ ∩ Uα� _

��
OX(D) ↾ Uβ fβOX ↾ Uβ

×fβ // OX ↾ Uβ

implies that
σα = fασ : Uα −→ OX ↾ Uα and σβ = fβσ : Uβ −→ OX ↾ Uβ .

However, we need
σβ = gβασα,

which means that a global section, σ, is a family of local holomorphic functions, σα, so that σβ = gβασα.But,
as gβα = fβ/fα, we get

σα
fα

=
σβ
fβ

on Uα ∩ Uβ.

Therefore, the meromorphic functions, σα/fα, patch and give a global meromorphic function, Fσ. We have

fα(Fσ ↾ Uα) = σα

a holomorphic function. Therefore, (fα ↾ Uα) + (Fσ ↾ Uα) ≥ 0, for all α and as the pieces patch, we get

D + (Fσ) ≥ 0.

Conversely, say F ∈ Γ(X,Mer(X)) and D+(F ) ≥ 0. Locally on Uα, we haveD = {(Uα, fα)} and (fαF ) ≥ 0.
If we set σα = fαF , we get a holomorphic function on Uα. But,

gβασα =
fβ
fα

fαF = fβF = σβ ,

so the σα’s give a global section of OX(D).

Proposition 3.7 If X is an algebraic variety, then

H0(X,OX(D)) = {0} ∪ {F ∈ Γ(X,Mer(X)) | (F ) +D ≥ 0}.
in particular,

|D| = P(H0(X,OX(D))) = {E | E ≥ 0 and E ∼ D},
the complete linear system of D, is naturally a projective space and H0(X,OX(D)) 6= (0) iff there is some
Cartier divisor, E ≥ 0, and E ∼ D.
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Recall that an OX -module, F , is a Z-QC (resp. C-QC, here QC = quasi-coherent) iff everywhere locally,
i.e., for small (Z, resp. C) open, U , there exist sets I(U) and J(U) and some exact sequence

(OX ↾ U)I(U) ϕU−→ (OX ↾ U)J(U) −→ F ↾ U −→ 0.

Since OX is coherent (usual fact that the rings Γ(Uα,OX) = Aα, for Uα open affine, are noetherian) or
Oka’s theorem in the analytic case, a sheaf, F , is coherent iff it is QC and finitely generated iff it is finitely
presented, i.e., everywhere locally,

(OX ↾ U)q
ϕU−→ (OX ↾ U)q −→ F ↾ U −→ 0 is exact. (†)

(Here, p, q are functions of U and finite).

In the case of the Zariski topology, F is QC iff for every affine open, U , the sheaf F ↾ U has the form M̃ ,
for some Γ(U,OX)-module, M . The sheaf M̃ is defined so that, for every open W ⊆ U ,

Γ(W, M̃) =




σ : W −→

⋃

ξ∈W

Mξ

∣∣∣∣∣∣∣

(1) σ(ξ) ∈Mξ

(2) (∀ξ ∈W )(∃V (open) ⊆W, ∃f ∈M, ∃g ∈ Γ(V,OX))(g 6= 0 on V )

(3) (∀y ∈ V )
(
σ(y) = image

(
f
g

)
inMy

)
.





Proposition 3.8 Say X is an algebraic variety and F is an OX-module. Then, F is Z-coherent iff F is
C-coherent.

Proof . Say F is Z-coherent, then locally Z, the sheaf F satisfies (†). But, every Z-open is also C-open, so F
is C-coherent.

Now, assume F is C-coherent, then locally C, we have (†), where U is C-open. The map ϕU is given by
a p× q matrix of holomorphic functions on U . Each is algebraically defined on a Z-open containing U . The
intersection of these finitely many Z-opens is a Z-open, Ũ and Ũ ⊇ U . So, we get a sheaf

F̃ ↾ Ũ = Coker ((OX ↾ Ũ)q −→ (OX ↾ Ũ)p).

The sheaves F̃ ↾ Ũ patch (easy–DX) and we get a sheaf, F̃ . On U , the sheaf F̃ is equal to F , so F̃ = F .

We have the continuous map XC
id−→ XZar and we get (see Homework)

Theorem 3.9 (Comparison Theorem for cohomology of coherent sheaves) If X is an algebraic variety and
F is a coherent OX-module, then the canonical map

Hq(XZar,F) −→ Hq(XC,F)

is an isomorphism for all q ≥ 0.

Say V is a closed subvariety of X = PnC. Then, V is given by a coherent sheaf of ideals of OX , say IV
and we have the exact sequence

0 −→ IV −→ OX −→ OV −→ 0,

where OV is the sheaf of germs of holomorphic functions on V and has support on V . If V is a hypersurface,
then V is given by f = 0, where f is a form of degree d. If D is a Cartier divisor of f , then IV = OX(−D).
Similarly another hypersurface,W , is given by g = 0 and if deg(f) = deg(g), then f/g is a global meromorphic
function on Pn. Therefore, (f/g) = V −W , which implies V ∼ W . In particular, g = (linear form)d and
so, V ∼ dH , where H is a hyperplane. Therefore the set of effective Cartier disisors of Pn is in one-to-one
correspondence with forms of varying degrees d ≥ 0 and

Cl(Pn) ∼= Z,
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namely, V 7→ deg(V ) = δ(V ) (our old notation) = (deg(f)) ·H ∈ H2(Pn,Z). We deduce,

Pic0(Pn) = (0) and Pic(Pn) = Cl(Pn) = Z.

Say V is a closed subvariety of PnC, then we have the exact sequence

0 −→ IV −→ OPn −→ OV −→ 0.

Twist with OPn(d), i.e., tensor with OPn(d) (Recall that by definition, OPn(d) = OPn(dH), where H is a
hyperplane). We get the exact sequence

0 −→ IV (d) −→ OPn(d) −→ OV (d) −→ 0

(with IV (d) = IV ⊗OPn(d) and OV (d) = OV ⊗OPn(d)) and we can apply cohomology, to get

0 −→ H0(Pn, IV (d)) −→ H0(Pn,OPn(d)) −→ H0(V,OV (d)) is exact,

as OV (d) has support V . Now,

H0(Pn,OPn(d)) = {0} ∪ {E ≥ 0, E ∼ dH}.

If E =
∑
Q aQQ, where dim(Q) = n − 1 and aQ ≥ 0, we set deg(E) =

∑
Q aQdeg(Q). If E ≥ 0, then

deg(E) ≥ 0, from which we deduce

H0(Pn,OPn(d)) =

{
(0) if d < 0

C(
n+d
d ) i.e., all forms of degree d in X0, . . . , Xn, if d ≥ 0.

We deduce,
H0(Pn, IV (d)) = {all forms of degree d vanishing on V } ∪ {0},

that is, all hypersurfaces, Z ⊆ Pn, with V ⊆ Z (and 0).

Consequently, to give ξ ∈ H0(Pn, IV (d)) is to give a hypersurface of Pn containing V . Therefore,

H0(Pn, IV (d)) = (0) iff no hypersurface of degree d contains V .

(In particular, V is nondegenerate iff H0(Pn, IV (d)) = (0).)

We now compute the groups Hq(Pn,OPn(d)), for all n, q, d. First, consider d ≥ 0 and use induction on
n. For P0, we have

Hq(P0,OP0(d)) =

{
(0) if q > 0
C if q = 0.

Next, P1. The sequence
0 −→ OP1(−1) −→ OP1 −→ OP0 −→ 0 is exact.

By tensoring with OP1(d), we get

0 −→ OP1(d− 1) −→ OP1(d) −→ OP0(d) −→ 0 is exact

by taking cohomology, we get

0 // H0(P1,OP1(d− 1))
α // H0(P1,OP1(d))

β // H0(P0,OP0(d)) EDBC
GF@A

// H1(P1,OP1(d− 1)) // H1(P1,OP1(d)) // 0
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since H1(P0,OP0(d)) = (0), by hypothesis. Now, if we pick coordinates, the embedding P0 →֒ P1 corresponds
to x0 = 0. Consequently, the map α is multiplication by x0 and the map β is x0 7→ 0. Therefore,

H1(P1,OP1(d− 1)) ∼= H1(P1,OP1(d)), for all d ≥ 0,

and we deduce
H1(P1,OP1(d)) ∼= H1(P1,OP1) = Cg = (0),

and H1(P1,OP1(−1)) = (0), too. We know that

H0(P1,OP1(d)) = Cd+1; d ≥ 0;

and we just proved that
H1(P1,OP1(d)) = (0); d ≥ −1.

In order to understand the induction pattern, let us do the case of P2. We have the exact sequence

0 −→ OP2(d− 1)
α−→ OP2(d)

β−→ OP1(d) −→ 0

and by taking cohomology, we get

0 // H0(P2,OP2(d− 1))
α // H0(P2,OP2(d))

β // H0(P1,OP1(d)) EDBC
GF@A

// H1(P2,OP2(d− 1)) // H1(P2,OP2(d)) // H1(P1,OP1(d)) EDBC
GF@A

// H2(P2,OP2(d− 1)) // H2(P2,OP2(d)) // 0

By the induction hypothesis, H1(P1,OP1(d)) = (0) if d ≥ −1, so

H1(P2,OP2(d− 1)) ∼= H1(P2,OP2(d)), for all d ≥ −1.
Therefore,

H1(P2,OP2(d)) ∼= H1(P2,OP2), for all d ≥ −2.
But, the dimension of the right hand side is h0,1 = 0 (the irregularity, h0,1, of P2 is zero). We conclude that

H1(P2,OP2(d)) = (0) for all d ≥ −2.

A similar reasoning applied to H2 shows

H2(P2,OP2(d)) ∼= H2(P2,OP2), for all d ≥ −2.

The dimension of the right hand side group is H0,2 = pg(P2) = 0, so we deduce

H2(P2,OP2(d)) = (0) for all d ≥ −2.

By induction, we get

H0(Pn,OPn(d)) =

{
C(

n+d
d ) if d ≥ 0

(0) if d < 0

and
Hq(Pn,OPn(d)) = (0) if d ≥ −n, for all q > 0.
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For the rest of the cases, we use Serre duality and the Euler sequence. Serre duality says

Hq(Pn,OPn(d))D ∼= Hn−q(Pn,OPn(−d)⊗ ΩnPn).

From the Euler sequence

0 −→ OPn −→
∐

n+1 times

OPn(1) −→ T 1,0
Pn −→ 0,

by taking the highest wedge, we get

n+1∧(∐

n+1

OPn(1)
)
∼=

n∧
T 1,0
Pn ⊗OPn ,

from which we conclude

(ΩnPn)D ∼=
n+1∧(∐

n+1

OPn(1)
)
∼= OPn(n+ 1).

Therefore
ωPn = ΩnPn

∼= OPn(−(n+ 1)) = OPn(KPn),

where KPn is the canonical divisor on Pn, by definition. Therefore, we have

Hq(Pn,OPn(d)) ∼= Hn−q(Pn,OPn(−d− n− 1))D.

If 1 ≤ q ≤ n− 1 and d ≥ −n, then we know that the left hand side is zero. As 1 ≤ n− q ≤ n− 1, it follows
that

Hq(Pn,OPn(−d− n− 1)) = (0) when d ≥ −n.
Therefore,

Hq(Pn,OPn(d)) = (0) for all d and all q with 1 ≤ q ≤ n− 1.

We also have
Hn(Pn,OPn(d))D ∼= H0(Pn,OPn(−d− n− 1)),

and the right hand side is (0) if −d − (n + 1) < 0, i.e., d ≥ −n. Thus, if d ≤ −(n + 1), then we have
δ = −d− (n+ 1) ≥ 0, so

Hn(Pn,OPn(d)) ∼= H0(Pn,OPn(δ))D = C(
n+δ
δ ), where δ = −(d+ n+ 1).

The pairing is given by
1

f
⊗ f

x0x1 · · ·xn
7→
∫

Pn

dx0 ∧ · · · ∧ dxn
x0 · · ·xn

,

where deg(f) = −d, with d ≤ −n− 1. Summarizing all this, we get

Theorem 3.10 The cohomology of line bundles on Pn satisfies

Hq(Pn,OPn(d)) = (0) for all n, d and all q with 1 ≤ q ≤ n− 1.

Furthermore,

H0(Pn,OPn(d)) = C(
n+d
d ), if d ≥ 0, else (0),

and
Hn(Pn,OPn(d)) = C(

n+δ
δ ), where δ = −(d+ n+ 1) and d ≤ −n− 1, else (0).

We also proved that
ωPn = OPn(−(n+ 1)) = OPn(KPn).
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3.2 Chern Classes and Segre Classes

The most important spaces (for us) are the Kähler manifolds and unless we explicitly mention otherwise, X
will be Kähler. But, we can make Chern classes if X is worse.

Remark: The material in this Section is also covered in Hirzebruch [8] and under other forms in Chern [4],
Milnor and Stasheff [11], Bott and Tu [3], Madsen and Tornehave [9] and Griffith and Harris [6].

Let X be admissible iff

(1) X is σ-compact , i.e.,

(a) X is locally compact and

(b) X is a countable union of compacts.

(2) The combinatorial dimension of X is finite.

Note that (1) implies that X is paracompact. Consequently, everthing we did on sheaves goes through.

Say X is an algebraic variety and F is a QC OX -module. Then, H0(X,F) encodes the most important
geometric information contained in F . For example, F = a line bundle or a vector bundle, then

H0(X,F) = space of global sections of given type.

If F = IV (d), where V ⊆ Pn, then

H0(X,F) = hypersurfaces containing V .

This leads to the Riemann-Roch (RR) problem.

Given X and a QC OX -module, F ,

(a) Determine when H0(X,F) has finite dimension and

(b) If so, compute the dimension, dimC H
0(X,F).

Some answers:

(a) Finiteness Theorem: If X is a compact, complex, analytic manifold and F is a coherent OX -module,
then Hq(X,F) has finite dimension for every q ≥ 0.

(b) It was noticed in the fifties (Kodaira and Spencer) that if {Xt}t∈S is a reasonable family of compact
algebraic varieties (C-analytic manifolds), (S is just a R-differentiable smooth manifold and the Xt are
a proper flat family), then

χ(Xt,OXt) =

dimXt∑

i=0

(−1)idim(Hi(Xt,OXt))

was independent of t.

The Riemann-Roch problem goes back to Riemann and the finiteness theorem goes back to Oka, Cartan-
Serre, Serre, Grauert, Grothendieck, ... .

Examples. (1) Riemann (1850’s): If X is a compact Riemann surface, then

χ(X,OX) = 1− g
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where g is the number of holes of X (as a real surface).

(2) Max Noether (1880’s): If X is a compact, complex surface, then

χ(X,OX) =
1

12
(K2

X + top Euler char.(X)).

(Here, K2
X = OX(KX) ∪ OX(KX) in the cohomology ring, an element of H4(X,Z).)

(3) Severi, Eger-Todd (1920, 1937) conjectured:

χ(X,OX) = some polynomial in the Euler-Todd class of X,

for X a general compact algebraic, complex manifold.

(4) In the fourties and fifties (3) was reformulated as a statement about Chern classes–no proof before
Hirzebruch.

(5) September 29, 1952: Serre (letter to Kodaira and Spencer) conjectured: If F is a rank r vector bundle
over the compact, complex algebraic manifold, X , then

χ(X,F) = polynomial in the Chern classes of X and those of F .

Serre’s conjecture (5) was proved by Hirzebruch a few months later.

To see this makes sense, we’ll prove

Theorem 3.11 (Riemann-Roch for a compact Riemann Surface and for a line bundle) If X is a compact
Riemann surface and if L is a complex analytic line bundle on X, then there is an integer, deg(L), it is
deg(D) where L ∼= OX(D), where D is a Cartier divisor on X, and

dimCH
0(X,L)− dimCH

0(X,ωX ⊗ LD) = deg(L) + 1− g

where g = dimH0(X,ωX) = dimH1(X,OX) is the genus of X.

Proof . First, we know X is an algebraic variety (a curve), by Riemann’s theorem (see Homework). From
another Homework (from Fall 2003), X is embeddable in PNC , for some N , and by GAGA (yet to come!), L
is an algebraic line bundle. It follows that L = OX(D), for some Cartier divisor, D. Now, if f ∈ Mer(X),
we showed (again, see Homework) that f : X → P1

C = S2 is a branched covering map and this implies that

#(f−1(∞)) = #(f−1(0)) = degree of the map,

so deg(f) = #(f−1(0))−#(f−1(∞)) = 0. As a consequence, if E ∼ D, then deg(E) = deg(D) and the first
statement is proved. Serre duality says

H0(X,ωX ⊗ LD) ∼= H1(X,L)D.

Thus, the left hand side of the Riemann-Roch formula is just χ(X,OX(D)), where L = OX(D). Observe that
χ(X,OX(D)) is an Euler function in the bundle sense (this is always true of Euler-Poincaré characteristics).
Look at any point , P , on X , we have the exact sequence

0 −→ OX(−P ) −→ OX −→ κP −→ 0,

where κP is the skyscraper sheaf at P , i.e.,

(κP )x =
{
(0) if x 6= P
C if x = P .
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If we tensor with OX(D), we get the exact sequence

0 −→ OX(D − P ) −→ OX(D) −→ κP ⊗OX(D) −→ 0.

When we apply cohomology, we get

χ(X,κP ⊗OX(D)) + χ(X,OX(D − P )) = χ(X,OX(D)).

There are three cases.

(a)D = 0. The Riemann-Roch formula is a tautology, by definition of g and the fact thatH0(X,OX) = C.

(b) D > 0. Pick any P appearing in D. Then, deg(D−P ) = deg(D)− 1 and we can use induction. The
base case holds, by (a). Using the induction hypothesis, we get

1 + deg(D − P ) + 1− g = χ(X,OX(D)),

which says
χ(X,OX(D)) = deg(D) + 1− g,

proving the induction step when D > 0.

(c) D is arbitrary. In this case, write D = D+ −D−, with D+, D− ≥ 0; then

0 −→ OX −→ OX(D−) −→ κD− −→ 0 is exact

and
deg(κD−) = deg(D−) = χ(X,OX(D−)).

If we tensor the above exact sequence with OX(D), we get

0 −→ OX(D) −→ OX(D +D−) −→ κD− −→ 0 is exact.

When we apply cohomology, we get

χ(X,OX(D)) + deg(D−) = χ(X,OX(D +D−)) = χ(X,OX(D+)).

However, by (b), we have χ(X,OX(D+)) = deg(D+) + 1− g, so we deduce

χ(X,OX(D)) = deg(D+)− deg(D−) + 1− g = deg(D) + 1− g,

which finishes the proof.

We will show:

(a) L possesses a class, c1(L) ∈ H2(X,Z).

(b) IfX is a Riemann surface and [X ] ∈ H2(X,Z) = Z is its fundamental class, then deg(L) = c(L)[X ] ∈ Z.
Then, the Riemann-Roch formula becomes

χ(X,L) = c1(L)[X ] + 1− g

=
[
c1(L) +

1

2
(2− 2g)

]
[X ]

=
[
c1(L) +

1

2
c1(T

1,0
X )

]
[X ].

This is Hirzebruch’s form of the Riemann-Roch theorem for Riemann surfaces and line bundles.

What about vector bundles?
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Theorem 3.12 (Atiyah-Serre on vector bundles) Let X be either a compact, complex C∞-manifold or an
algebraic variety. If E is a rank r vector bundle on X, of class C∞ in case X is just C∞, algebraic if X is
algebraic, in the latter case assume E is generated by its global sections (that is, the map, Γalg(X,OX(E)) −→
Ex, given by σ 7→ σ(x), is surjective for all x), then, there is a trivial bundle of rank r−d (where d = dimCX)
denoted Ir−d, and a bundle exact sequence

0 −→ Ir−d −→ E −→ E′′ −→ 0

and the rank of the bundle E′′ is at most d.

Proof . Observe that if r < d, there is nothing to prove and rk(E′′) = rk(E) and also if r = d take (0) for
the left hand side. So, we may assume r > d. In the C∞-case, we always have E generated by its global
C∞-sections (partition of unity argument).

Pick x, note dimEx = r, so there is a finite dimensional subspace of Γ(X,OX(E)) surjecting onto Ex.
By continuity (or algebraicity), this holds C-near (resp. Z-near) x. Cover by these opens and so

(a) In the C∞-case, finitely many of these opens cover X (recall, X is compact).

(b) In the algebraic case, again, finitely many of these opens cover X , as X is quasi-compact in the
Z-topology.

Therefore, there exists a finite dimensional space, W ⊆ Γ(X,OX(E)), and the map W −→ Ex given by
σ 7→ σ(x) is surjective for all x ∈ X . Let

ker(x) = Ker (W −→ Ex).

Consider the projective space P(ker(x)) →֒ P = P(W ). Observe that dimker(x) = dimW − r is independent
of x. Now, look at

⋃
x∈X P(ker(x)) and let Z be its Z-closure. We have

dimZ = dimX + dimW − r − 1 = dimW + d− r − 1,

so, codim(Z →֒ P) = r− d. Thus, there is some projective subspace, T , of P with dimT = r− d− 1, so that

T ∩ Z = ∅.

Then, T = P(S), for some subspace, S, of W (dimS = r − d). Look at

X
∏

S = X
∏

Cr−d = Ir−d.

Send Ir−d to E via (x, s) 7→ s(x) ∈ E. As T ∩Z = ∅, the value s(x) is never zero. Therefore, for any x ∈ X ,
Im(Ir−d →֒ E) has full rank; set E′′ = E/Im((Ir−d →֒ E) = a vector bundle of rank d, then

0 −→ Ir−d −→ E −→ E′′ −→ 0 is exact

as a bundle sequence.

Remarks:

(a) If 0 −→ E′ −→ E −→ E′′ −→ 0 is bundle exact, then

c1(E) = c1(E
′) + c1(E

′′).

(b) If E is the trivial bundle, Ir, then cj(E) = 0, for j = 1, . . . , r.

(c) If rk(E) = r, then c1(E) = c1(
∧r E).
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In view of (a)–(c), Atiyah-Serre can be reformulated as

c1(E) = c1

(rkE∧
E
)
= c1(E

′′) = c1

(rkE′′∧
E′′
)
.

We now use the Atiyah-Serre theorem to prove a version of Riemann-Roch first shown by Weil.

Theorem 3.13 (Riemann-Roch on a Riemann surface for a vector bundle) If X is a compact Riemann
surface and E is a complex analytic rank r vector bundle on X, then

dimCH
0(X,OX(E))− dimCH

1(X,ωX ⊗OX(E)D) = χ(X,OX) = c1(E) + rk(E)(1 − g).

Proof . The first equality is just Serre Duality. As before, by Riemann’s theorem X is projective algebraic
and by GAGA, E is an algebraic vector bundle. Now, as X →֒ PN , it turns out (Serre) that for δ >> 0, the
“twisted bundle”, E ⊗ OX(δ) (= E ⊗ O⊗δ

X ) is generated by its global holomorphic sections. We can apply
Atiyah-Serre to E ⊗OX(δ). We get

0 −→ Ir−1 −→ E ⊗OX(δ) −→ E′′ −→ 0 is exact,

where rk(E′′) = 1. If we twist with OX(−δ), we get the exact sequence

0 −→
∐

r−1

OX(−δ) −→ E −→ E′′(−δ) −→ 0.

(Here, E′′(−δ) = E′′ ⊗OX(−δ).) Now, use induction on r. The case r = 1 is ordinary Riemann-Roch for
line bundles. Assume the induction hypothesis for r − 1. As χ is an Euler function, we have

χ(X,OX(E)) = χ(X,E′′(−δ)) + χ
(∐

r−1

OX(−δ)
)
.

The first term on the right hand side is

c1(E
′′(−δ)) + 1− g,

by ordinary Riemann-Roch and the second term on the right hand side is

c1

(∐

r−1

OX(−δ)
)
+ (r − 1)(1− g).

by the induction hypothesis. We deduce that

χ(X,OX(E)) = c1(E
′′(−δ)) + c1

(∐

r−1

OX(−δ)
)
+ r(1 − g).

But, we know that

c1(E) = c1(E
′′(−δ)) + c1

(∐

r−1

OX(−δ)
)
,

so we conclude that
χ(X,OX(E)) = c1(E) + r(1 − g),

establishing the induction hypothesis and the theorem.

Remark: We can write the above as

χ(X,OX(E)) = c1(E) +
rk(E)

2
c1(T

1,0
X ),
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which is Hirzebruch’s form of Riemann-Roch.

We will need later some properties of χ(X,OX) and pg(X). Recall that pg(X) = dimCH
n(X,OX) =

dimCH
0(X,ΩnX), where ΩlX =

∧l
T 1,0
X . (The vector spaces H0(X,ΩlX) were what the Italian geometers (in

fact, all geometers) of the nineteenth century understood.)

Proposition 3.14 The functions χ(X,OX) and pg(X) are multiplicative on compact, Kähler manifolds,
i.e.,

χ
(
X
∏

Y,OX∏
Y

)
= χ(X,OX)χ(Y,OY )

pg

(
X
∏

Y
)

= pg(X)pg(Y ).

Proof . Remember that

dimCH
l(X,OX) = dimCH

0(X,ΩlX) = h0,l = hl,0.

Then,

χ(X,OX) =

n∑

j=0

(−1)jdimCH
0(X,ΩjX) =

n∑

j=0

(−1)jhj,0.

Also recall the Künneth formula

∐

p+p′=a
q+q′=b

Hq(X,ΩpX)⊗Hq′(X,Ωp
′

X) ∼= Hb
(
X
∏

Y,ΩaX
∏
Y

)
.

Set b = 0, then q = q′ = 0 and we get

∑

p+p′=a

hp,0(X)hp
′,0(Y ) = ha,0

(
X
∏

Y
)
.

Then,

χ(X,OX)χ(Y,OY ) =

(
m∑

r=0

(−1)rhr,0(X)

)(
n∑

s=0

(−1)shs,0(Y )

)

=

m+n∑

r,s=0

(−1)r+shr,0(X)hs,0(Y )

=

m+n∑

k=0

(−1)k
∑

r+s=k

hr,0(X)hs,0(Y )

=

m+n∑

k=0

(−1)khk(X
∏

Y ) = χ
(
X
∏

Y,OX∏
Y

)
.

The second statement is obvious from Künneth.

Next, we introduce Hirzebruch’s axiomatic approach.

Let E be a complex vector bundle on X , where X is one of our spaces (admissible). It will turn out that
E is a unitary bundle (a U(q)-bundle, where q = rk(E)).

Chern classes are cohomology classes, cl(E), satisfying the following axioms:
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Axiom (I). (Existence and Chern polynomial). If E is a rank q unitary bundle over X and X is
admissible, then there exist cohomology classes, cl(E) ∈ H2l(X,Z), the Chern classes of E and we set

c(E)(t) =

∞∑

l=0

cl(E)tl ∈ H∗(X,Z)[[t]],

with c0(E) = 1.

As dimC X = d <∞, we get cl(E) = 0 for l > d, so C(E)(t) is in fact a polynomial in H∗(X,Z)[t] called
the Chern polynomial of E where deg(t) = 2.

Say π : Y → X and E is a U(q)-bundle over X , then we have two maps

H∗(X,Z)
π∗−→ H∗(Y,Z) and H1(X,U(q))

π∗−→ H1(Y,U(q)).

Axiom (II). (Naturality). For everyE, a U(q)-bundle onX and map, π : Y → X , (withX,Y admissible),
we have

c(π∗E)(t) = π∗(c(E))(t),

as elements of H∗(Y,Z)[[t]].

Axiom (III). (Whitney coproduct axiom). If E, a U(q)-bundle is a coproduct (in the C or C∞-sense),

E =

rk(E)∐

j=1

Ej

of U(1)-bundles, then

c(E)(t) =

rk(E)∏

j=1

c(Ej)(t).

Axiom (IV). (Normalization). If X = PnC andOX(1) is the U(1)-bundle corresponding to the hyperplane
divisor, H , on PnC, then

c(OX(1))(t) = 1 +Ht,

where H is considered in H2(X,Z).

Remark: If i : Pn−1
C →֒ PnC, then

i∗OPn(1) = OPn−1(1)

and i∗(H) in H2(Pn−1
C ,Z) is H

P
n−1
C

. By Axiom (II) and Axiom (IV)

i∗(1 +HPn
C
t) = i∗(c(OPn)(t)) = c(i∗(OPn)(t)) = 1 +H

P
n−1
C

.

Therefore, we can use any n to normalize.

Some Remarks on bundles. First, on Pn = PnC: Geometric models of OPn(±1).
Consider the map

Cn+1 − {0} −→ Pn.

If we blow up 0 in Cn+1, we get B0(Cn+1) as follows: In Cn+1
∏

Pn, look at the subvariety given by

{〈〈z〉; (ξ)〉 | ziξj = zjξi, 0 ≤ i, j ≤ n}.



186 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

By definition, this is B0(Cn+1), an algebraic variety over C. We have the two projections

B0(Cn+1)

pr1

yysss
ss
ss
ss pr2

$$I
II

II
II

II

Cn+1 Pn.

Look at the fibre, pr−1
1 (〈z〉) over z ∈ Cn+1. There are two cases:

(a) 〈z〉 = 0, in which case, pr−1
1 (〈z〉) = Pn.

(b) 〈z〉 6= 0, so, there is some j with zj 6== 0. We get ξi =
zi
zj
ξj , for all i, which implies:

(α) ξj 6= 0.

(β) All ξi are determined by ξj .

(γ)
ξi
ξj

=
zi
zj

.

This implies

(ξ) =

(
ξ0
ξj

:
ξ1
ξj

: · · · : 1 : · · · ξn
ξj

)
=

(
z0
zj

:
z1
zj

: · · · : 1 : · · · zn
zj

)
.

Therefore, pr−1
1 (〈z〉) = 〈〈z〉; (z)〉, a single point.

Let us now look ar pr−1
2 (ξ), for (ξ) ∈ Pn. Since (ξ) ∈ Pn, there is some j such that ξj 6= 0. A point

〈〈z〉; (ξ)〉 above (ξ) is given by all 〈z0 : z1 : · · · : zn〉 so that

zi =
ξi
ξj
zj.

Let zj = t, then the fibre above ξ is the complex line

z0 =
ξ0
ξj
t, z1 =

ξ1
ξj
t, · · · , zj = t, · · · , zn =

ξn
ξj
t.

We get a line family over Pn. Thus, pr2 : B0(Cn+1)→ Pn is a line family.

(A) What kinds of maps, σ : Pn → B0(Cn+1), exist with σ holomorphic and pr2 ◦ σ = id?

If σ exists, then pr1 ◦ σ : Pn → Cn+1 is holomorphic; this implies that pr1 ◦ σ is a constant map. But,
σ(ξ) belongs to a line through (ξ) = (ξ0 : · · · : ξn), for all (ξ), yet pr1 ◦ σ = const, so this point must lie on
all line. This can only happen if σ(ξ) = 0 in the line through ξ.

(B) I claim B0(Cn+1) is locally trivial, i.e., a line bundle. If so, (A) says B0(Cn+1) has no global
holomorphic sections and we will know that B0(Cn+1) = OPn(−q), for some q > 0.

To show that B0(Cn+1) is locally trivial over Pn, consider the usual cover, U0, . . . , Un, of Pn (recall,
Uj = {(ξ) ∈ Pn | ξj 6= 0}). If v ∈ B0(Cn+1) ↾ Uj , then v = 〈〈z〉; (x)〉, with ξj 6= 0. Define ϕj as the map

v 7→ 〈(ξ); zj〉 ∈ Uj
∏

C

and the backwards map

〈(ξ); t〉 ∈ Uj
∏

C 7→ 〈〈z〉; (ξ)〉, where zi =
ξi
ξj
t, i = 0, . . . , n.
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The reader should check that the point of Cn+1
∏

Pn so constructed is in B0(Cn+1) and that the maps are
inverses of one another.

We can make a section, σj , of B0(Cn+1) ↾ Uj , via

σ((ξ)) =

〈〈
ξ0
ξj
, . . . ,

ξj−1

ξj
, 1, . . . ,

ξn
ξj

〉
; (ξ)

〉
,

and we see that ϕ(σ((ξ))) = 〈((ξ); 1〉 ∈ Uj
∏

C, which shows that σ is a holomorphic section which is never

zero. The transition function, gji , renders the diagram

B0 ↾ Ui
ϕi // Ui

∏
C

gji

��

B0 ↾ Ui ∩ Uj
?�

OO

� _

��
B0 ↾ Uj

ϕj // Uj
∏

C

commutative. It follows that

ϕj(v) = gji (ϕi(v) = gji (〈(ξ); zi〉) = 〈(ξ); zj〉

and we conclude that gji (zi) = zj , which means that gji is multiplication by zj/zi = ξj/ξi.

We now make another bundle on Pn, which will turn out to be OPn(1). Embed Pn in Pn+1 by viewing
Pn as the hyperplane defined by zn+1 = 0 and let P = (0: · · · : : 1) ∈ Pn+1. Clearly, P /∈ Pn. We have the
projection, π : (Pn+1 − {P})→ Pn, from P onto Pr, where

π(z0 : · · · : zn : zn+1) = (z0 : · · · : zn).

We get a line family over Pn, where the fibre over Q ∈ Pn is just the line lPQ (since P /∈ Pn, this line is
always well defined). The parametric equations of this line are

(u : t) 7→ (uz0 : · · · : uzn : t),

where (u : t) ∈ P1 and Q = (z0 : · · · : zn). When t = 0, we get Q and hen u = 0, we get P . Next, we prove
that Pn+1 − {P} is locally trivial. Make a section, σj , of π over Uj ⊆ Pn by setting

σj((ξ)) = (ξ : ξj).

This points corresponds to the point (1 : ξj) on lPQ and ξj 6= 0, so it is well-defined. As Q is the point of
lPQ for which t = 0, we have σj((ξ)) 6= Q. We make an isomorphism, ψj : (Pn+1 − {P}) ↾ Uj → Uj

∏
C, via

(z0 : · · · : zj−1 : zj : zj+1 : · · · : zn+1) 7→
(
z0 : · · · : zn :

zn+1

zj

)
.

Observe that
sj((ξ)) = ψj ◦ σj((ξ)) = ψj(ξ : ξj) = (ξ : 1) ∈ Uj

∏
C.

For any (z0 : · · · : zn+1) ∈ (Pn+1 − {P}) ↾ Ui ∩ Uj , we have zi 6= 0 and zj 6= 0; moreover

ψi(z0 : · · · : zn+1) =

(
z0 : · · · : zn :

zn+1

zi

)
and ψj(z0 : · · · : zn+1) =

(
z0 : · · · : zn :

zn+1

zj

)
.



188 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

This means that the transition function, hji , on Ui ∩Uj , is multiplication by zi/zj. These are the inverses of
the transition functions of our previous bundle, B0(Cn+1), which means that the bundle Pn+1 − {P} is the
dual bundle of B0(Cn+1). We will use geometry to show that the bundle Pn+1 − {P} is in fact OPn(1).

Look at the hyperplanes, H , of Pn+1. They are given by linear forms,

H :

n+1∑

j=0

ajZj = 0.

The hyperplanes through P form a Pn, since P ∈ H iff an+1 = 0. The rest of the hyperplanes are in the
affine space, Cn+1 = Pn+1 − Pn. Indeed such hyperplanes, H(α), are given by

H(α) :
n∑

j=0

αjZj + Zn+1 = 0, (α0, . . . , an) ∈ Cn+1.

Given any hyperplane, H(α) (with α ∈ Cn+1), find the intersection, σ(α)(Q), of the line lPQ with H(α). Note
that σ(α) is a global section of Pn+1 − {P}. The affine line obtained from lPQ by deleting P is given by

τ 7→ (z0 : · · · : zn : τ),

where Q = (z0 : · · · : zn). This lines cuts H(α) iff

n∑

j=0

αjzj + τ = 0,

so we deduce τ = −∑n
j=0 αjzj and

σ(α)(z0 : · · · : zn) =
(
z0 : · · · : zn : −

n∑

j=0

αjzj

)
,

which means that σ(α) is a holomorphic section. Now, consider a holomorphic section, σ : Pn → (Pn+1 −
{P}) →֒ Pn+1, of π : (Pn+1 − {P}) → Pn. As σ is an algebraic map and Pr is proper, σ(Pn) is Z-closed,
irreducible and has dimension n in Pn+1. Therefore, σ(Pn) is a hypersurface. But, our map factors through
Pn+1 − {P}, so σ(Pn) ⊆ Pn+1 − {P}. This hypersurface has some degree, d, but all the lines lPQ cut σ(Pn)
in a single point, which implies that d = 1, i.e., σ(Pn) is a hyperplane not through P . Putting all these facts
together, we have shown that space of global sections Γ(Pn,Pn+1−{P}) is in one-to-one correspondence with
the hyperplanes H(α), i.e., the linear forms

∑n
j=0 αjzj (a Cn+1). Therefore, we conclude that Pn+1−{P} is

OPn(1). Since B0(Cn+1) is the dual of Pn+1 − {P}, we also conclude that B0(Cn+1) = OPn(−1).
In order to prove that Chern classes exist, we need to know more about bundles. The reader may wish to

consult Atiyah [2], Milnor and Stasheff [11], Hirsh [7], May [10] or Morita [12] for a more detailed treatment
of bundles.

Recall that if G is a group, then H1(X,G) classifies the G-torsors over X , e.g., (in our case) the fibre
bundles, fibre F , over X (your favorite topology) with Aut(F ) = G. When F = G and G acts by left transla-
tion to make it Aut(F ), the fibre bundle is called a principal bundle. Look at ϕ : G′ → G, a homomorphism
of groups. Now, we know that we get a map

H1(X,G′) −→ H1(X,G).

We would like to see this geometrically and we may take as representations principal bundles. Say
E′ ∈ H1(X,G′) a principal bundle with fibre G′ and group G′. Consider G

∏
E′ and make an equivalence

relation ∼ via: For all σ ∈ G′, all g ∈ G, all e′ ∈ E′

(gϕ(σ), e′) ∼ (g, e′σ−1).
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Set E′
G′−→G = ϕ∗(E

′) = G
∏
E′/ ∼.

Let us check that the fibre over x ∈ X is G. Since E′ is locally trivial, we have E′ ↾ U ∼= U
∏
G′, for

some small enough open, U . The action of G′ is such that: For σ ∈ G′ and (u, τ) ∈ U∏G′,

σ(u, τ) = (u, στ).

Over U , we have (G
∏
E′) ↾ U = G

∏
U
∏
G′, so our ϕ∗(E

′) is still locally trivial and the action is on the
left on G, its fibre. It follows that

E′ 7→ ϕ∗(E
′)

is our map H1(X,G′) −→ H1(X,G).

Next, say θ : Y → X is a map (of spaces), then we get a map

H1(X,G)
θ∗−→ H1(Y,G).

Given E ∈ H1(X,G), we have the commutative diagram

E
∏
X

Y

��

// E

πE

��
Y

θ // X,

so we get a space, θ∗(E) = E
∏
X

Y , over Y . Over a “small” open, U , of X , we have E ↾ U ∼= G
∏
U and

θ∗(E) ↾ θ−1(U) ∼= G
∏

θ−1(U),

and this gives

H1(X,G)
θ∗−→ H(Y,G).

Say G is a (Lie) group and we have a linear representation, ϕ : G → GL(r,C). By the above, we get a
map

E 7→ EG−→GL(r,C) = ϕ∗(E)

from principal G-bundles over X to principal GL(r,C)-bundles over X . But if V is a fixed vector space of
dimension r, the construction above gives a rank r vector bundle GL(r,C)

∏
V/ ∼. If V is a rank r vector

bundle over C, then look at the sheaf, Isom(Ir ,V), whose fibre at x is the space Isom(Cr,Vx). This sheaf
defines a GL(r,C)-bundle.

Say G′ ⊆ G is a closed subgroup of the topological group, G.

� If G is a real Lie group and G′ is a closed subgroup, then G′ is also a real Lie group (E. Cartan). But,
if G is a complex Lie group and G′ is a closed subgroup, then G′ need not be a complex Lie group. For

example, look at G = C∗ = GL(1,C) and G′ = U(1) = {z ∈ C | |z| = 1}.

Convention: If G is a complex Lie group, when we say G′ is a closed subgroup we mean a complex Lie
group, closed in G.

Say G is a topological group and G′ is a closed subgroup of G. Look at the space G/G′ and at the
continuous map, π : G → G/G′. We say π has a local section iff there is some some V ⊆ G/G′ with
1G ·G′ ∈ V and a continuous map

s : V → G, such that π ◦ s = idV .

When we untwist this definition we find that it means s(v) ∈ v, where v is viewed as a coset. Generally, one
must assume the existence of a local section–this is not true in general.
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Theorem 3.15 If G and G′ are topological groups and G′ is a closed subgroup of G, assume a local section
exists. Then

(1) The map G −→ G/G′ makes G a continuous principal bundle with fibre and group G′ and base G/G′.

(2) If G is a real Lie group and G′ is a closed subgroup, then a local smooth section always exists and G
is a smooth principal bundle over G/G′, with fibre (and group) G′.

(3) If G is a complex Lie group and G′ is a closed complex Lie subgroup, then a complex analytic local
section always exists and makes G is a complex holomorphic principal bundle over G/G′, with fibre
(and group) G′.

Proof . The proof of (1) is deferred to the next theorem.

(2) & (3). Use local coordinates, choosing coordinates trasnverse to G′ after choosing coordinates in G′

near 1G′ . The rest is (DX)– because we get a local section and we repeat the proof for (1) to prove the
bundle assertion.

Now, say E is a fibre bundle, with group G over X (and fibre F ) and say G′ is a closed subgroup of G.
Then, we have a new bundle, E/G′. The bundle E/G′ is obtrained from E by identifying in each fibre the
elements x and xσ, where σ ∈ G′. Then, the group of E/G′ is still G and the fibre is F/G′. In particular,
if E is principal, then the group of E/G′ is G and its fibre is G/G′. We have a map E −→ E/G′ and a
diagram

E

πE ��?
??

??
??

?
// E/G′

||zz
zz
zz
zz

X

Theorem 3.16 If G −→ G/G′ possesses a local section, then for a principal G-bundle E over X

(1) E/G′ is a fibre bundle over X, with fibre G/G′.

(2) E −→ E/G′ is in a natural way a principal bundle (over E/G′) with group and fibre G′. If
ξ ∈ H1(X,G) represents E, write ξG′ for the element of H1(E/G′, G′) whose bundle is just
E −→ E/G′.

(3) From the diagram of bundles

E

πE ��?
??

??
??

?

πE→E/G′ // E/G′

πE/G′||zz
zz
zz
zz

X

we get the commutative diagram

H1(X,G′)

π∗
E/G′

��

// H1(X,G) ∋ ξ
π∗
E/G′

��
ξG′ ∈ H1(E/G′, G′)

i∗ // H1(E/G′, G)

(Here i : G′ →֒ G is the inclusion map) and i∗(ξG′) = π∗
E/G′(ξ), that is, when E is pulled back to the

new base E/G′, it arises from a bundle whose structure group is G′.
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Figure 3.1: The fibre bundle E over E/G′

Proof . (1) is already proved (there is no need for our hypothesis on local sections).

(2) Pick a cover {Uα}, of C where E ↾ Uα is trivial so that

E ↾ Uα ∼= Uα
∏

G.

Now, consider G −→ G/G′ and the local section s : V (⊆ G/G′) −→ G (with 1G/G′ ∈ V ). We know s(v) ∈ v
(as a coset) and look at π−1(V ). If x ∈ π−1(V ), set

θ(x) = (x−1s(π(x)), π(x)) ∈ G′
∏

V.

This gives an isomorphism (in the appropriate category), π−1(V ) ∼= G′
∏
V . If we translate V around G/G′,

we get G as a fibre bundle over G/G′ and group G′ giving (1) of the previous theorem. But, Uα
∏
V and

the Uα
∏
(translate of V ) give a cover of E/G′ and we have

E ↾ Uα ∼= Uα
∏

π−1(V ) ∼= Uα
∏

V
∏

G′,

giving E as fibre bundle over E/G′ with group and fibre G′. Here, the diagrams are obvious and the picture
of Figure 3.1 finishes the proof. Both sides of the last formula are “push into the board” (by definition for
i∗ and by elementary computation in π∗

E/G′(ξ)).

Definition 3.2 If E is a bundle over X with group G and if G′ is a closed subgroup of G so that the
cohomology representative of G, say ξ actually arises as i∗(η) for some η ∈ H1(X,G′), then E can have its
structure group reduced to G′.

If we restate (3) of the previous theorem in this language, we get

Corollary 3.17 Every bundle E over X with group G when pulled back to E/G′ has its structure group
reduced to G′.

Theorem 3.18 Let E be a bundle over X, with group G and let G′ be a closed subgroup of G. Then, E as
a bundle over X can have its structure group reduced to G′ iff the bundle E/G′ admits a global section over
X. In this case if s : X → E/G′ is the global section of E/G′, then s∗(E) where E is considered as bundle
over E/G′ with group G′ is the element η ∈ H1(X,G′) which gives the structure group reduction. In terms
of cocycles, E admits a reduction to group G′ iff there exists an open cover {Uα} of X so that the transition
functions

gβα : Uα ∩ Uβ → G

map Uα∩Uβ into the subgroup G′. The section of E/G′ is given in the cover by maps sα : Uα → Uα
∏
G/G′,

where sα(u) = (u, 1G/G′). The cocycle gβα represents s∗(E) when its values are considered to be in G′ and
represents E when its values are considered to be in G.

Proof . Consider the picture of Figure 3.1 above. Suppose E can have structure group reduced to G′, then
there is a principal bundle, F , for G′ and its transition functions give E too. This F can be embedded in
E, the fibres are G′. Apply πE−→E/G′ to F , we get get a space over X whose points lie in the bundle E/G′,
one point for each point of X . Thus, the map s : X −→ point of πE−→E/G′(F ) over x, is our section of E/G′

over X .

Conversely, given a section, s : X → E/G′, we have E as principal bundle over E/G′, with fibre and group
G′. So, s∗(E) gives a bundle, F , principal for G′, lying over X . Note, F is the bundle given by s∗(ξG′),
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where ξ represents E. This shows the F constructed reduces to the group G′. The rest (with cocycles) is
standard.

Look at Cq and GL(q,C). Write Cqr for the span of e1, . . . , er (the first r canonical basis vectors) = Ker πr,
where πr is projection on the last q − r basis vectors, er+1, . . . , eq. Let Grass(r, q;C) denote the complex
Grassmannian of r-dimensional linear subspaces in Cq. There is a natural action of GL(q,C) on Grass(r, q;C)
and it is clearly transitive. Let us look for the stabilizer of Cqr. It is the subgroup, GL(r, q−r;C), of GL(q,C),
consisting of all matrices of the form (

A B
0 C

)

where A is r × r. It follows that, as a homogeneous space,

GL(q,C)/GL(r, q − r;C) ∼= Grass(r, q;C).

If we restrict the action to U(q), the above matrices must be of the form

(
A 0
0 C

)

where A ∈ U(r) and C ∈ U(q − r), so

U(q)/U(r)
∏

U(q − r) ∼= Grass(r, q;C).

Remark: Note, in the real case we obtain

GL(q,R)/GL(r, q − r;R) ∼= O(q)/O(r)
∏

O(q − r) ∼= Grass(r, q;R).

If one looks at oriented planes, then this becomes

GL+(q,R)/GL+(r, q − r;R) ∼= SO(q)/SO(r)
∏

SO(q − r) ∼= Grass+(r, q;R).

Theorem 3.19 (Theorem A) If X is paracompact, f and g are two maps X −→ Y and E is a bundle over
Y , then when f is homotopic to g and not for holomorphic bundles, we have f∗E ∼= g∗E.

Theorem 3.20 (Theorem B) Suppose X is paracompact and E is a bundle over X whose fibre is a cell. If
Z is any closed subset of X (even empty) then any section (continuous, smooth, but not holomorphic) of E
over Z admits an extension to a global section (continuous or smooth) of E. That is, the sheaf OX(E) is a
soft sheaf. (Note this holds when E is a vector bundle and it is Tietze’s Extension Theorem).

Theorem 3.21 (Theorem C) Say G′ is a closed subgroup of G and X is paracompact. If G/G′ is a cell,
then the natural map

H1
top(X,G

′) −→ H1
top(X,G) or H1

diff(X,G
′) −→ H1

diff(X,G)

is a bijection. That is, every principal G-bundle can have its structure group reduced to G′ and comes from
a unique principal G′-bundle.

Proof . Suppose E is a principal G-bundle and look at E/G′ over X . The fibre of E/G′ over X is G/G′, a
cell. Over a small closed set, say Z, the bundle E/G′ has a section; so, by Theorem B our section extends
to a global section (G/G′ is a cell). Then, by Theorem 3.18, the bundle E comes from H1(X,G′) and
surjectivity is proved.
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Now, say E and F are principal G′-bundles and that they become isomorphic as G-bundles. Take
a common covering {Uα}, where E and F are trivialized. Then gβα(E), gβα(F ), their transition functions
become cohomologous in the G-bundle theory. This means that there exist maps, hα : Uα → G so that

gβα(F ) = h−1
β gβα(E)h−1

α .

Consider X
∏
I where I = [0, 1] and cover X

∏
I by the opens

U0
α = Uα

∏
[0, 1) and U1

α = Uα
∏

(0, 1].

Make a principal bundle on X
∏
I using the following transition functions:

gβ 0
α 0 : U

0
α ∩ U0

β −→ G

via gβ 0
α 0(x, t) = gβα(E)(x);

gβ 1
α 1 : U

1
α ∩ U1

β −→ G

via gβ 1
α 1(x, t) = gβα(F )(x);

gβ 1
α 0 : U

0
α ∩ U1

β −→ G

via gβ 1
α 0(x, t) = hβ(x)g

β
α(F )(x) = gβα(E)(x)hα(x). Call this new bundle (E,F ) and let

Z = X
∏
{0} ∪X

∏
{1} →֒ X

∏
I

a closed subset. Note that (E,F ) over Z is a G′-bundle. Thus, Theorem 3.18 says (E,F )/G′ has a global
section over Z. But, its fibre is G/G′, a cell. Therefore, by Theorem B, the bundle (E,F )/G′ has a global

section over all of X . By Theorem 3.18, again, the bundle (E,F ) comes from a G′-bundle, (̃E,F ). Write
f0 : X → X

∏
I for the function given by

f0(x) = (x, 0)

and f1 : X → X
∏
I for the function given by

f1(x) = (x, 1).

If (̃E,F ) ↾ X
∏{0} = (̃E,F )0, then f

∗
0 ((̃E,F )0) = E, i.e., f∗

0 (̃E,F ) = E and similarly, f∗
1 (̃E,F ) = F ; and

f0 is homotopic to f1. By Theorem A, we get E ∼= F as G′-bundles.

There is a theorem of Steenrod stating: If X is a differentiable manifold and E is a fibre bundle over X ,
then every continuous section of E may be approximated (with arbitrary ǫ) on compact subsets of X by a
smooth section. When E is a vector bundle, this is easy to prove by an argument involving a partition of
unity and approximation techniques using convolution. This proves

Theorem 3.22 (Theorem D) If X is a differentiable manifold and G is a Lie group, then the map

H1
diff(X,G) −→ H1

cont(X,G)

is a bijection.

We get the

Corollary 3.23 If X is a differentiable manifold, then in the diagram below, for the following pairs (G′, G)

(α) G′ = U(q), G = GL(q,C).

(β) G′ = U(r)
∏

U(q − r), G = GL(r, q − r;C) or G = GL(r,C)
∏

GL(q − r,C).
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(γ) G′ = Tq = S1 × · · · × S1 (the real q-torus), G = ∆(q,C) or G = Gm
∏ · · ·∏Gm = C∗

∏ · · ·∏C∗

(= GL(1,C)
∏ · · ·∏GL(1,C)) (the complex q-torus)

all the maps are bijective

H1
cont(X,G

′) // H1
cont(X,G)

H1
diff(X,G

′)

OO

// H1
diff(X,G).

OO

Here,

∆(q,C) =
q⋂

r=1

GL(r, q − r;C)

the upper triangular matrices.

Proof . Observe that G/G′ is a cell in all cases and that ∆(q,C) ∩U(q) = Tq.

Suppose ξ corresponds to a GL(q)-bundle which has group reduced to GL(r, q − r;C). Then, the maps

M =

(
A B
0 C

)
7→ A and M =

(
A B
0 C

)
7→ C

give surjections GL(r, q − r;C) −→ GL(r,C) and GL(r, q − r;C) −→ GL(q − r,C), so ξ comes from ξ̃ and

ξ̃ gives rise to ξ′ and ξ′′ which are GL(r,C) and GL(q − r,C)-bundles, respectively. In this case one says:
the GL(q,C)-bundle ξ admits a reduction to a (rank r) subbundle ξ′ and a (rank q − r) quotient bundle ξ′′.
When we use ∆(q,C) and GL(q,C) then we get q maps, ϕl : ∆(q,C)→ C∗, namely

ϕj :




a1 ∗ · · · ∗ ∗
0 a2 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · aq−1 ∗
0 0 · · · 0 aq



7→ al.

So, if ξ̃ is our ∆(q,C)-bundle, we get q line bundles ξ1, . . . , ξq from ξ̃ and one says ξ has ξ1, . . . , ξq as diagonal
line bundles .

Set

Fq = GL(q;C)/∆(q;C) = GL(q;C)/
q⋂

r=1

GL(r, q − r;C),

the flag manifold , i.e., the set of all flags

{0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vq = V | dim(Vj) = j}.

Since Fq = GL(q;C)/
⋂q
r=1 GL(r, q − r;C), we see that Fq is embedded in

∏1
r=1 Grass(r, q;C). Thus, as the

above is a closed immersion, Fq is an algebraic variety, even a projective variety (by Segre). If V is a rank q
vector bundle over X , say E(V ) (∼= Isom(Cq, V )) is the associated principal bundle, then write

[r]V = E(V )/GL(r, q − r;C),

a bundle over X whose fibres are Grass(r, q;C) and

[∆]V = E(V )/∆(q;C)

a bundle over X whose fibres are the F(q)’s. We have maps ρr : [r]V → X and ρ∆ : [∆]V → X . Now we
apply our theorems to the pairs
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(a) G′ = U(q), G = GL(q,C).

(b) G′ = U(r)
∏

U(q − r) and G = GL(r, q − r,C) or G = GL(r,C)
∏

GL(q − r,C).
(c) G′ = Tq and G = U(q) or G = C∗

∏ · · ·∏C∗ = (Gm)q.

(d) G′ = ∆(q,C) and G = GL(q,C)

and then we get, (for example) every rank r vector bundle over X is “actually” a rank r unitary bundle over
X and we also have

Theorem 3.24 If X is paracompact or a differentiable manifold or a complex analytic manifold or an
algebraic variety and V is a rank q vector bundle of the appropriate category on X, then

(1) V reduces to a rank r subbundle, V ′, and rank q− r quotient bundle, V ′′, over X iff [r]V possesses an
appropriate global section over X.

(2) V reduces to diagonal bundles over X iff [∆]V possesses an appropriate global section over X.

(3) For the maps ρr in case (1), resp. ρ∆ in case (2), the bundle ρ∗rV reduces to a rank r subbundle and
rank q − r quotient bundle over [r]V (resp. reduces to diagonal bundles over [∆]V ).

Remark: The sub, quotient, diagonal bundles are continuous, differentiable, analytic, algebraic, respec-
tively.

Say s : X → [r]V is a global section. For every x ∈ X , we have sx ∈ Grass(r, q;Vx); i.e., s(x) is an
r-plane in Vv and so,

⋃
x∈X s(x) gives an “honest” rank r subbundle or V . It is isomorphic to the subbundle,

V ′, of the reduction. Similarly,
⋃
x∈X Vx/s(x) is an “honest” rank q − r quotient bundle of V ; it is just V ′′.

Hence, we get

Corollary 3.25 If the hypotheses of the previous theorem hold, then

(1) [r]V has a section iff there is an exact sequence

0 −→ V ′ −→ V −→ V ′′ −→ 0

of vector bundles on X.

(2) [∆]V ] has a section iff there exist exact sequences

0 −→ L1 −→ V −→ V ′′
1 −→ 0

0 −→ L2 −→ V ′′
1 −→ V ′′

2 −→ 0

· · · · · · · · · · · · · · · · · ·
0 −→ Lj+1 −→ V ′′

j −→ V ′′
j+1 −→ 0

· · · · · · · · · · · · · · · · · ·
Lq ∼= V ′′

q−1

where the Lj’s are line bundles, in fact, the diagonal bundles.

Theorem 3.26 In the continuous and differentiable categories, when V has an exact sequence as in (1) of
Corollary 3.25 or diagonal bundles as in (2) of Corollary 3.25, then

(1) V ∼= V ′ ∐ V ′′.

(2) V ∼= L1 ∐ · · · ∐ Lq.

� The above is false if we need splitting analytically!
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All we need to prove is (1) as (2) follows by induction. We know V comes from H1(X,GL(r, q−r;C). By
(b) above, V comes fromH1(X,U(r)

∏
U(q−r)) and by (b) again, V comes fromH1(X,GL(r)

∏
GL(q−r)) ∼=

H1(X,GL(r)) ∐H1(X,GL(q − r)) and we get (1).

Corollary 3.27 (Splitting Principle) Given V , a continuous, differentiable, analytic, algebraic rank q vector
bundle over X, then ρ∗rV is in the continuous or differentiable category a coproduct V = V ′∐V ′′ (rk(V ′) = r,
rk(V ′′) = q − r) or ρ∗∆V is V = L1 ∐ · · · ∐ Lq.

Note that [r]V and [∆]V are fibre bundles over X ; consequently, there is a relation between Hj(X,Z) and
Hj([r]V,Z) (resp. Hj([∆]V,Z). This is the Borel spectral sequence. Under the condition that (E,X, F,G)
is a fibre space over X (admissible), group G, fibre F , total space E, there is a spectral sequence whose
Ep,q2 -term is

Hp(X,Hq(F,Z))

and whose ending is gr(H•(E,Z)),

Hp(X,Hq(F,Z)) =⇒
p

H•(E,Z).

Borel proves that in our situation: The map

ρ∗ : H•(X,Z)→ H•([r]V,Z)

(resp. ρ∗ : H•(X,Z)→ H•([∆]V,Z)) is an injection. From the hand-out, we also get the following: Write

BU(q) = lim−→
N

Grass(q,N ;C).

Note,
BU(1) = lim−→

N

PN−1
C = P∞

C .

Theorem 3.28 If X is admissible (locally compact, σ-compact, finite dimensional) then Vectq(X) (isomor-
phism classes of rank q vector bundles over X) in the continuous or differentiable category is in one-to-one
correspondence with homotopy classes of maps X −→ BU(q). In fact, if X is compact and N ≥ 2dim(X)
then already the homotopy classes of maps X −→ Grass(q,N ;C) classify rank q vector bundles on X (dif-
ferentiably). Moreover, on BU(q), there exists a bundle, the “universal quotient”, Wq, it has rank q over
BU(q) (in fact, it is algebraic) so that the map is

f ∈ [X −→ BU(q)] 7→ f∗Wq.

We are now in the position where we can prove the uniqueness of Chern classes.

Uniqueness of Chern Classes:

Assume existence (Axiom (I)) and good behavior (Axioms (II)–(IV)). First, take a line bundle, L, on X .
By the classification theorem there is a map

f : X → BU(1)

so that f∗(H) = L (here, H is the universal quotient line bundle). By Axiom (II),

f∗(c(H)(t)) = c(f∗(H))(t) = c(L)(t)

and the left hand side is f∗(1 +Ht), by Axiom (IV) (viewing H as a cohomology class). It follows that the
left hand side is 1 + f∗(H)t and so,

c1(L) = f∗(H), and cj(L) = 0, for all j ≥ 2.
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This is independent of f as homotopic maps agree cohomologically.

Now, let V be a rank q vector bundle on X and make the bundle [∆]V whose fibre is F(q). Take ρ∗(V ),
where ρ : [∆]V → X . We know

ρ∗V =

q∐

j=1

Lj ,

where the Lj ’s are line bundes and by Axiom (II),

c(ρ∗(V ))(t) =

1∏

j=1

(1 + c1(Lj)(t)).

Now, the left hand side is ρ∗(c(V )(t)), by Axiom (II); then, ρ∗ being an injection implies c(V )(t) is uniquely
determined.

Remark: Look at U(q) ⊇ U(1)
∏

U(q − 1) ⊇ Tq. Then,

U(1)
∏

U(q − 1)/Tq →֒ U(q)/Tq = F(q)

and the left hand side is U(q − 1)/Tq−1 = F(q − 1). So, we have an injection F(q − 1) →֒ F(q) over the base
U(q)/U(1)

∏
U(q − 1), which is just Pq−1. Thus, we can view F(q) as a fibre bundle over Pq−1 and the fibre

is F(q − 1).

Take a principal U(q)-bundle, E, over X and make E/Tq, a fibre space whose fibre is F(q). Let E1 be
E/U(1)

∏
U(q − 1), a fibre space whose fibre is Pq−1. Then, we have a map

E/Tq −→ E1,

where the fibre is U(1)
∏

U(q − 1)/Tq = F(q − 1). We get

E/Tq = [∆]E

fibre F(q − 1)
��
E1

fibre Pq−1

��
X.

If we repeat this process, we get the tower

E/Tq = [∆]E

fibre P1

��

ρ

��

Eq−1

fibre P2

��
Eq−2

���
�
�

E1

fibre Pq−1

��
X.
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So, to show ρ∗ is injective, all we need to show is the same fact when the fibre i Pn and the Pr-bundle comes
from a vector bundle.

Suggestion: Look in Hartshorne in Chapter III, Section ? on projective fibre bundles and Exercise ??
about

ρ∗(OP(E)(l)) = Sl(OX(E)).

Sup up to tangent bundles and wedges and use Hodge:

H•(X,C) = in term of the holomorphic cohomology of

top∧
T.

We get that ρ∗ is injective on H•(X,C), not H•(X,Z).

Existence of Chern Classes:

Start with L, a line bundle over X . Then, there is a map (continuous, diff.), f : X → PNC , for N >> 0
and L = f∗(H). Then, set c1(L) = f∗(H), where H is the cohomology class of the hyperplane bundle in
H2(PN ,Z) and cj(L) = 0 if j ≥ 2. If another map, g, is used, then f∗(H) = L = h∗(L) implies that f and
g are homotopic, so f∗ and g∗ agree on cohomology and c1(L) is independent of f . It is also independent of
N , we we already proved. Clearly, Axiom (II) and Axiom (IV) are built in.

Now, let V be a rank q vector bundle over X . Make [∆]V and let ρ be the map ρ : [∆]V → X . Look at
ρ∗V . We know that

ρ∗V =

q∐

j=1

Lj ,

where the Lj ’s are line bundles. By the above,

cj(Lj)(t) = 1 + c1(Lj)t = 1 + γjt.

Look at the polynomial
q∏

j=1

(1 + γjt) ∈ H•([∆]V,Z)[t].

If we show this polynomial (whose coefficients are the symmetric functions σl(γ1, . . . , γq)) is in the image of
ρ∗ : H•(X,Z)[t] −→ H•([∆]V,Z)[t], then there is a unique polynomial c(V )(t) so that

ρ∗(c(V )(t)) =

q∏

j=1

(1 + γjt).

(Then, cl(V ) = σl(γ1, . . . , γq).) Look at the normalizer of Tq in U(q). Some a belongs to this normalizer iff
aTqa−1 = Tq. As the new diagonal matrix, aθa−1 (where a ∈ Tq has the same characteristic polynomial as
θ, it follows that aθa−1 is just θ, but with its diagonal entries permuted. This gives a map

NU(q)(T
q) −→ Sq.

What is the kernel of this map? We have a ∈ Ker iff aθa−1 = θ, i.e., aθ = θa, for all θ ∈ Tq. This means
(see the 2× 2 case) a ∈ Tq and thus, we have an injection

NU(q)(T
q)/Tq →֒ Sq.

The left hand side, by definition, is the Weyl group, W , of U(q). In fact (easy DX), W ∼= Sq.

Look at [∆]V and write a covering of X trivializing [∆]V , call it {Uα}. We have

[∆]V ↾ Uα ∼= Uα
∏

U(q)/Tq.
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Make the element a act on the latter via

a(u, ξTq) = (u, ξTqa−1) = (u, ξa−1Tq).

These patch as the transition functions are left translations. This gives an automorphism of [∆]V , call it ã,
determined by each a ∈W . We get a map

ã∗ : H•([∆]V,−)→ H•([∆]V,−).

Now, as a ∈ W acts on Tq by permuting the diagonal elements it acts on H1([∆]V,Tq) by permuting the
diagonal bundles, say Lj, call this action a

#. Moreover, ρ∗V comes from a unique element of H1([∆]V,Tq),
which implies that ã acts on ρ∗V by permuting its cofactors. But, ã∗ also acts on H1([∆]V,Tq) and one
should check (by a Čech cohomology argument) that

ã∗ = a#.

Now associate to the Lj’s their Chern classes, γj , and ã∗(γj) goes over to a#(γj), i.e., permute the
|gammajs’s. Thus, W acts on the Lj and γj by permuting them. Our polynomial

∏

j=1

(1 + γjt)

goes to itself via the action of W . But, Borel’s Theorem is that an element of H•([∆]V,Z) lies in the image
of ρ∗ : H•(X,Z) → H•([∆]V,Z) iff W fixes it. So, by the above, our elementary symmetric functions lie in
Im ρ∗; so, Chern classes exist. Furthermore, it is clear that they satisfy Axioms (I), (II), (IV).

Finally, consider Axiom (III). Suppose V splits over X as

V =

q∐

j=1

Lj.

We need to show that c(V )(t) =
∏1
j=1(1 + c1(Lj)t).

As V splits over X , the fibre bundle ρ : [∆]V −→ X has a section; call it s. So, s∗ρ∗ = id and

c(V )(t) = s∗ρ∗(c(V )(t)) = s∗(ρ∗(c(V )(t))).

By Axiom (II), s∗(ρ∗(c(V )(t))) = s∗(c(ρ∗(V ))(t)). Since ρ∗ =
∐q
j=1 ρ

∗Lj and we know that if we set
γj = c1(ρ

∗(Lj)), then

ρ∗(c(V )(t)) = c(ρ∗(V )(t)) =

q∏

j=1

(1 + γjt).

But then,

c(V )(t) = s∗
q∏

j=1

(1 + γjt) =

q∏

j=1

(1 + s∗(γj)t). (†)

However, Lj = s∗(ρ∗(Lj)) implies

c1(Lj) = s∗(c1(ρ
∗(Lj))) = s∗(γj).

The above plus (†) yields

c(V )(t) =

q∏

j=1

(1 + c1(Lj)t),
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as required.

Eine kleine Vektorraumbündel Theorie:

Say V (rank q) and W (rank q′) have diagonal bundles L1, . . . , Lq and M1, . . . ,Mq′ over X . Then, the
following hold:

(1) V D has LD1 , . . . , L
D as diagonal line bundles;

(2) V ∐W has L1, . . . , Lq,M1, . . . ,Mq′ as diagonal line bundles;

(3) V ⊗W has Li ⊗Mj (all i, j) as diagonal line bundles;

(4)
∧r

V has Li1 ⊗ · · · ⊗ Lir , where 1 ≤ i1 < · · · < ir ≤ q, as diagonal line bundles;

(4) SrV has Lm1
1 ⊗ · · · ⊗ Lmq

q , where mi ≥ 0 and m1 + · · ·+mq = r, as diagonal line bundles.

Application to the Chern Classes.

(0) (Splitting Principle) Given a rank q vector bundle, V , make believe V splits as V =
∐q
j=1 Lj (for some

line bundles, Lj), write γj = c1(Lj), the γj are the Chern roots of V . Then,

c(V )(t) =

q∏

j=1

(1 + γjt).

(1) c(V D)(t) =
∏q
j=1(1− γjt) when c(V )(t) =

∏q
j=1(1 + γjt). That is, ci(V

D) = (−1)ici(V ).

(2) If 0 −→ V ′ −→ V −→ V ′′ −→ 0 is exact, then c(V )(t) = c(V ′)(t)c(V ′′)(t).

(3) If c(V )(t) =
∏q
j=1(1 + γjt) and c(W )(t) =

∏q′

j=1(1 + δjt), then c(V ⊗W )(t) =
∏q,q′

j,k=1(1 + (γj + δk)t).

(4) If c(V )(t) =
∏q
j=1(1 + γjt), then

c
( r∧

V
)
(t) =

∏

1≤i1<···<ir≤q

(1 + (γi1 + · · ·+ γir )t).

In particular, when r = q, there is just one factor in the polynomial, it has degree 1, it is
1 + (γ1 + · · ·+ γq)t. By (2). we get

c1

( q∧
V
)
(t) = c1(V ) and cl

( q∧
V
)
(t) = 0 if l ≥ 2.

(5) If c(V )(t) =
∏q
j=1(1 + γjt), then

c(SrV )(t) =
∏

mj≥0
m1+···+mq=r

(1 + (m1γ1 + · · ·+mqγq)t).

(6) If rk(V ) ≤ q, then deg(c(V )(t)) ≤ q (where deg(c(V )(t) is the degree of c(V )(t) as a polynomial in t).
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(7) Suppose we know c(V ), for some vector bundle, V , and L is a line bundle. Write c = c1(L). Then, the
Chern classes of V ⊗ L are

cl(V ⊗ L) = σl(γ1 + c, γ2 + c, · · · , γr + c),

where r = rk(V ) and the γj are the Chern roots of V . This is because the Chern polynomial of V ⊗L
is

c(V ⊗ L)(t) =
r∏

i=1

(1 + (γi + c)t).

Examples. (1) If rk(V ) = 2, then

c(V ⊗ L)(t) = (1 + (γ1 + c)t)(1 + (γ2 + c)t) = 1 + (γ1 + γ2 + 2c)t+ (γ1γ2 + c(γ1 + γ2) + c2)t2,

so

c1(V ⊗ L) = c1(V ) + 2c

c2(V ⊗ L) = c2(V ) + c1(V )c+ c2.

(2) If rk(V ) = 3, then

c(V ⊗ L)(t) = (1 + (γ1 + c)t)(1 + (γ2 + c)t)(1 + (γ3 + c)t)

and so,

c(V ⊗ L)(t) = 1 + (γ1 + γ2 + γ3 + 3c)t

+ (σ2(γ1, γ2, γ3) + 2σ1(γ1, γ2, γ3)c+ 3c2)t2

+ (σ3(γ1, γ2, γ3) + σ1(γ1, γ2, γ3)c
2 + σ2(γ1, γ2, γ3)c+ c3)t3.

We deduce

c1(V ⊗ L) = c1(V ) + 3c1(L)

c2(V ⊗ L) = c2(V ) + 2c1(V )c1(L) + 3c1(L)
2

c3(V ⊗ L) = c3(V ) + c2(V )c1(L) + c1(V )c1(L)
2 + c1(L)

3.

In the case of Pn, it is easy to compute the Chern classes. By definition,

c(Pn)(t) = c(T 1,0
Pn )(t).

We can use the Euler sequence

0 −→ OPn −→
∐

n+1

OPn(H) −→ T 1,0
Pn −→ 0

to deduce that
c(OPn)(t)c(T 1,0

Pn )(t) = c(OPn(H)(t))n+1.

It follows that

c(T 1,0
Pn )(t) = (1 +Ht)n+1 (mod tn+1) =

n∑

j=0

(
n+ 1

j

)
Hjtj

and so,

cj(T
1,0
Pn ) =

(
n+ 1

j

)
Hj ∈ H2j(Pn,Z).
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(Here Hj = H · . . . ·H , the cup-product in cohomology). In particular,

c1(T
1,0
Pn ) = (n+ 1)H = c

( n∧
T 1,0
Pn

)
.

Now, if ωPn is the canonical bundle on Pn, i.e., ωPn =
∧n

T 0,1D
Pn =

(∧n
T 1,0
Pn

)D
, we get

c1(ωPn) = −(n+ 1)H.

Say a variety X sits inside PnC and assume X is a manifold. Let I be the ideal sheaf of X . By definition,
I is the kernel in the exact sequence

0 −→ I −→ OPn −→ OX −→ 0.

If X is a hypersurface of degree d, we know

I = OPn(−d) = OPn(−dH).

We also have the exact sequence

0 −→ TX −→ TPn ↾ X −→ NX →֒Pn −→ 0,

where NX →֒Pn is a rank n − q bundle on X , with q = dimX (the normal bundle). If we write i : X → Pn,
we get

( n∧
TPn

)
↾ X =

n∧
TX ⊗

n−q∧
NX →֒Pn ,

and so,

i∗(1 + c1

( n∧
TPn

)
t) = (1 + c1

( n∧
TX

)
t)(1 + c1

(n−q∧
NX →֒Pn

)
t),

which yields
1 + i∗((n+ 1)H)t = 1 + c1(TX)t+ c1(NX →֒Pn)t.

For the normal bundle, we can compute using I. Look at a small open, then we have the usual case of
C-algebras

C →֒ A −→ B

where A corresponds to local functions on Pn restricted to X and B to local functions on X and we have
the exact sequence of relative Kähler differentials

Ω1
A/C ⊗A B −→ Ω1

B/C −→ Ω1
B/A −→ 0.

If A mapping onto B is given, then Ω1
B/A = (0), B = A/A (globally, OX = OPn/I), and we get

0 −→ Ker −→ Ω1
A ⊗A A/A −→ Ω1

A/A −→ 0.

Now, I −→ Ω1
A ⊗A A/A, via ξdξ 7→ ⊗1 and in fact, I −→ 0. We conclude that

i∗(I) = I/I2 −→ i∗(Ω1
Pn) −→ Ω1

X −→ 0.

Because X is a manifold, the arrow on the left is an injection. To see this we need only look locally at x.
We can take completions and then use either the C1-implicit function theorem or the holomorphic implicit
function theorem or the formal implicit function theorem and get the result (DX). If we dualize, from

0 −→ I/I2 = i∗(I) −→ i∗Ω1
Pn −→ Ω1

X −→ 0
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we get

0 −→ TX −→ i∗TPn = TPn ↾ X −→ (I/I2)D −→ 0

Therefore,

NX →֒Pn = (I/I2)D = i∗(I)D = (I ↾ X)D.

Thus,

c1(NX →֒Pn) = −c1(I/I2),
and

(n+ 1)i∗(H) + c1(I/I
2) = c1(TX).

We obtain a version of the adjunction formula:

c1(ωX) = −(n+ 1)i∗(H)− c1(I/I2).

When X is a hypersurface of degree d, then I = OPn(−dH) and

I/I2 = i∗(I) = OX(−d · i∗H).

We deduce that −c1(I/I2) = d(i∗H) and

c1(ωX) = (d− n− i)i∗H,

Say n = 2, and dimX = 1, a curve in P2. When X is smooth, we have

c1(ωX) = (d− n− 1)i∗(H).

Facts soon to be proved:

(a) i∗(H) = H ·X , in the sense of intersection theory (that is, degX points on X).

(b) c1(L) on a curve is equal to the degree of the divisor of L.

It follows from above that

deg(ωX) = (d− 2− 1)d = d(d− 3).

However, from Riemann-Roch on a curve, we know deg(ωX) = 2g − 2, so we conclude that for a smooth
algebraic curve, its genus, g, is given by

g =
1

2
(d− 1)(d− 2).

In particular, observe that g = 2 is missed.

We know from the theory that if we know all c1’s then we can determine all cn’s for all n by the splitting
principle.

There are three general methods for determining c1;

(I) The exponential sequence.

(II) Curvature.

(III) Degree of a divisor.
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Proposition 3.29 Say X is an admissible, or a differentiable manifold, or a complex analytic manifold or
an algebraic manifold. In each case, write OX for the sheaf of germs of appropriate functions on X. Then,
from the exponential sequence

0 −→ Z −→ OX e−→ O∗
X −→ 0,

where e(f) = exp(2πif), we get in each case the connecting map

H1(X,O∗
X)

δ−→ H2(X,Z) (†)

and all obvious diagrams commute
** Steve, what are these obvious diagrams? **

and as the group H1(X,O∗
X) classifies the line bundles of appropriate type, we get δ(L), a cohomology class

in H2(X,Z) and we have
c1(L) = δ(L).

In the continuous and differentiable case, δ is an isomorphism. Therefore, a continuous or differentiable line
bundle is completely determined by its first Chern class.

Proof . That the diagrams commute is clear. For the isomorphism statement, we have the cohomology
sequence

H1(X,OX) −→ H1(X,O∗
X)

δ−→ H2(X,Z) −→ H2(X,OX).

But, in the continuous or C∞-case, OX is a fine sheaf, so H1(X,OX) = H2(X,OX) = (0) and we get

H1(X,O∗
X) ∼= H2(X,Z).

First, we show that (†) can be reduced to the case X = P1
C = S2.

** Steve, in this case, are we assuming that X is projective? **

Take a line bundle, L on X (continuous or C∞), then, for N >> 0, there is a function, f : X → PNC , so
that f∗H = L. Now, we have the diagram

H1(PNC ,O∗
PN )

��

δ // H2(PNC ,Z)

��
H1(X,O∗

X)
δ

// H2(X,Z)

which commutes by cofunctoriality of cohomology. Consequently, the existence of (†) on the top line implies
the existence of (†) in general. Now, consider the inclusions

P1
C →֒ P2

C →֒ · · · →֒ PNC ,

and H on PNC pulls back at each stage to H and Chern classes have Axiom (II). Then, one sees that we are
reduced to P1

C.

Recall how simplicial cohomology is isomorphic (naturaly) to Čech cohomology: Take a triangulation of
X and v, a vertex of a simplex, ∆. Write

Uv = st(v) =

◦⋃
{σ | v ∈ σ}

the open star of the vertex v. The Uσ form an open cover and we have:

Uv0 ∩ · · · ∩ Uvp =

{
∅ if (v0, . . . , vp) is not a simplex;
a connected nonempty set if (v0, . . . , vp) is a simplex.
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Given a Čech p-cochain, τ , then

τ(Uv0 ∩ · · · ∩ Uvp) =
{
0 if (v0, . . . , vp) is not a simplex;
some integer if (v0, . . . , vp) is a simplex.

Define
τ(v0, . . . , vp) = τ(Uv0 ∩ · · · ∩ Uvp).

Take a simplex, ∆ = (v0, . . . , vp) and define linear functions θ(τ) by

θ(τ)(v0, . . . , vp) = τ(v0, . . . , vp) = τ(Uv0 ∩ · · · ∩ Uvp)

and extend by linearity. We get a map,

Ȟp(X,Z) ∼= Hp
simp(X,Z)

via τ 7→ θ(τ), which is an isomorphism.

We are down to the case of P1
C = S2 and we take H as the North pole. The Riemann sphere P1

C has
coordinates (Z0 : Z1), say Z1 = 0 is the north pole (Z0 = 0 is the south pole) and let

z =
Z0

Z1
, w =

Z1

Z0
.

We have the standard opens, V0 = {(Z0 : Z1) | Z0 6= 0} and V1 = {(Z0 : Z1) | Z1 6= 0}. The local equations
for H are f0 = w = 0 and f1 = 1. The transitions functions gβα are fβ/fα, i.e.,

g10 =
f1
f0

= z and g01 =
f0
f1

= w.

Now, we triangulate S2 using four triangles whose vertices are: o = z; z = 1; z = i and z = −1. Note that
H is represented by a point which is in the middle of a face of the simplex (1, i,−1) We have U0, U1, Ui, U−1,
the four open stars and U0 ⊆ V1; U1 ⊆ V0; Ui ⊆ V0; U−1 ⊆ V0. The U -cover refined the V -cover and on

it, gsr ≡ 1 iff both r, s 6= 0. Also, gt0 = w, for all t 6= 0. To lift back the exponential, OP1

exp(2πi−)−→ O∗
P1 , we

form 1
2πi log(g

s
r), a one-cochain with values in OP1 . Since the intersections Ur ∩Us are all simply-connected,

on each, we can define a single-valued branch of the log. Consistently do this on these opens via: Start on
U1 ∩ Ui and pick any single-valued branch of the log. Continue analytically to Ui ∩ U−1. Then, continue
analytically to U−1 ∩ U1, we get 2πi+ log on U1 ∩ Ui. Having defined the log gsr , we take the Čech δ of the
1-cochain, that is

crst =
1

2πi
[log gts − log gtr + log gsr ] =

1

2πi
[log gsr + log gts + log grt ].

If none of r, s, t are 0, then crst = 0. So, look at c0−1 1. We have

c0−1 1 =
1

2πi
[log g−1

0 + log g1−1 + log g01 ] =
1

2πi
[logw − “ log ′′w].

As w = 1/z, the second log is −2πi+ logw, so we get

c0−1 1 = +1.

For every even permutation σ of (0,−1, 1), we have cσ(0),σ(−1),σ(1) = +1 and for every odd permutation σ of
(0,−1, 1), we have cσ(0),σ(−1),σ(1) = −1. Yet, the orientation of the simplex (0,−1, 1) is positive, so we get
δ(H) = the class represented by the cocycle on one simplex (positively oriented) by 1, i.e, c1(H).
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Proposition 3.30 Say X is a complex manifold and L is a C∞ line bundle on it. Let ∇ be an arbitrary
connection on X and write Θ for the curvature of ∆. Then, the 2-form i

2πΘ is real and it represents in
H2

DR(X,R) the image of c1(L) under the map

H2(X,Z) −→ H2(X,R).

Proof . Pick a trivializing cover for L, say {Uα}. Then, ∇ ↾ L on Uα comes from its connection matrix, θα,
this is a 1× 1 matrix (L is a line bundle). We know (gauge transformation)

θα = gαβ θβ(g
α
β )

−1 + dgαβ (g
α
β )

−1,

where the gαβ are the transition functions. But, we have scalars here, so

θα = θβ + d log(gαβ ),

that is

θβ − θα = −d log(gαβ ). (†)

By Cartan-Maurer, the curvature, Θ, (a 2-form) is given locally by

Θ = dθ − θ ∧ θ = dθα = dθβ .

We get the de Rham isomorphism in the usual way by splicing exact sequences. We begin with

0 −→ R −→ C∞ d−→ cok1 −→ 0 (∗)

and

0 −→ cok1 −→
1∧

d−→ cok2 −→ 0 (∗∗)

It follows that

0 // R // C∞

!!C
CC

CC
CC

CC
d // ∧1 d //

!!C
CC

CC
CC

C

∧2 // · · ·

cok1

=={{{{{{{{

""E
EE

EE
EE

EE
cok2

=={{{{{{{{

""E
EE

EE
EE

EE

0 0

Apply cohomology to (∗) and (∗∗) and get

H0(X,
1∧
)

d−→ H0(X, cok2)
δ′−→ H1(X, cok1) −→ H1(X,

1∧
) = (0)

and

H1(X, C∞) −→ H1(X, cok1)
δ′′−→ H2(X,R) −→ H2(X,C∞) = (0)

because
∧1 and C∞ are fine. We get

H1(X, cok1) ∼= H2(X,R) and H0(X, cok2)/dH
0(X,

1∧
) ∼= H1(X, cok1).
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Therefore,
δ′ ◦ δ′ : H0(X, cok2) −→ H2(X,R) −→ 0.

We know from the previous proof that

cα,β,γ =
1

2πi
[log gβα + log gγβ + log gαγ ]

represents c1(L) via the δ from the exponential sequence. So,

cα,β,γ =
1

2πi
[log gαβ + log gγα + log gβγ ]

and
δ′[Θ] = cohomology class of Θ = class of cocycle (θβ − θα).

Now, 1
2πi (θβ − θα) can be lifted back to − 1

2πi log g
α
β under δ′′ and we deduce that

δ′′δ′
(

1

2πi
Θ

)
= class of − 1

2πi
[log gαβ + log gγα + log gβγ ] = −class of cαβγ = −c1(L).

** There may be a problem with the sign! **

The next way of looking at c1(L) works when L comes from a divisor. Say X is a complex algebraic
manifold and L = OX(D), where D is a divisor,

D =
∑

j

ajWj

on X . Then, D gives a cycle in homology, so [D] ∈ H2n−2(X,Z) (here n = dimCX). By Poincaré duality,
our [D] is in H2(X,Z) and it is

∑
aj[Wj ].

Theorem 3.31 If X is a compact, complex algebraic manifold and D is a divisor on X, then

c1(OX(D)) = [D] in H2(X,Z),

that is, c1(OX(D)) is carried by the (2n− 2)-cycle, D.

Proof . Recall that Poincaré duality is given by: For ξ ∈ Hr(X,R) and η ∈ Hs(X,R) (where r + s = 2n),
then

(ξ, η) =

∫

X

ξ ∧ η.

The homology/cohomology duality is given by: For ω ∈ Hs(X,R) and Z ∈ Hs(X,R), then

(Z, ω) =

∫

Z

ω.

We know that the cocyle (= 2-form) representing c1(L) is
[
i
2πΘ

]
, for any connection on X . We must show

that for every closed, real (2n− 2)-form, ω,

i

2π

∫

X

Θ ∧ ω =

∫

D

ω.

We compute Θ for a convenient connection, namely, the uniholo connection. Pick a local holomorphic frame,
e(z), for L, then if L has a section, s, we know s(z) = λ(z)e(z), locally. For θ, the connection matrix in this
frame, we have
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(a) θ = θ1,0 (holomorphic)

(b) d(|s|2) = (∇s, s) + (s,∇s) (unitary)

We have
∇s = ∇λe = (dλ + θλ)e.

Thus, the right hand side of (b) is

d(|s|2) = ((dλ + θλ)e, λe) + (λe, (dλ + θλ)e)

= λdλ(e, e) + θ|λ|2(e, e) + λdλ(e, e) + θ|λ|2(e, e).

Write h(z) = |e(z)|2 = (e, e) > 0; So, the right hand side of (b) is λhdλ + λhdλ + (θ + θ)|λ|2h. Now,
|s|2 = λλh, so

d(|s|2) = λλdh+ h(λdλ+ λdλ).

From (b), we deduce dh = (θ + θ)h, and so,

θ + θ =
dh

h
= d(log h) = ∂(log h) + ∂(log h).

Using (a) and the decomposition by type, we get

θ = ∂(log h) = ∂ log(|e|2).

As Θ = dθ − θ ∧ θ, we get
Θ = dθ = (∂ + ∂)(∂ log(|e|2)),

i.e.,
Θ = ∂∂ log(|e|2).

Now, recall

dc =
i

4π
(∂ − ∂),

so that

ddc = −dcd =
i

2π
∂∂ = − i

2π
∂∂,

and 2πiddc = ∂ ∂. Consequently,
Θ = πiddc log(|e|2).

This holds for any local frame, e, and has nothing to do with the fact that L comes from a divisor.

Now, L = OX(D) and assume that the local equations for D are fα = 0 (on Uα, some open in the
trivializing cover for L on X). We know the transition functions are

gβα =
fβ
fα

;

Therefore, the local vectors sα = fαeα form a global section, s, of OX(D). The zero locus of this section is
exactly D. As the bundle L is unitary, gβα ∈ U(1), which implies |fβ | = |fα| and so, |fαeα| is well defined.
Thus for small ǫ > 0,

D(ǫ) = {z ∈ X | |s(z)|2 < ǫ}
is a tubular neighborhood of D.

Look at X −D(ǫ), then OX(D) ↾ X −D(ǫ) is trivial as the section s is never zero there. Therefore, sα
will also do as a local frame for OX(D) on X −D(ǫ).
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We need to compute
∫
X
Θ ∧ ω. By linearity, we may assume D is one of the W ’s. Then, by definition,

∫

X

Θ ∧ ω = lim
ǫ↓0

∫

X−D(ǫ)

2πiddc log |s|2 ∧ ω

If we apply Stokes, we find ∫

X

Θ ∧ ω = − lim
ǫ↓0

∫

∂D(ǫ)

2πidc log |s|2 ∧ ω

that is,
∫

X

Θ ∧ ω =
2π

i
lim
ǫ↓0

∫

∂D(ǫ)

dc log |s|2 ∧ ω. (†)

Now Vol(D(ǫ)) −→ 0 as ǫ ↓ 0, as we can see by using the Zariski stratification to reduce to the case where
D is non-singular. Also,

|s|2 = |fα|2|eα|2 = fαfαh,

where h = |eα|2 is positive bounded. We have

log |s|2 = log fα + log fα + log h

and as dc = i
4π (∂ − ∂),

dc log |s|2 =
i

4π
[−∂ log fα + ∂ log fα + (∂ − ∂) log h].

It follows that

2π

i
dc log |s|2 ∧ ω =

1

2
[−∂ log fα ∧ ω + ∂ log fα ∧ ω + (∂ − ∂) logh ∧ ω].

In the right hand side of (†), the third term is

1

2
lim
ǫ↓0

∫

∂D(ǫ)

(∂ − ∂) log h ∧ ω.

Now, (∂ − ∂) log h is bounded (X is compact) and Vol(∂D(ǫ)) −→ 0 as ǫ ↓ 0. So, this third term vanishes in
the limit. But, ∂ log fα = ∂ log fα and ω = ω, as ω is real. Consequently,

∂ log fα ∧ ω = ∂ log fα ∧ ω.

From (†), we get
∫

X

Θ ∧ ω =
1

2
lim
ǫ↓0

∫

∂D(ǫ)

−∂ log fα ∧ ω + ∂ log fα ∧ ω

= −1

2
lim
ǫ↓0

∫

∂D(ǫ)

∂ log fα ∧ ω − ∂ log fα ∧ ω

= −i lim
ǫ↓0
ℑ
∫

∂D(ǫ)

∂ log fα ∧ ω.

Now, fα = 0 is the local equation of D and we can compute the integral on the right hand side away
from the singularities of D as the latter have measure 0. The divisor D is compact, so we can cover it by
polydics centered at nonsingular points of D, say ζ0 is a such a point. By the local complete intersection
then, there exist local coordinates for X near ζ0, of the form

z1 = fα, z2, . . . , zn︸ ︷︷ ︸
rest

,
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on ∆ ∩ Uα (where ∆ is a polydisc). Break up ω as

ω = g(z1, . . . , zn) dz2 ∧ · · · ∧ dz2 ∧ · · ·︸ ︷︷ ︸
rest

+κ,

where κ is a form involving dz1 and dz1 in each summand. Also, as

∂ log fα = (∂ + ∂) log fα = d log fα =
dfα
fα

=
dz1
z1
,

we get

∂ log fα ∧ ω =
dz1
z1
g(z1, . . . , zn) dz2 ∧ · · · ∧ dz2 ∧ · · ·︸ ︷︷ ︸

rest

+ terms
dz1 ∧ dz1

z1
stuff.

Furthermore, dz1 ∧ dz1 = 2idx ∧ dy = 2irdr1dθ (in polar coordinates), so
∣∣∣∣
dz1 ∧ dz1

z1

∣∣∣∣ = 2|dr1||dθ1|,

and when ǫ ↓ 0, this term goes to 0. Therefore

lim
ǫ↓0

∫

∂D(ǫ)∩∆

dz1
z1
g(z1, . . . , zn)d(rest)d(rest) = lim

ǫ↓0

∫

(|z1|=Cǫ)
∏

rest of polydisc

dz1
z1
g(z1, . . . , zn)d(rest)d(rest)

and by Cauchy’s integral formula, this is

lim
ǫ↓0

∫

rest of poly∩∂D(ǫ)

2πig(0, z2, . . . , zn)d(rest)d(rest) = 2πi

∫

D∩∆

ω.

Adding up the contributions from the finite cover of polydics, we get

ℑ lim
ǫ↓0

∫

∂D(ǫ)

∂ log fα ∧ ω = ℑ 2πi

∫

D

ω = 2π

∫

D

ω,

as ω is real. But then,

−iℑ lim
ǫ↓0

∫

∂D(ǫ)

log fα ∧ ω = −2πi
∫

X

ω

from which we finally deduce
∫
X
Θ ∧ ω = −2πi

∫
D
ω, that is,

∫

X

i

2π
Θ ∧ ω =

∫

D

ω,

as required.

Corollary 3.32 Suppose V is a U(q)-bundle on our compact X (so that differentiably, V is generated by
its sections). Or, if V is a holomorphic bundle, assume it is generated by its holomorphic sections. Take a
generic section, s, of V and say V has rank r. Then, the set s = 0 has complex codimension r (in homology)
and is the carrier of cr(V ).

Proof . The case r = 1 is exactly the theorem above. Differentiably,

V = L1

∐
L2

∐
· · ·
∐

Lr,

for the diagonal line bundles of V . Holomorphically, this is also OK but over the space [∆]V . So, the
transition matrix is a diagonal matrix

diag(gβ1α, . . . , g
β
r α) on Uα ∩ Uβ
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and sα = (s1α, . . . , sr α). So,

diag(gβα)sα = (gβ1αs1α, . . . , g
β
r αsr α) = sβ

which shows that each sj α is a section of Lj. Note that s = 0 iff all sj = 0. But, the locus sj = 0
carries c1(Lj), by the previous theorem. Therefore, s = 0 corresponds to the intersection in homology of the
carriers of c1(L), . . . , c1(Lr). But, intersection in homology is equivalent to product in cohomology, so the
cohomology class for s = 0 is

c1(L1)c1(L2) · · · c1(Lr) = cr(V )

as desired.

General Principle for Computing cq(V ), for a rank r vector bundle, V .

(1) Let L be an ample line bundle, then V ⊗ L⊗m is generated by its sections for m >> 0.

(2) Pick r generic sections, s1, . . . , sr, of V ⊗L⊗m. Form s1 ∧ · · · ∧ sr−q+1, a section of
∧r−q+1

(V ⊗L⊗m).
Then, the zero locus of s1 ∧ · · · ∧ sr−q+1 carries the Chern class, cq(V ⊗ L⊗m), of V ⊗ L⊗m.

[
When q = r, this is the corollary. When q = 1, we have s1 ∧ · · · ∧ sr, a section of

∧r
V ⊗ L⊗m, and

it is generic (as the fibre dimension is 1). We get c1(
∧r

V ⊗ L⊗m) and we know that it is equal to

c1(V ⊗ L⊗m).
]

(3) Use the relation from the Chern polynomial

c(V ⊗ L⊗m)(t) =
∏

(1 + (γj +mc1(L))t)

to get the elementary symmetric functions of the γj ’s, i.e., cq(V ).

Remark: if 1 < q < r, our section s1 ∧ · · · ∧ sr−q+1 is not generic but it works.

Theorem 3.33 Say X is a complex analytic or algebraic, compact, smooth, manifold and j : W →֒ X is a
smooth, complex, codimension q submanifold. Write N for the normal bundle of W in X; this is rank q
(U(q)) vector bundle on W . The subspace W corresponds to a cohomology class, ξ, in H2q(X,Z) (in fact,
in Hq,q(X,C)) and so we get j∗ξ ∈ H2q(W,Z). Then, we have

cq(N ) = j∗W.

Proof . We begin with the case q = 1. In this case, W is a divisor and we know N = OX(W ) ↾ W . By
Corollary 3.32, the Chern class c1(N ) is carried by the zero locus of a section, s,of N . Now, W ·W in X as
a cycle is just a moving of W by a small amount and then an ordinary intersection of W and the new moved
cycle. We see that W ·W = c1(N ) as cycle on W . But, j∗W is just W ·W as cycle (by Poincaré duality).
So, the result holds when q = 1. If q > 1 and if W is a complete intersection in X , then since cq(N ) is
computed by repeated pullbacks and each pullback gives the correct formula (by the case q = 1), we get the
result. In the general case, we have two classes j∗W and cq(N ). If there exists an open cover, {Uα}, of W
so that

j∗W ↾ Uα = cq(N ) ↾ Uα for all α,

then we are done. But, W is smooth so it is a local complete intersection (LCIT). Therefore, we get the
result by the previous case.



212 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

Corollary 3.34 If X is a compact, complex analytic manifold and if TX = holomorphic tangent bundle has
rank q = dimCX, then

cq(TX) = χtop =

2q∑

i=0

(−1)ibi

(Here, bi = dimRH
i(X,Z).)

Proof . (Essentially due to Lefschetz). Look at X
∏
X and the diagonal embedding, ∆: X → X

∏
X . So,

X →֒ X
∏
X is a smooth codimension q submanifold. An easy argument shows that

TX ∼= NX →֒X
∏
X = N

and the previous theorem implies
cq(TX) = cq(N ) = X ·X

in X
∏
X . Now, look at the map f : X → X given by

pr2 ◦ ǫσ,

where ǫ is small and σ is a section of N . The fixed points of our map give the cocycle X ·X . The Lefschetz
fixed point Theorem says the cycle of fixed points is given by

2q∑

i=0

(−1)itr f∗ on Hi(X,Z).

But, for ǫ small, the map f is homotopic to id, so f∗ = id∗. Now, tr id∗ = dimension of space = bi(X) if we
are on Hi(X). So the right hand side of the Lefschetz formula is χtop, as claimed.

Segre Classes.

Let V be a vector bundle on X , then we have classes sj(V ), and they are defined by

1 +

∞∑

j=1

sj(V )tj =
1

c(V )(t)
.

As c(V )(t) is nilpotent, we have

1

c(V )(t)
= 1− (c1(V )t+ c2(V )t2 + · · · ) + (c1(V )t+ c2(V )t2 + · · · )2 + · · ·

and so,

s1(V ) = −c1(V )

s2(V ) = c21(V )− c2(V ),

etc.

Pontrjagin Classes.

Pontrjagin classes are defined for real O(q)-bundles over real manifolds. We have the commutative
diagrams

U(q) �
� ζ //

� _

��

O(2q)
� _

��
GL(q,C) �

� // GL(2q,R)
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where ζ(z1, . . . , zq) = (x1, y1, . . . , xq, yq), with zj = xj + iyj and

O(q) �
� ψ //

� _

��

U(q)
� _

��
GL(q,R) �

� // GL(q,C)

where ψ(A) is the real matrix now viewed as a complex matrix. Given ξ, an O(q)-bundle, we have ψ(q), a
U(q)-bundle. Define

The Pontrjagin classes, pi(ξ), are defined by

pi(ξ) = (−1)ic2i(ψ(ξ)) ∈ H4i(X,Z).

The generalized Pontrjagin classes, Pi(ξ) and the generalized Pontrjagin polynomial, P (ξ)(t), are defined by

P (ξ)(t) = c(ψ(ξ))(t), and Pj(ξ) = cj(ψ(xi)).

(Observe: P2l(ξ) = (−1)ppl(ξ).)
Now, ξ corresponds to map, X −→ BO(q). Then, for i even, Pi/2(ξ) is the pullback of something in

Hi(BO(q),Z). It is known that for i ≡ 2(4), the cohomology ring Hi(BO(q),Z) is 2-torsion, so 2Podd(ξ) = 0.
So, with rational coefficients, we get

Podd(ξ) = 0 and Peven(ξ) = ±Peven/2(ξ).

We have the following properties:

(0) P (ξ)(t) = 1 + stuff.

(1) f∗P (ξ)(t) = P (f∗ξ)(t), so f∗Pi(ξ) = Pi(f
∗ξ).

(2) Suppose ξ, η are bundle of rank q′, q′′, respectively, then

P (ξ ∐ η)(t) = P (ξ)(t)P (η)(t)

and if we set p(ξ)(t) =
∑∞
j=0 pj(ξ)t

2j , then

p(ξ ∐ η)(t) = p(ξ)(t)p(η)(t), mod elements of order 2 in H•(X,Z).

(3) Suppose c(ψ(ξ))(t) has Chern roots γi. Then, the polynomial
∑∞

j=0(−1)jpj(ξ)t2j has roots γ2i ; in fact,

∞∑

j=0

(−1)jpj(ξ)t2j =
(∑

l

cj(ξ)t
l
)(∑

m

(−1)mcm(ξ)tm
)
.

Proposition 3.35 Say ξ is a U(q)-bundle and make ζ(ξ), an O(2q)-bundle. Then

∞∑

j=0

(−1)jpj(ζ(ξ))t2j =
(∑

l

cj(ξ)t
l
)(∑

m

cm(ξD)tm
)
.

Proof . Consider the maps U(q) →֒ O(2q) →֒ U(2q). By linear algebra, if A ∈ U(q), its image in U(2q) by
this map is (

A 0
0 A

)
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after an automorphism of U(2q), which automorphism is independent of A. By Skolem-Noether, the auto-
morphism is of the form

H−1(ψζ(A))H,

for some H ∈ GL(2q,C). For an inner automorphism, the cohomology class of the vector bundle stays the
same. Thus, this cohomology class is the class of

(
A 0
0 A

)
.

Now, we know the transition matrix of ξD is the transpose inverse of that for ξ. But, A is unitary, so

A = (A−1)⊤ = AD

and we deduce that ψζ(A) has as transition matrix

(
A 0
0 AD

)
.

Consequently, the right hand side of our equation is

(∑

l

cj(ξ)t
l
)(∑

m

cm(ξD)tm
)
,

as required.
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3.3 The L-Genus and the Todd Genus

The material in this section and the next two was first published in Hirzebruch [8].

Let B be a commutative ring with 1, and let Z, α1, . . . , αn, . . . be some independent indeterminates, all
of degree 1; make new independent indeterminates

qj = σj(α’s).

(The σj are the symmetric functions in the α’s; for example, q1 = α1 + · · · + αn.) All computations are
carried out in the ring B = B[[Z;α1, . . . , αn, . . .]]. We have the subring P = B[[Z; q1, . . . , qn, . . . , ]] and in
P , we have certain units (so-called one-units), namely

1 +
∑

j≥1

bjZ
j, where bj ∈ B.

If Q(z) is a one-unit, 1 +
∑

j≥1 bjZ
j , write

Q(z) =

∞∏

j=1

(1 + βjZ)

and call the βj ’s the “roots” of Q. In the product
∏∞
l=1Q(αjZ), the coefficient of Zk is independent of the

order of the α’s and is a formal series in the elementary symmetric functions, qj , of the α’s. In fact, this

coefficient has weight k and begins with bkq
k
1 + · · · , call the coefficients KQ

k (q1, q2, . . . , qk). We deduce that

1 +

∞∑

l=1

KQ
l (q1, q2, . . . , ql)z

l =

∞∏

l=1

Q(αjZ).

We see that a 1-unit, Q(Z) = 1 +
∑

j≥1 bjZ
j, yields a sequence of polynomials (in the elementary

symmetric functions q1, . . . , qk) of weights, 1, 2, . . ., say {KQ
l }∞l=1, called the multiplicative sequence of the

1-unit.

Conversely, given some sequence of polynomials, {Kl}∞l=1, it defines an operator on 1-units to 1-units,
call it K. Namely,

K(1 +
∑

j≥1

qjZ
j) = 1 +

∞∑

l=1

Kl(q’s)Z
l.

So, Q gives the operator KQ; namely,

K(1 +
∑

j≥1

qjZ
j) = 1 +

∞∑

l=1

KQ
l (q’s)Z

l.

Claim. When Q is given, the operator KQ is multiplicative:

KQ(1 +
∑

j≥1

q′jZ
j)KQ(1 +

∑

j≥1

q′′j Z
j) = KQ((1 +

∑

j≥1

q′jZ
j)(1 +

∑

j≥1

q′′j Z
j)).

Now, to see this, the left hand side is

[1 +

∞∑

l=1

KQ
l (q

′’s)Z l][1 +

∞∑

m=1

KQ
m(q

′′’s)Zm] =

∞∏

r=1

Q(α′
rZ)

∞∏

s=1

Q(α′′
sZ) =

∞∏

t=1

Q(αtZ),



216 CHAPTER 3. THE HIRZEBRUCH-RIEMANN-ROCH THEOREM

where we have chosen some enumeration of the α′s and the α′′s, say α1, . . . , αt, . . . = α′
1, α

′′
1 , α

′
2, α

′′
2 , . . .. But,

∞∏

t=1

Q(αtZ) = 1 +

∞∑

n=1

KQ
n (elem. symm. functions in α′s and α′′s)Zn,

which is the right hand side of the assertion.

If conversely, we have some endomorphism of the 1-units under multiplication, say K, look at
K(1 + Z) = 1 +

∑
j≥1 ajZ

j = Q(Z), some power series. Compute KQ. We have

KQ(1 +
∑

j≥1

qjZ
j) =

∞∏

l=1

Q(αlZ),

where 1 +
∑

j≥1 qjZ
j =

∏∞
j=1(1 + αjZ). So, as K is multiplicative,

K(1 +
∑

j≥1

qjZ
j) = K(

∞∏

j=1

(1 + αjZ)) =

∞∏

j=1

K(1 + αjZ).

By definition of Q, the right hand side of the latter is

∞∏

l=1

Q(αlZ) = KQ(1 +
∑

j≥1

qjZ
j)

and this proves:

Proposition 3.36 The endomorphisms (under multiplication) of the 1-units are in one-to-one correspon-
dence with the 1-units. The correspondence is

endo K  1-unit K(1 + Z),

and
1-unit Q endo KQ.

We can repeat the above with new variables: X (for Z); cj (for qj); γj (for αj); and connect with the
above by the relations

Z = X2;αl = γ2l .

This means

∞∑

i=0

(−1)iqiZi =
( ∞∑

j=0

cjX
j
)( ∞∑

r=0

cr(−X)r
)

(∗)

and if we set Q̃(X) = Q(X2) = Q(Z), then

KQ
l (q1, . . . , ql) = KQ̃

2l(c1, . . . , c2l) and KQ̃
2l+1(c1, . . . , c2l+1) = 0.

For example, (∗) implies that q1 = c21 − 2c2, etc.

Proposition 3.37 If B ⊇ Q, then there is one and only one power series, L(Z), so that for all k ≥ 0, the
coefficient of Zk in L(Z)2k+1 is 1. In fact,

L(Z) =

√
Z

tanh
√
Z

= 1 +

∞∑

l=1

(−1)l−1 22l

(2l)!
BlZ

l.
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Proof . For k = 0, we see that L(Z) must be a 1-unit, L(Z) = 1 +
∑∞

j=1 bjZ
j . Consider k = 1; then,

L(Z)3 = (1 + b1Z +O(Z2))3, so

(1 + b1Z)
3 +O(Z2) = 1 + 3b1Z +O(Z2),

which implies b1 = 1/3. Now, try for b2: We must have

(
1 +

1

3
Z + b2Z +O(Z3)

)5

=

(
1 +

1

3
Z + b2Z

)5

+O(Z3)

=

(
1 +

1

3
Z

)5

+ 5

(
1 +

1

3
Z

)4

b2Z +O(Z3)

= junk +

(
10

9
+ 5b2

)
Z2 +O(Z3).

Thus,

5b2 = 1− 10

9
= −1

9
,

i.e., b2 = −1/45. It is clear that we can continue by induction and obtain the existence and uniqueness of
the power series.

Now, let

M(Z) =

√
Z

tanh
√
Z
.

Then, M(Z)2k+1 is a power series and the coefficient of Zk is (by Cauchy)

1

2πi

∫

|Z|=ǫ

M(Z)2k+1

Zk+1
dZ.

Let t = tanh
√
Z. Then,

dt = sech2
√
Z

(
1

2
√
Z

)
dZ,

so
M(Z)2k+1

zk+1
dZ =

√
Z2
√
Zdt

t2k+1Zsech2
√
Z

=
2dt

t2k+1sech2
√
Z
.

However, sech2Z = 1− tanh2 Z = 1− t2, so

M(Z)2k+1

zk+1
dZ =

2dt

t2k+1(1 − t2) .

When t goes once around the circle |t| = small(ǫ), Z goes around twice around, so

1

2πi

∫

|t|=small(ǫ)

2dt

t2k+1(1− t2) = twice what we want

and our answer is

1

2πi

∫

|t|=small(ǫ)

dt

t2k+1(1 − t2) =
1

2πi

∫

|t|=small(ǫ)

t2kdt

t2k+1(1− t2) + other zero terms = 1,

as required.
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Recall that

L(Z) = 1 +
1

3
Z − 1

45
Z2 +O(Z3).

Let us find L1(q1) and L2(q1, q2). We have

1 + L1(q1)Z + L2(q1, q2)Z
2 + · · · = L(α1Z)L(α2Z)

=

(
1 +

1

3
α1Z −

1

45
α2
1Z

2 + · · ·
)(

1 +
1

3
α2Z −

1

45
α2
2Z

2 + · · ·
)

= 1 +
1

3
(α1 + α2)Z +−

(
1

45
(α2

1 + α2
2) +

1

9
α1α2

)
Z2 +O(Z3).

We deduce that

L1(q1) =
1

3
q1

and since α2
1 + α2

2 = (α1 + α2)
2 − 2α1α2 = q21 − 2q2, we get

L2(q1, q2) = −
1

45
(7q2 − q21) = −

1

32 · 5(7q2 − q
2
1).

Here are some more L-polynomials:

L3 =
1

33 · 5 · 7(62q3 − 13q1q2 + 2q31)

L4 =
1

34 · 52 · 7(381q4 − 71q3q1 − 19q22 + 22q2q
2
1 − 3q41)

L5 =
1

35 · 52 · 7 · 11(5110q5 − 919q4q1 − 336q3q2 + 237q3q
2
1 + 127q22q1 − 83q2q

3
1 + 10q51).

Geometric application: Let X be an oriented manifold and let TX be its tangent bundle. Take a multi-
plicative sequence, {Kl}, in the Pontrjagin classes of TX : p1, p2, . . ..

Definition 3.3 The K-genus (or K-Pontrjagin genus) of X is
{
0 if dimRX 6≡ 0 (mod 4),
Kn(p1, . . . , pn)[X ] if dimRX = 4n.

(a 4n rational cohomology class applied to a 4n integral homology class gives a rational number). When
Kl = Ll (our unique power series, L(Z)), we get the L-genus of X , denoted L[X ].

Look at P2n
C , of course, we mean its tangent bundle, to compute characteristic classes. Write temporarily

Θ = TP2n
C

a U(2n)-bundle. We make ζ(Θ) (remember, ζ : U(2n)→ O(4n)), then we know

∑

i

pi(ζ(Θ))(−Z)i =
(∑

j

cj(Θ)Xj
)(∑

k

ck(Θ)(−X)k
)
,

with Z = X2. Now, for projective space, P2n
C ,

1 + c1(Θ)t+ · · ·+ c2n(Θ)t2n + t2n+1 = (1 + t)2n+1.

Therefore,

2n∑

i=0

pi(ζ(Θ))(−X2)i + terms in X4n+1, X4n+2 = (1 +X)2n+1(1 −X)2n+1 = (1 −X2)2n+1.
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Hence, we get

pi(ζ(Θ)) =

(
2n+ 1

i

)
H2i, 1 ≤ i ≤ n.

Let KL be the multiplicative homomorphism coming from the 1-unit, L. Then

KL(1 +
∑

i

pi(−X2)i) =
∑

j

Ll(p1, . . . , pl)(−X2)l

= KL((1 −X2)2n+1)

= KL(1−X2)2n+1

= L(−X2)2n+1 = L(−Z)2n+1.

The coefficient of Zn in the latter is (−1)n and by the first equation, it is (−1)nLn(p1, . . . , pn). Therefore,
we have

Ln(p1, . . . , pn) = 1, for every n ≥ 1.

Thus, we’ve proved

Proposition 3.38 On the sequence of real 4n-manifolds: P2n
C , n = 1, 2, . . ., the L-genus of each, namely

Ln(p1, . . . , pn), is 1. The L-genus is the unique genus having this property. Alternate form: If we substitute
pj =

(
2n+1
j

)
in the L-polynomials, we get

Ln

((
2n+ 1

1

)
, . . . ,

(
2n+ 1

n

))
= 1.

Now, for the Todd genus.

Proposition 3.39 If B ⊇ Q, then there is one and only one power series, T (X), having the property: For
all k ≥ 0, the coefficient of Xk in T (X)k+1 is 1. In fact this power series defines the holomorphic function

X

1− e−X .

Proof . It is the usual induction, but we’ll compute the first few terms. We see that k = 0 implies that T is
a 1-unit, ie.,

T (X) = 1 + b1X + b2X
2 +O(X3).

For k = 1, we have
T (X)2 = (1 + b1X)2 +O(X2) = 1 + 2b1X +O(X2),

so

b1 =
1

2
.

For k = 2, we have

T (X)3 =

(
1 +

1

2
X + b2X

2

)3

+O(X3)

=

(
1 +

1

2
X

)3

+ 3

(
1 +

1

2
X

)2

b2X
2 +O(X3)

= stuff +
3

4
X2 + 3b2X

2 +O(X3).

Therefore, we must have
3

4
+ 3b2 = 1,
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that is,

b2 =
1

12
.

So,

T (X) = 1 +
1

2
X +

1

12
X2 + · · · .

That

T (X) =
X

1− e−X
comes from Cauchy’s formula.

From T (X), we make the opertor KT , namely,

KT (1 + c1X + c2X
2 + · · · ) = 1 +

∞∑

j=1

Tj(c1, . . . , cj)X
j =

∞∏

i=0

T (γiX),

where

1 + c1X + c2X
2 + · · · =

∞∏

i=0

(1 + γiX).

Let’s work out T1(c1) ans T2(c1, c2). From

1 + c1X + c2X
2 = (1 + γ1X)(1 + γ2X),

we get

1 + T (c1)X + T2(c1, c2)X
2 + · · · = T (γ1X)T (γ2X)

=

(
1 +

1

2
γ1X +

1

12
γ21X

2 + · · ·
)(

1 +
1

2
γ2X +

1

12
γ22X

2 + · · ·
)

= 1 +
1

2
(γ1 + γ2) +

(
1

12
(γ21 + γ22) +

1

4
γ1γ2

)
X2 + · · · .

We get

T1(c1) =
1

2
c1

and

T2(c1, c2) =
1

12
(γ21 + γ22) +

1

4
γ1γ2 =

1

12
(c21 − 2c2) +

1

4
c2 =

1

12
(c21 + c2).

i.e.,

T2(c1, c2) =
1

12
(c21 + c2).

From this T , we make for a complex manifold, X , its Todd genus ,

Tn(X) = Tn(c1, . . . , cn)[X ],

where c1, . . . , cn = Chern classes of TX (the holomorphic tangent bundle) and [X ] = the fundamental
homology class on H2n(X,Z). This is a rational number.

Suppose X and Y are two real oriented manifolds of dimensions n and r. Then

TX
∏
Y = pr∗1TX ∐ pr∗2TY .

So, we have

1 + p1(X
∏

Y )Z + · · · = pr∗1(1 + p1(X)Z + · · · )pr∗2(1 + p1(Y )Z + · · · ). (†)
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Further observe that if ξ, η are cohomology classes for X , resp. Y , then ξ ⊗ 1, 1 ⊗ η are pr∗1(ξ), pr
∗
2(η), by

Künneth and we have

ξ ⊗ η[X
∏

Y ] = ξ[X ]η[Y ]. (††)

Now, say K is an endomorphism of the 1-units from a given 1-unit, so it gives the K-genera of X
∏
Y , X ,

Y . We have

K(1 + p1(X
∏

Y )Z + · · · ) = K((1 + p1(X)Z + · · · )(1 + p1(Y )Z + · · · ))
= K(1 + p1(X)Z + · · · )K(1 + p1(Y )Z + · · · ).

Now, evaluate on [X
∏
Y ], find a cycle of X

∏
Y ] in Hn+r(X

∏
Y,Z). By (††), we get

Kn+r(p1, . . . , pn+r)[X
∏

Y ] = Kn(p1, . . . , pn)[X ]Kr(p1, . . . , pr)[Y ]

and

Proposition 3.40 If K is an endomorphism of 1-units, then the K-genus is multiplicative, i.e.,

K(X
∏

Y ) = K(X)K(Y ).

Interpolation among the genera (of interest).

Let y be a new variable (the interpolation variable). Make a new function, with coefficients in B ⊇ Q[y],

Q(y;x) =
x(y + 1)

1− e−x(y+1)
− xy

(First form of Q(y;x)). We can also write

Q(y;x) =
x(y + 1)ex(y+1)

ex(y+1) − 1
− xy

=
x(y + 1)(ex(y+1) − 1 + 1)

ex(y+1) − 1
− xy

= x(y + 1) +
x(y + 1)

ex(y+1) − 1
− xy

=
x(y + 1)

ex(y+1) − 1
+ x.

(Second form of Q(y;x)).

Let us compute the first three terms of Q(y;x). As

e−x(y+1) = 1− x(y + 1) +
(x(y + 1))2

2!
+ · · ·+ (−1)k (x(y + 1))k

k!
+ · · · ,

we have

1− e−x(y+1) = x(y + 1)− (x(y + 1))2

2!
+ · · ·+ (−1)k−1 (x(y + 1))k

k!
+ · · ·

and so,

x(y + 1)

1− e−x(y+1)
=

[
1 + · · ·+ (−1)k−1 (x(y + 1))k−1

k!
+ · · ·

]−1

.
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If we denote this power series by 1+α1x+α2x
2 + · · · , we can solve for α1, α2, etc., by solving the equation

1 = (1 + α1x+ α2x
2 + · · · )

[
1− x(y + 1)

2
+ · · ·+ (−1)k−1 (x(y + 1))k−1

k!
+ · · ·

]
.

This implies

α1 =
(y + 1)

2

and

α2 =
1

4
(y + 1)2 − 1

6
(y + 1)2 =

1

12
(y + 1)2.

Consequently,

Q(y;x) = 1 +
x(y + 1)

2
+

1

12
x2(y + 1)2 +O(x3(y + 1)3)− xy,

i.e.,

Q(y;x) = 1 +
x(1 − y)

2
+

1

12
x2(y + 1)2 +O(x3(y + 1)3).

Make the corresponding endomorphisms, Ty. Recall,

Ty(1 + c1X + · · ·+ cnX
n + · · · ) =

{∏∞
j=1Q(y; γjX)∑∞
j=0 Tj(y; c1, . . . , cj)X

j,

where, of course,

1 + c1X + · · ·+ cnX
n + · · · =

∞∏

j=1

(1 + γiX).

We obtain the Ty-genus. The 1-unit, Q(y;x), satisfies

Proposition 3.41 If B ⊇ Q[y], then there exists one and only one power series (it is our Q(y;x)) in B[[x]]

(actually, Q[y][[x]]) so that, for all k ≥ 0, the coefficient of Xk in Q(y;x)k+1 is
∑k

i=0(−1)iyi.

Proof . The usual (by induction). Let us check for k = 1. We have

Q(y;x)2 =

(
1 +

x(1− y)
2

)2

+O(x2) = 1 + (1− y)x+O(x2).

The coefficient of x is indeed 1− y =
∑1
i=0(−1)iyi.

Look at Q(y;x) for y = 1,−1, 0. Start with −1. We have

Q(−1;x) = 1 + x.

Now, for y = 0, we get

Q(0; y) = T (X) =
x

1− e−x .

Finally, consider y = 1. We have

Q(1;x) =

(
2

1− e−2x
− 1

)
x

=

(
2e2x

e2x − 1
− 1

)
x

=

(
e2x + 1

e2x − 1

)
x

=
x

tanhx
= L(x2).
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We proved Q(y;x) is the unique power series in Q[y][[x]] so that the coefficient of xk in Q(y;x)k+1 is∑k
i=0(−1)iyi. Therefore, we know (once again) that Q(0;x) = Q(x) = the unique power series in Q[x] so

that the coefficient of xk in Q(x)k+1 is 1. Since, for projective space, PkC, we have

1 + c1X + · · ·+ ckX
K +Xk+1 = (1 +X)k+1

and since

KQ((1 +X)k+1) =

{
KQ(1 +X)k+1 = Q(X)k+1
∑∞
l=0 Tl(c1, · · · , cl)X l

we get
Tk(c1, . . . , ck) = 1

when the c’s come from PkC and if Tk(y; c1, . . . , ck) means the corresponding object for Q(y;x), we get

Proposition 3.42 The Todd genus, Tn(c1, . . . , cn), and the Ty-genus, Tn(y; c1, . . . , cn), are the only genera
so that on all PnC (n = 0, 1, 2, . . .) they have values 1, resp.

∑∞
i=0(−1)iyi.

Write Ty for the multiplicative operator obtained from Q(y;x), i.e.,

Ty(1 + c1X + · · ·+ cjX
j + · · · ) =

∞∑

n=0

Tn(y; c1, . . . , cn)X
n.

Equivalently,

Ty(1 + c1X + · · ·+ cjX
j + · · · ) =

∞∏

j=1

Q(y; γjX),

where

(1 + c1X + · · ·+ cjX
j + · · · =

∞∏

j=1

(1 + γjX).

Now, for all n, the expression Tn(y; c1, . . . , cn) is some polynomial (with coefficients in the c’s) of degree at
most n in y. Thus, we can write

Tn(y; c1, . . . , cn) =

n∑

l=0

T (l)
n (y; c1, . . . , cn)y

l,

and this is new polynomial invariants, the T
(l)
n (y; c1, . . . , cn).

We have

Tn(−1; c1, . . . , cn) =
n∑

l=0

T (l)
n (c1, . . . , cn) = cn,

by the fact that Q(−1;x) = 1 + x. Next, when y = 0,

Tn(0; c1, . . . , cn) = T (0)
n (c1, . . . , cn) = Tn(c1, . . . , cn).

When y = 1, then

Tn(1; c1, . . . , cn) =

n∑

l=0

T (l)
n (c1, . . . , cn) =

{
0 if n is odd
Ln

2
(p1, . . . , pn

2
) if n is even.

Therefore, we get
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Proposition 3.43 If B ⊇ Q[y], then we have

(A)
∑n
l=0 T

(l)
n (c1, . . . , cn) = cn, for all n.

(B) T
(0)
n (c1, . . . , cn) = td(c1, . . . , cn) (= Tn(c1, . . . , cn)).

(C)
n∑

l=0

T (l)
n (c1, . . . , cn) =

{
0 if n is odd
Ln

2
(p1, . . . , pn

2
) if n is even.

The total Todd class of a vector bundle, ξ, is

td(ξ)(t) =

∞∑

j=0

tdj(c1, . . . , cj)t
j = 1 +

1

2
c1(ξ) +

1

12
(c21(ξ) + c2(ξ))t

2 +
1

24
(c1(ξ)c2(ξ))t

3 + · · · .

Here some more Todd polynomials:

T4 =
1

720
(−c4 + c3c1 + 3c22 + 4c2c

2
1 − c41)

T5 =
1

1440
(−c4c1 + c3c

2
1 + 3c22c1 − c2c31)

T6 =
1

60480
(2c6 − 2c5c1 − 9c4c2 − 5c4c

2
1 − c33 + 11c3c2c1 + 5c3c

3
1 + 10c32 + 11c22c

2
1 − 12c2c

4
1 + 2c61).

Say
0 −→ ξ′ −→ ξ −→ ξ′′ −→ 0

is an exact sequence of vector bundles. Now,

(1 + c′1t+ · · ·+ c′q′t
q′)(1 + c′′1t+ · · ·+ c′′q′′t

q′′ ) = 1 + c1t+ · · ·+ cqt
q,

and td is a multiplicative sequence, so

td(ξ′)(t)td(ξ′′)(t) = td(ξ)(t).

Let us define the K-ring of vector bundles. As a group, this is the free abelian group of isomorphism
classes of vector bundles modulo the equivalence relation

[V ] = [V ′] + [V ′′]

iff
0 −→ V ′ −→ V −→ V ′′ −→ 0 is exact.

For the product, define
[V ] · [W ] = [V ⊗W ].

The ring K is a graded ring by rank (the rank of the vb).

Say ξ is a vector bundle and

1 + c1t+ · · ·+ cqt
q + · · · =

∏
(1 + γjt).

Remember,

1 + td1(c1)t+ · · ·+ tdn(c1, . . . , cn)t
n + · · · =

∏
T (γjt) =

∏ γjt

1− e−γjt .
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Now, we define the Chern character of a vector bundle. For

1 + c1t+ · · ·+ cqt
q + · · · =

∏
(1 + γjt)

set

ch(ξ)(t) =
∑

j

eγjt = ch0(ξ) + ch1(ξ)t+ · · ·+ chn(ξ)t
n + · · · ,

where chj(ξ) is a polynomial in c1, . . . , cj of weight j. Since

eγjt =

∞∑

r=0

(γjt)
r

r!
,

we have ∑

j

eγjt =
∑

j

∑

r

eγjt =
∑

r

( 1

r!

∑

j

γrj

)
tr,

which shows that

chr(c1, . . . , cr) =
1

r!

∑

j

γrj =
1

r!
sr(γ1, . . . , γq).

The sums, sr, can be computed by induction using Newton’s formulae:

sl − sl−1c1 + sl−2c2 + · · ·+ (−1)l−1s1cl−1 + (−1)llcl = 0.

(Recall, cj = σj(γ1, . . . , γq).) We have

ch1(c1) = c1

ch2(c1, c2) =
1

2
(c21 − 2c2)

ch3(c1, c2, c3) =
1

6
(c31 − 3c1c2 + 3c3)

ch4(c1, c2, c3, c4) =
1

24
(c41 − 4c21c2 + 4c1c3 + 2c22 − 4c4).

Say

0 −→ ξ′ −→ ξ −→ ξ′′ −→ 0

is an exact sequence of bundles. The Chern roots of ξ are the Chern roots of ξ′ together with those of ξ′′.
The definition implies

ch(ξ)(t) = ch(ξ′)(t) + ch(ξ′′)(t).

If ξ and η are vector bundles with Chern roots, γ1, . . . , γq and δ1, . . . , δr, then ξ⊗ η has Chern roots γi+ δj ,
for all i, j. By definition,

ch(ξ ⊗ η)(t) =
∑

i,j

e(γj+δj)t =
∑

i,j

eγjteδjt =
(∑

i

eγjt
)(∑

j

eγjt
)
= ch(ξ)(t)ch(η)(t).

The above facts can be summarized in the following proposition:

Proposition 3.44 The Chern character, ch(ξ)(t), is a ring homomorphism from K(vector(X)) to
H∗(X,Q).
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If ξ is a U(q)-vector bundle over a complex analytic manifold, X , write

T (X, ξ)(t) = ch(ξ)(t)td(ξ)(t),

the T -characteristic of ξ over X .

Remark: The T
(l)
n satisfy the duality formula

(−1)nT (l)
n (c1, . . . , cn) = T (n−l)

n (c1, . . . , cn).

To compute them, we can use

T (l)
n (c1, . . . , cn) = κn(ch(

l∧
ξD)(t)td(ξ)(t)),

where c1, . . . , cn are the Chern classes of the v.b., ξ, and κn always means the term of total degree n.
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3.4 Cobordism and the Signature Theorem

Let M be a real oriented manifold. Now, if dim(M) ≡ 0 (4), we have the Pontrjagin classes of M , say
p1, . . . , pn (with dim(M) = 4n). Say j1 + · · · + jr = n (a partition of n) and let P(n) denote all partitions
of n. Write this as (j). Consider pj1 · · · pjr , the product of weight j1, . . . , jr monomials in the p’s; this is in
H4n(M,Z). Apply pj1 · · · pjr to [M ] = fundamental cycle, we get an integer. Such an integer is a Pontrjagin
number of M , there are #(P(n)) of them.

Since
(−1)ipiZi =

(∑
cjX

j
)(∑

cl(−X)l
)
,

the Pontrjagin classes are independent of the orientation. introduce −M , the manifold M with the opposite
orientation. Then,

pj1 · · · pjr [−M ] = −pj1 · · · pjr [M ].

Define the sum, M +N , of two manifolds M and N as M ∐N , their disjoint union, again, oriented. We
have

H∗(M +N,Z) = H∗(M,Z)
∏

H∗(N,Z)

and consequently, the Pontrjagin numbers of M +N are the sums of the Pontrjagin numbers of M and N .

We also define M
∏
N , the cartesian product of M and N . By Künnneth,

[M
∏

N ] = [M ⊗ 1][1⊗N ],

so the Pontrjagin numbers of M
∏
N are the products of the Pontrjagin numbers of M and N .

The Pontrjagin numbers of manifolds of dimension n 6≡ 0 (4) are all zero.

We make an equivalence relation (Pontrjagin equivalence) on oriented manifolds by saying that

M ≡ N (P )

iff every Pontrjagin number of M is the equal to the corresponding Pontrjagin number of N . Let Ω̃n be the
set of equivalence classes of dimension n manifolds, so that Ω̃n = (0) iff n 6≡ 0 (4) and

∐

n≥0

Ω̃n =
∐

r≥0

Ω̃4r.

We see that Ω̃ is a graded abelian torsion-free group. For Ω̃⊗Z Q, a ring of interest.

Proposition 3.45 For a sequence, {M4k}∞k=0 of manifolds, the following are equivalent:

(1) For every k, sk[M4k] 6= 0. Here, write 1 + p1X + · · · + pnZ
n as a product

∏m≥n
j=1 (1 + βjZ), where

equality means up to terms of degree n if m > n and then

sk = βk1 + · · ·+ βkm(m ≥ k)

a polynomial in p1, . . . , pk, of weight k, so it makes sense on M4k.

(2) The mapping from multiplicative sequences with coefficients in B (⊇ Q) to
∏

ℵ0
B, via

{Kj}∞j=1 7→ (K1[M1], . . . , (Kk[Mk], . . .)

is a bijection. That is, given any sequence a1, . . . , ak, . . . of elements of B, there is one and only one
multiplicative sequence, {Kl} (coeffs in B), so that

Kk(p1, . . . , pk)[M4k] = ak.
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Proof . (1) =⇒ (2). Choose a1, a2, . . . from B. Now, multiplicative sequences with coefficients in B are in
one-to-one correspondence with one-units of B[[z]], say Q(z) is the 1-unit. If

1 + p1Z + · · ·+ pkZ
k + · · · =

∏

j

(1 + βjZ),

then
1 +K1(p1)Z + · · ·+Kk(1, . . . , pk)Z

k + · · · =
∏

j

Q(βjZ).

We must produce a unique 1-unit 1 + b1Z + · · · = Q(Z), so that ak is equal to the coefficient of Zk applied
to M4k in

∏
j Q(βjZ)bk+ some polynomial in b1, . . . , bk−1, of weight k. This polynomial has Z-coefficients

and depends on the M4k. We need

ak = sk[M4k] + poly in b1, . . . , bk−1 (†)

By (1), all sl[M4k] 6= 0; by induction we can find unique bk’s from the ak’s.

(2) =⇒ (1). By (2), the equations (†) have a unique b-solution given the a’s. But then, all sk[M4k] 6= 0,
else no unique solution or worse, no solution.

Corollary 3.46 The sequence {P2k
C } satisfies (1) and (2). Such a sequence is called a basis sequence for

the n-manifolds.

Proof . We have
1 + p1Z + · · ·+ pkZ

k = (1 + h2Z)2k+1,

where h2 ∈ H4(P2k
C ,Z) (square of the hyperplane class). But then, βj = h2, for j = 1, . . . , 2k + 1 and

sk(P
2k
C ) =

2k+1∑

j=1

h2k(P2k
C ) = 2k + 1 6= 0

establishing the corollary.

Theorem 3.47 Suppose {M4k} is a basis sequence for Ω̃⊗ Q. Then, each α ∈ Ω̃⊗Q has the unique form∑
(j) ρ(j)M(j), where

(1) (j) = (j1, . . . , jr); j1 + · · ·+ jr = k; M(j) =M4j1

∏ · · ·∏M4jr .

(2) ρ(j) ∈ Q. Secondly, given any rational numbers, ρ(j), there is some α ∈ Ω̃⊗Q so that

p(j)(α) = pj1pj2 · · · pjr (α) = ρ(j).

(3) Given any sequence, {M4k}, of manifolds suppose α =
∑

(j) ρ(j)M(j), then, for every k ≥ 0, we have

sk(α) = ρksk(M4k).

(4) If each α ∈ Ω̃ ⊗Q is a sum
∑

(j) ρ(j)M(j), then the {M4k} are a basis sequence. So, the {M4k} are a

basis sequence iff the monomials M(j) = M4j1

∏ · · ·∏M4jr (over P(k), all k) form a basis of Ω̃ ⊗ Q
in the usual sense.

Proof . Note that, as abelian group, Ω̃4k has rank #(P(k)) (the number of Pontrjagin numbers of weight k
is #(P(k))).

(1) Pick indeterminates q1, . . . , ql over Q and choose any integer l ≥ 0. By the previous proposition, since

{M4k} is a basis sequence there exists one and only one multiplicative sequence, call it {K(l)
m }∞m=1, so that

K(l)
m [M4m] = qlm.
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We need only check our conclusion for α ∈ Ω̃4k ⊗Q for fixed k. Now,

dimQ Ω̃4k ⊗Q = #(P(k))

and there exist exactly #(P(k)) elements M(j), so all we need to show is

∑

(j)

ρ(j)M(j) = 0 implies all ρ(j) = 0.

Suppose
∑

(j) ρ(j)M(j) = 0 and apply the multiplicative sequence {K(l)
m }∞m=1. We get

∑

(j)

ρ(j)q
l
j1 · · · qljr = 0 for all l ≥ 0. (∗)

Write qlj1 · · · qljr = ql(l). The ql(l) are all pairwise distinct, so by choosing enough l, the equation (∗) gives

a system of linear equations (unknowns the ρ(j)) with a Vandermonde determinant. By linear algebra, all
ρ(j) = 0.

(2) This is now clear as the M(j) span Ω̃4k ⊗Q for all k.

(3) Look at Q(Z) = 1 + Zk and make the corresponding multiplicative sequence. We have

1 + k1(p1)Z + · · ·+Kk(p1, . . . , pk)Z
k + · · · =

∏

j≥k

(1 + βkj Z
k).

Therefore, Kl(p1, . . . , pl) = 0 if l < k and Kk(p1, . . . , pk) = βk1 + βk2 + · · · = sk. Apply this multiplicative
sequence to α, we get sk(α) = ρksk(M4k), as required.

(4) Suppose each α =
∑

(j) ρ(j)M(j), yet, for some k, sk(Mk) = 0. By (3), we have sk(α) = ρksk(M4k) =

0. It follows that sl(α) = 0, for all α. Now, let α = P2k
C . We get

2k + 1 = sk(α) = 0,

a contradiction.

Corollary 3.48 The map M4k 7→ Zk (and M(j) 7→ Zj1 · · ·Zjr) gives a Q-algebra isomorphism

Ω̃⊗Q ∼= Q[Z1, Z2, . . .], where deg(Zl) = 4l. (Here, {M4k} is a basis sequence.)

Corollary 3.49 The Q-algebra maps, Ω̃⊗Q −→ Q, are in one-to-one correspondence with the multiplicative
sequences with coefficients in Q (or, what’s the same, with the 1-units of Q[[Z]]). The map is

α ∈ Ω̃⊗Q 7→ K(α).

Proof . Multiplicative sequences correspond to 1-units 1 + b1Z + · · ·+ and (†) above shows we know the b’s
iff we know the value of the homomorphism on the M4k, i.e., on the Zk’s and then, use Corollary 3.48.

Note that manifolds with boundary also have a notion of orientation.

An oriented n-dimensional manifold, M , bounds iff there is an oriented manifold, V and an orientation
preserving diffeomorphism, ∂V ∼=M .

Definition 3.4 (R. Thom) Two manifolds, M and N are cobordant if M + (−N) bounds.

Introduce cobordism, the equivalence relation

M ≡ N (C) iff M is cobordant to N.

We see immediately that if M ≡ N (C) and M ′ ≡ N ′ (C), then
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(1) M ∐M ′ ≡ N ∐N ′ (C)

(2) −M ≡ −N (C)

(3) M
∏
M ′ ≡ N∏N ′ (C).

Using this equivalence, we have the graded abelian group (under ∐)

Ω =
∐

n

Ωn,

where Ωn is the set of equivalence classes of n-dimensional oriented manifolds under cobordism. We make
Ω into a ring as follows: Given α ∈ Ωm and β ∈ Ωn, then

αβ = class of(α
∏

β)

and (use homology), αβ = (−1)mnβα. We call Ω the oriented cobordism ring.

Theorem 3.50 (Pontrjagin) If M bounds (i.e., M ≡ 0 (C)) then all its Pontrjagin numbers vanish (i.e.,

M ≡ 0 (P )). Hence, there is a surjection Ω −→ Ω̃ and hence a surjection Ω⊗Q −→ Ω̃⊗Q.

Proof . We have M = ∂V , write i : M →֒ V for the inclusion. Let p1, . . . , pl, . . . be the Pontrjagin classes of
TV ; note, as M = ∂V ,

i∗TV = TV ↾ ∂V = TV ↾M = TM ∐ I,

where I denotes the trivial bundle. Therefore, the Pontrjagin classes of M are i∗(those of V ). So, for
4k = dimM and j1 + · · ·+ jr = k,

p(j)[M ] = i∗((pj1 · · · pjr )[M ]),

where [M ] is the 4k-cycle in H4k(V,Z). But, [M ] = 0 in H4k(V,Z), as M = ∂V . Therefore, the right hand
side is zero.

We will need a deep theorem of René Thom. The proof uses a lot of homotopy theory and is omitted.

Theorem 3.51 (R. Thom, 1954, Commentari) The groups Ωn of oriented n-manifolds are finite if
n 6≡ 0 (mod 4) and Ω4k = free abelian group of rank #(P(k))∐ finite abelian group. Hence, Ωn ⊗Q = (0) if

n 6≡ 0 (mod 4) and dim(Ω4k ⊗Q) = #(P(k)) = dim(Ω̃4k ⊗Q). We conclude that the surjection

Ω⊗Q −→ Ω̃⊗Q is an isomorphism. Therefore,

Ω⊗Q ∼=alg Q[Z1, . . . , Zn, . . .].

We will also need another theorem of Thom. First, recall the notion of index of a manifold, from Section
2.6. The index of M , denoted I(M) is by definition the signature, sgn(Q), where Q is the intersection form
on the middle cohomology, Hn(M,C), when n is even. So, I(M) makes sense if dimR M ≡ 0 (4).

Theorem 3.52 (R. Thom, 1952, Ann. Math. ENS) If the n-dimensional oriented manifold bounds, then
I(M) = 0.

In view of these two theorems we can reformulate our algebraic theorem on HomQ-alg(Ω̃⊗Q,Q) in terms
of Ω⊗Q.

Theorem 3.53 Suppose λ is a function from oriented n-manifolds to Q, M 7→ λ(M), satisfying

(1) λ(M +N) = λ(M) + λ(N); λ(−M) = −λ(M).
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(2) If M bounds, then λ(M) = 0.

(3) If {M4k} is a basis sequence for Ω, then when j1 + · · ·+ jr = k, we have

λ
(
M4j1

∏
· · ·
∏

M4jr

)
= λ(M4j1 ) · · ·λ(M4jr ).

Then, there exists a unique multiplicative sequence, {Kl}, so that for every M of dimension n,

λ(M) = Kn
4
(p1, . . . , pn

4
)[M ].

We get the fundamental theorem:

Theorem 3.54 (Hirzebruch Signature Theorem) For all real differentiable oriented manifolds, M , we have:

(1) If dimRM 6≡ 0 (mod 4), then I(M) = 0.

(2) If dimRM = 4k, then
I(M) = Lk(p1, . . . , pk)[M ].

Proof . Recall, I is a function from manifolds to Z and clearly satisfies (1). By Thom’s second Theorem
(Theorem 3.52), I satisfies (2). Take as basis sequence: M4k = P2k

C . We have

I(M4k) =
2k∑

p=0

(−1)php,q(M4k),

by the Hodge Index Theorem (Theorem 2.77). As hp,p = 1 and hp,q = 0 if p 6= q, we get

I(M4k) = 1.

Now we further know the Künneth formula for the hp,q of a product (of two, hence any finite number of
complex manifolds). Apply this and get (DX)

I
(
Pj1C
∏
· · ·
∏

PjrC

)
= 1.

Therefore, (3) holds. Then, our previous theorem implies I(M) = K(M) for some K, a multiplicative
sequence. But, K(P2k

C ) = 1, there and we know there is one and only one multiplicative sequence ≡ 1 on all
P2k
C , it is L. Therefore, I(M) = L, as claimed.
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3.5 The Hirzebruch–Riemann–Roch Theorem (HRR)

We can now state and understand the theorem:

Theorem 3.55 (Hirzebruch–Riemann–Roch) Suppose X is a complex, smooth, projective algebraic variety
of complex dimension n. If E is a rank q complex vector bundle on X, then

χ(X,OX(E)) = κn
(
ch(E)(t)td(X)(t)

)
[X ].

Here,

χ(X,OX(E)) =
n∑

i=0

(−1)idimHi(X,OX(E)).

We need to explicate the theorem.

(a) Write it using the Chern roots

1 + c1(E)t+ · · ·+ cq(E)tq =

q∏

i=1

(1 + γit), 1 + c1(X)t+ · · ·+ cq(X)tn =

n∏

j=1

(1 + δjt),

and the theorem says

χ(X,OX(E)) = κn

(
q∑

i=1

eγit
n∏

j=1

δjt

1− e−δjt

)
[X ].

(b) Better explication: Use

td(X)(t) = 1 +
1

2
c1(X)t+

1

12
(c21(X) + c2(X))t2 +

1

24
c1(X)c2(X)t3

+
1

720
(−c4(X) + c3(X)c1(X) + 3c22(X) + 4c2(X)c21(X)− c41(X))t4 +O(t5)

and

ch(E)(t) = rk(E) + c1(E)t+
1

2
(c21(E)− 2c2(E))t2 +

1

6
(c31(E)− 3c1(E)c2(E) + 3c3(E))t3

+
1

24
(c41(E)− 4c21(E)c2(E) + 4c1(E)c3(E) + 2c22(E)− 4c4(E))t4 + O(t5).

(A) Case n = 1, X = Riemann surface = complex curve; E = rank q vector bundle on X . HRR says:

χ(X,OX(E)) =

(
1

2
qc1(X) + c1(E)

)
[X ].

Now, c1(X) = χ(X) = Euler-Poincaré(X) = (highest Chern class) = 2 − 2g (where g is the genus of X).
Also, c1(E) = deg(E) (= deg

∧q
E), so

χ(X,OX(E)) = (1− g)rk(E) + degE.

Now,
χ(X,OX(E)) = dimH0(X,OX(E)) − dimH1(X,OX(E));

by Serre duality,
dimH1(X,OX(E)) = dimH0(X,OX(ED ⊗ ωX)),
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so we get

dimH0(X,OX(E))− dimH0(X,OX(ED ⊗ ωX)) = degE + (rk(E))(1 − g).
(Note: We proved this before using the Atiyah-Serre Theorem, see Theorem 3.13.)

(i) E = OX = trivial bundle, then degE = 0 and rkE = 1. We get

dimH0(X,OX)− dimH0(X,Ω1
X) = 1− g.

Now, X connected implies dimH0(X,OX) = h0,1 = 1, so

g = dimH1(X,OX) = dimH0(X,Ω1
X) = h1,0.

(ii) E = ωX = Ω1
X , rkE = 1 and HRR says

dimH0(X,Ω1
X)− dimH0(X,OX) = deg Ω1

X + 1− g.

The left hand side is g and dimH0(X,OX) = 1, so

deg Ω1
X = 2g − 2.

(iii) E = TX = Ω1,D
X . Then, rkE = 1, degE = 2− 2g and HRR says

dimH0(X,TX)− dimH1(X,TX) = 2− 2g + 1− g.

Assume g ≥ 2, then deg TX = 2− 2g < 0. Therefore, H0(X,TX) = (0) and so,

−dimH1(X,TX) = 3− 3g,

so that

dimH1(X,TX) = 3g − 3.

Remark: The group H1(X,TX) is the space of infinitesimal analytic deformations of X . Therefore, 3g − 3
is the dimension of the complex space of infinitesimal deformations of X as complex manifold. suppose
we know that there was a “classifying” variety of the genus g Riemann surfaces, say Mg. Then, if X (our
Riemann surface of genus g) corresponds to a smooth point of Mg, then

TMg ,X = H1(X,TX).

Therefore, dimC Mg = 3g − 3 (Riemann’s computation).

(B) The case n = 2, an algebraic surface. Here, HRR says

χ(X,OX(E)) =

(
1

12
(c21(X) + c2(X))rk(E) +

1

2
c1(X)c1(E) +

1

2
(c21(E)− 2c2(E))

)
[X ].

The left hand side is

dimH0(X,OX(E)) − dimH1(X,OX(E)) + dimH0(X,OX(ED ⊗ ωX)).

Take E = trivial bundle, rkE = 1, c1(E) = c2(E) = 0, and we get

χ(X,OX) =
1

12
(c21(X) + c2(X))[X ] =

1

12
(K2

X + χ(X))[X ],
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where χ(X) is the Euler-Poincaré characteristic of X . We proved that this holds iff
I(X) = 1

3p1(X) = L1(p1)[X ] (see Section 2.6, just after Theorem 2.82). By the Hirzebruch signature
theorem, our formula is OK.

Observe, if we take ωX , not OX , then the left hand side, χ(X,OX), is

dimH0(X,ωX)− dimH1(X,ωX) + dimH2(X,ωX) = dimH2(X,OX)− dimH1(X,OX) + dimH0(X,ωX)

(by Serre duality) and the left hand side stays the same.

Take E = TX ; rkE = 2, c1(E) = c1(X), c2(E) = c2(X) and the right hand side of HRR is

(
2

12
(c21(X) + c2(X)) +

1

2
c21(X) +

1

2
c21(E)− c2(X)

)
[X ] =

(
7

6
c21(X)− 5

6
c2(X)

)
[X ]

=

(
7

6
K2
X −

5

6
χ(X)

)
[X ].

The left hand side of HRR is

dimH0(X,TX)− dimH1(X,TX) + dimH0(X,TDX ⊗ ωX).

Now,
TDX ⊗ TDX −→ TDX ∧ TDX = ωX

gives by duality

TDX
∼= Hom(TDX , ωX)
∼= Hom(TDX ⊗ ωDX ,OX)
∼= TX ⊗ ωX ,

so the left hand side is

dim(global holo vector fields on X)− dim(infinitesimal deformations of X)

+ dim(global section of TX ⊗ ω⊗2
X ).

Take E = Ω1
X = TDX , rkE = 2, c1(E) = c1(ωX) = −c1(TX) = −c1(X), c2(E) = c2(X). The right hand side

of HRR is
2

12
(c21(X) + c2(X))− 1

2
c21(X) +

1

2
c21(X)− c2(X) =

1

6
c21(X)− 5

6
c2(X).

The left hand side of HRR is

dimH0(X,Ω1
X)− dimH1(X,Ω1

X) + dimH2(X,Ω1
X) = h1,0 − h1,1 + h1,2 = h1,0 − h1,1 + h1,0 = b1(X)− h1,1.

It follows that

b1(X)− h1,1 =

(
7

6
K2
X −

5

6
χ(X)

)
[X ],

so

b1(X)−
(
7

6
K2
X −

5

6
χ(X)

)
[X ] = h1,1.

Also,

H0(X,Ω1
X) = H2(X,ωX ⊗ TX)D

H1(X,Ω1
X) = H1(X,ωX ⊗ TX)D

H2(X,Ω1
X) = H0(X,ωX ⊗ TX)D
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and we get no new information.

When we know something about X , we can say more. For example, say X is a hypersurface of degree d
in P3

C. Then, write
H ·X = h = i∗H,

where i : X → P3
C. We know

NX →֒P3 = OX(d · h),
so

0 −→ TX −→ TP3 ↾ X −→ OX(dh) −→ 0 is exact.

We have
(1 + c1(X)t+ c2(X)t2)(1 + dht) = (1 +Ht)4 ↾ X = (1 + ht)4,

so

1 + c1(X)t+ c2(X)t2 = (1 + 4ht+ 6h2t2)(1− dht+ d2h2t2) = 1 + (4− d)ht+ (6− 4d+ d2)h2t2.

So c1(X) = (4− d)h and c2(X) = (6 − 4d+ d2)h2. Now,

h2[X ] = i∗(H ·X)i∗(H ·X) = H ·H ·X = degX = d.

Consequently,

χ(X,OX(E)) =
1

12
rk(E)((4 − d)2d+ (6 − 4d+ d2)d) +

1

2
c1(E)(4 − d)h[X ] +

1

2
(c21(E)− 2c2(E))[X ].

Take eH and set E = line bundle eh = eH ·X = eH ↾ X = OX(e). In this case, rk(E) = 1, c2(E) = 0 and
c1(E) = eh. We get

χ(X,OX(e)) =
1

6
(11− 6d+ d2)d+

1

2
e(4− d)d+ 1

2
e2d,

i.e.,

χ(X,OX(e)) =

(
1

6
(11− 6d+ d2) +

1

2
(e2 − ed+ 4e)

)
d.

(C) X = abelian variety = projective group variety.

As X is a group, TX is the trivial bundle, so c1(X) = c2(X) = 0. When X is an abelian surface we get

χ(X,OX(E)) =
1

2
(c21(E)− 2c2(E))[X ].

When X is an abelian curve = elliptic curve (g = 1), we get

χ(X,OX(E)) = c1(E) = degE.

Say the abelian surface is a hypersurface in P3
C. We know c1(X) = 0 and c2(X) = (4 − d)h. This implies

d = 4, but c2(X) = 6h2 6= 0, a contradiction! Therefore, no abelian surface in P3
C is a hypersurface.

Now, assume X →֒ PNC , where N > 3 and X is an abelian surface. Set E = OX(h) and compute
χ(X,OX(h)), where h = H ·X . We have c1(OX(h)) = h and c2(OX(h)) = 0. Then,

c21(E)[X ] = h2[X ] = H ·H ·X = degX

as subvariety of PNC . HRR for abelian surfaces embedded in PNC with N > 3 yields

χ(X,OX(1)) =
1

2
degX.
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As the left hand side is an integer, we deduce that degX must be even.

(D) X = PnC. From
1 + c1(X)t+ · · ·+ cn(X)tn = (1 +Ht)n+1

we deduce
δ1 = · · · = δn+1 = H.

Take
1 + c1(X)t+ · · ·+ cn(X)tn =

∏

j

(1 + γjt)

and look at E ⊗H⊗r = E(r). We have

χ(Pn,OX(E(r))) = κn

(
q∑

i=1

e(γi+r)t
(Ht)n

(1 − e−Ht)n

)
[X ]

=

q∑

l=1

1

2πi

∫

C

e(γl+r)Ht

(1− e−Ht)n+1
d(Ht)

=

q∑

l=1

1

2πi

∫

C

e(γl+r)z

(1− e−z)n+1
d(z),

where C is a small circle. Let u = 1− e−z, then du = e−zdz = (1− u)dz, so

dz =
du

1− u.

We also have e(γl+r)z = (e−z)−(γl+r) = (1 − u)−(γl+r). Consequently, the integral is

q∑

l=1

1

2πi

∫ 2π

u=0

du

(1 − u)γl+r+1un+1

where is the path of integration is a segment of the line z = ǫ+ iu. It turns out that

1

2πi

∫ 2π

u=0

du

(1− u)γl+r+1un+1
= β(γl, n) =

(
n+ γl + r

n

)

so HRR implies

χ(Pn,OX(E(r))) =

q∑

l=1

(
n+ γl + r

n

)
∈ Q.

But, the right hand side has denominator n! and the left hand side is an integer. We deduce that for all
r ∈ Z, for all n ≥ and all q ≥ 1,

q∑

l=1

(
n+ γl + r

n

)
∈ Z.

(Here, 1 + c1(E)Ht+ · · ·+ cq(E)(Ht)q =
∏q
j=1(1 + γjHt).)

Take r = 0, q = 2. We get (
n+ γ1
n

)
+

(
n+ γ2
n

)
∈ Z.

For n = 2, we must have
(2 + γ1)(1 + γ1) + (2 + γ2)(1 + γ2) ≡ 0 (2),
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i.e.,
2 + 3γ1 + γ21 + 2 + 3γ2 + γ22 ≡ 0 (2),

which is equivalent to
3c1 + c21 − 2c2 ≡ 0 (2).

Thus, we need c1(3 + c1) ≡ 0 (2), which always holds.

Now, take n = 3. We have (
3 + γ1

3

)
+

(
3 + γ2

3

)
∈ Z,

i.e.,
(3 + γ1)(2 + γ1)(1 + γ1) + (3 + γ2)(2 + γ2)(1 + γ2) ≡ 0 (6).

This amounts to
(6 + 5γ1 + γ21)(1 + γ1) + (6 + 5γ2 + γ22)(1 + γ2) ≡ 0 (6)

which is equivalent to
γ1(5 + γ1)(1 + γ1) + γ2(5 + γ2)(1 + γ2) ≡ 0 (6),

i.e.,
γ1(5 + 6γ1 + γ21) + γ2(5 + 6γ2 + γ22) ≡ 0 (6)

which can be written in terms of the Chern classes as

5c1 + 6(c21 − 2c2) + c31 − 3c1c2 ≡ 0 (6),

i.e.,
c1(c

2
1 − 3c2 + 5) ≡ 0 (6).

Observe that
c31 + 5c1 ≡ 0 (6)

always, so we conclude that c1c2 must be even.

Say i : P2
C → P3

C is an embedding of P2
C into P3

C.

Question: Does there exist a rank 2 bundle on P3
C, say E, so that i∗(E) = TP2

C

.?

If so, E has Chern classes c1 and c2 and

c1(TP2
C

) = i∗(c1), c2(TP2
C

) = i∗(c2).

This implies
c1c2(TP2

C

) = i∗(c1c2(E)),

which is even (case n = 3). But,

c1(TP2
C

) = 3HP2 , c2(TP2
C

) = 3HP2 ,

so
c1c2(TP2

C

) = 9H2,

which is not even! Therefore, the answer is no.
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