
Soft Constraints in Integer Linear Programs

Vivek Srikumar

February 5, 2013

1 Introduction

The goal of this note is to show how inference with soft constraints can be solved using an off-the-shelf ILP
solver. We will introduce soft constraints and then show how they can be introduced into the inference
problem using the same representation as hard constraints. The note ends with examples that works out
the details of incorporating disjunctive and equality soft constraints.

2 Setting

We consider the problem of predicting structures. That is, given an input x, a weight vector w, and a feature
function Φ, we predict a structure y as

arg max
y∈Y

wT Φ (x,y) (1)

Here Y is the feasible region for the structures. We use the standard approach to break the structure into
a collection of parts and extract features from them. Let each yi ∈ y correspond to a part in the structure.
That is the inference variable yi is an indicator for the existence of the ith part in the structure. Let the
feature function Φ decompose into a sum of features for each part. That is, we have

Φ (x,y) =
∑
i

yiΦi (x) . (2)

Here, each Φi (x) is a function that generates features from the ith part of x.
Now, we can rewrite the inference problem as the following integer linear program:

arg max
y

∑
i

yiw
T Φi (x) (3)

s.t.y ∈ Y (4)

The feasible region Y can be defined in terms of linear inequalities, possibly with the introduction of additional
inference variables that do not participate in the objective. They can be expressed in a logical representation
and converted into linear inequalities. This is fairly well understood and the reader can refer to [Riz12],
[Yih04] or [PRY08] for a primer on converting from a logical representation to inequalities.

3 Soft constraints

Each linear inequality that defines the feasible region prohibits certain assignments to the structure. We
refer to such constraints as hard constraints. In contrast, a soft constraint merely imposes a penalty on
certain assignments rather than prohibiting them.

We write soft constraints as logical formulas that involve the input x and the output y. Structures that
satisfy the condition are penalized by a score associated with that constraint. In this note, we will not deal
with how these penalties are learned and assume that we wish to perform inference with such penalties. For
example, a soft constraint in a part-of-speech tagging system could penalize POS tag assignments that do

1



not have a verb in them. While most sentences do have verbs, it might be possible to think of sentences that
do not have one. Writing this as a hard constraint could lead to an incorrect prediction.

Instead, we can have a constraint C(x,y) that expresses the logical formula and assign a penalty ρC
to it. During inference, every prediction that violates the constraint will be forced to pay the penalty ρC .
Yet, if the model strongly pushes the prediction towards a violating structure, the inference can result in
predictions that violate the constraint.

Given soft constraints C1, C2, · · · and associated penalties ρ1, ρ2, · · · , we can write inference as follows:

arg max
y

∑
i

yiw
T Φi (x)−

∑
j

ρj¬Cj(x,y) (5)

s.t. y ∈ Y

Here, we use the notation ¬C indicate that the constraint is violated. Note that hard constraints can be
seen as a special case of soft constraints where the penalty is infinite.

Equation 5 is a special case of the standard Constrained Conditional Model representation, where ¬C
is generalized into an arbitrary function dC (See [CRR12] for a discussion about Constrained Conditional
Models.):

arg max
y

∑
i

yiw
T Φi (x)−

∑
j

ρjd
C
j (x,y). (6)

Here, the constraints y ∈ Y included into the constraints with an infinite penalty.
In this note, we will use two definitions of the function dCj . Equation 5 considers the case when dCj is

defined as

dCj (x,y) =

{
1, Constraint Cj(x,y) is violated,

0, otherwise.
(7)

We will refer to this as 0-1 soft constraints.
[CRR12] assume that the soft constraints can be decomposed over partial assignments to the structure.

We will refer to such soft constraints as partial assignment soft constraints. Using the notation y1:i to denote
a partial assignment to the first i inference variables, we write this as

dCj (x,y) =
∑
i

¬Ĉj(x,y1:i) (8)

Here ¬Ĉj refers to the violation of a logical constraint Ĉj that applies to partial assignments to the structure.
The function dCj is the number of such violations.

In the sequel, we will first see how 0-1 soft constraints can be solved using an off-the-shelf ILP solver.
Then we will reduce the partial assignment soft constraints to the first case, leading to further generalizations.

4 Incorporating soft constraints into the ILP solver

0-1 soft constraints To write the 0-1 soft constraints expressed in Equations (6) and (7) as an integer
linear program, we will introduce a Boolean variable zj for each constraint Cj . This variable is an indicator
that the constraint is satisfied and the corresponding penalty should not be accrued. This helps us to rewrite
the objective of inference as

arg max
y

∑
i

yiw
T Φi (x)−

∑
j

ρj(1− zj) (9)

= arg max
y

∑
i

yiw
T Φi (x) +

∑
j

ρjzj (10)

Note that this version of the objective has only 0-1 integer variables yi and zi. The only thing that remains
is to connect the zi to the constraints Cj . This is achieved by adding the following logical constraint:

zj ↔ Cj(x,y) (11)

2



Thus the final inference problem can be written as follows:

arg max
y

∑
i

yiw
T Φi (x) +

∑
j

ρjzj (12)

s.t. y ∈ Y
∀Cj , zj ↔ Cj(x,y)

The final constraint that connects the z variables with the C expressions can be converted into logical
representation in the standard way.

Partial assignment soft constraints To reduce the partial assignment soft constraints to the earlier
case, we use the definition of the constraints in Equation (8) and rewrite the objective of inference from
Equation (6) as ∑

i

yiw
T Φi (x)−

∑
j,i

ρj¬Ĉj(x,y1:i). (13)

Observe that this objective function is similar to the objective for the 0-1 soft constraints. As in the earlier
case, we can introduce new inference variables zi,j that have coefficients ρj in the objective. By adding hard

constraints zi,j ↔ Ĉj(x,y1:i), we can solve inference with partial assignment soft constraints using an off
the shelf solver.

Finite discrete soft constraints We will now consider a generalization of the previous case. Suppose
the range of dCj is a finite set of real numbers, say {dj,1, dj,2, · · · , dj,m}. That is, suppose dCj is defined using

a collection of mutually exclusive constraints Ĉj,k(x,y) for k = 1, 2, · · ·m as follows:

dCj (x,y) =

{
dj,k, if constraint Ĉj,k(x,y) is violated for any i, or

0 otherwise.
(14)

This can be rewritten as
dCj (x,y) =

∑
k

dj,k(¬Ĉj,k(x,y)) (15)

As before, the CCM objective function from Equation (6) can be written using this definition as∑
i

yiw
T Φi (x)−

∑
j,k

ρjdj,k¬Ĉj,k(x,y). (16)

To convert this into an integer linear program, we introduce new inference variables zj,k with coefficients

ρjdj,k. Each zj,k corresponds to a new constraint zj,k ↔ Ĉj,k(x,y). This completes the formulation.

5 Worked examples

In this section, we will present two worked examples that show how the conversion from z ↔ C constraints to
linear inequalities can be done in a systematic way. The first example deals with disjunctive soft constraints
(that could express, for example, that at least one word in the sentence should be a verb). The second one
deals with equality (which could express the preference that two variables should be equal.)

5.1 Disjunctive soft constraints

Suppose C(x,y) = y1 ∨ y2 ∨ · · · yn for some n inference variables. Thus, we have the following constraint in
our final ILP:

z ↔ y1 ∨ y2 ∨ · · · yn (17)

We can convert the double implication into a collection of implications,

z → y1 ∨ y2 ∨ · · · yn
∀1 ≤ i ≤ n, yi → z.

3



The first implication can be written as ¬z ∨ y1 ∨ y2 ∨ · · · yn, which corresponds to the following inequality

n∑
i=1

yi ≥ z

Similarly, each of the yi → z constraints correspond to an inequality z ≥ yi. Thus we have the following set
of inequalities that correspond to the soft constraint:

n∑
i=1

yi ≥ z,

∀1 ≤ i ≤ n, z ≥ yi.

5.2 Equality soft constraints

We now consider soft constraints that express the preference for two variables being equal. That is C(x,y) ≡
y1 ↔ y2. The corresponding constraint that we wish to convert is into linear inequalities is the following,
which we will denote by the symbol f .

f(y1, y2, z) ≡ z ↔ (y1 ↔ y2) (18)

This can be converted into a set of linear inequalities by methodically converting the right hand side into
a conjunctive normal form (CNF). Here, instead, we look at a different way to convert the constraint into
inequalities. We begin by observing that the function f defined above is the XOR function between three
arguments and can be written as follows:

f(y1, y2, z) = (y1 ∨ y2 ∨ z)
∧ (¬y1 ∨ ¬y2 ∨ z)
∧ (¬y1 ∨ y2 ∨ ¬z)
∧ (y1 ∨ ¬yw ∨ ¬z)

Each clause in this CNF can be converted into an inequality constraint for the ILP. Doing so, we get the
following constraints:

y1 + y2 + z ≥ 1

y1 − y2 − z ≥ −1

−y1 + y2 − z ≥ −1

−y1 − y2 + z ≥ −1

References

[CRR12] M. Chang, L. Ratinov, and D. Roth. Structured learning with constrained conditional models,
June 2012.

[PRY08] V. Punyakanok, D. Roth, and W. Yih. The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics, 34(2), 2008.

[Riz12] N. Rizzolo. Learning Based Programming. PhD thesis, University of Illinois, Urbana-Champaign,
2012.

[Yih04] W. Yih. Global inference using integer linear programming. 2004.

4


	Introduction
	Setting
	Soft constraints
	Incorporating soft constraints into the ILP solver
	Worked examples
	Disjunctive soft constraints
	Equality soft constraints


