
Reconstruction of Articulated Objects from Point Correspondences in a Single Uncalibrated Image

Camillo J. Taylor GRASP Laboratory, University of Pennsylvania

 Objective: To recover the configuration of an articulated object from image measurements

• Assumptions:

- ▼ Scaled orthographic projection (unknown scale)
- ▼ *Relative* lengths of segments in model known
- Input: Correspondences between joints in the model and points in the image
- Output: Characterization of the set of all possible configurations

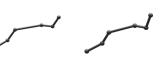
- Reconstruction proceeds by analyzing the foreshortening of each limb in the figure
- The set of all possible solutions can be characterized by a single scalar parameter, s, and a set of binary flags indicating the direction of each segment

Input Image

Solutions for various values of the s parameter

- These reconstructions were obtained from images downloaded from the web or scanned from newspaper photographs
- The scalar, s, was chosen to be the minimum possible value and the segment directions were specified by the user.

• Exploiting Additional Constraints: If additional constraints are imposed on the object, such as closure or coplanarity, then it is possible to determine the parameter, s, uniquely.



Input Image Optotrak results

Proposed method

1

• Comparison with ground truth data: The results obtained with this method were compared with measurements taken with an OPTOTRAK system. Mean and median estimates in the estimated joint angles were5.27 degs. and 3.81 degs..

Possible Applications:

- ▼ Recovering the pose of an actor in keyframes of a video sequence
- ▼ Recovering the configuration of an articulated robot.
- Contribution:
 - ▼ A simple but effective approach to estimating the configuration of articulated objects from commonly available imagery.

University of Pennsylvania -