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1 Introduction
This monograph will describe an algorithm for optimally

assigning conference papers to reviewers. The process was
developed and used for CVPR 2006 (the IEEE Conference
on Computer Vision and Pattern Recognition) where it suc-
cessfully matched over a 1100 papers to over 500 reviewers
based on preferences indicated by a set of area chairs.

The procedure was designed to address some of the is-
sues associated with the more traditional manual approaches
to paper assignment. Previously, area chairs were responsi-
ble for individually and collectively solving a fairly subtle
constrained optimization problem. Specifically, they were
tasked with coming up with an assignment of papers to re-
viewers such that each paper received a full set of reviews
from qualified reviewers without unduly burdening any in-
dividual reviewer with too many papers. As the number of
papers and reviewers grows, it becomes more difficult to en-
sure that papers are adequately reviewed and that popular
reviewers are used optimally. As an example of the kind of
issues that can arise, area chairs based in earlier time zones
had the opportunity to assign their papers to popular review-
ers early in the process before chairs in later time zones had
access to the reviewer pool.

In the proposed system the area chairs are each assigned
a set of papers and are responsible for creating soft assign-
ments between each paper and a set of potential reviewers.
That is, for each paper the area chair indicates a small set
of preferred reviewers and assigns a positive number to each
potential review indicating the affinity between the paper and
the reviewer; higher values indicate a greater affinity. Once
all of the area chairs have assigned their weights the assign-
ment procedure comes up with an ’optimal’ assignment tak-
ing into account the inputs from all of the area chairs simul-
taneously.

In this model the area chairs focus on the task of com-
ing up with an appropriate set of candidate reviewers with-
out paying undue attention to the constraints associated with
reviewer load. The assignment procedure solves the global
constrained optimization problem automatically based on the
preferences indicated by the area chairs.

2 Technical Approach
Our assignment problem is clearly a type of bipartite

matching problem as depicted in figure 1. In this figure
the nodes on the left correspond to papers and the nodes on

the right to reviewers. The edges between these two sets of
nodes correspond to affinities indicated by the area chairs.
Each of these edges is associated with a positive number
which represents the strength of the affinity - larger numbers
correspond to a greater preference. Let n p denote the number
of papers, nr denote the number of reviewers and ne denote
the number of edges in the affinity graph. We can encode the
entire graph in a sparse affinity matrix A ∈ R

np×nr where Ai j
denotes the affinity between paper i and reviewer j.
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Figure 1. In this figure the nodes on the left correspond to
papers and the nodes on the right to reviewers. The edges
between the nodes denote soft assignments provided by
the conference organizers. The weights associated with
each of these edges indicate the strength of the affinity
between the paper and the reviewer.

In a standard bipartite matching problem our goal is to
find a one-to-one matching between nodes in the graph
which optimizes the overall affinity. The difference in this
situation is that each paper should ultimately be mapped
to multiple reviewers and each reviewer should have be as-
signed no more than a specified number of papers. Our prob-
lem is to deal with this multiplicity of matches.

Our objective then is to arrive at an assignment of papers
to reviewers which maximizes the overall affinity subject to
the constraints that each paper should receive no more than
cp reviews and each reviewer should be assigned no more
than cr papers. This assignment can be encoded in a second
matrix B ∈ R

np×nr . If paper i is to be assigned to reviewer j
the corresponding matrix entry Bi j should be 1 otherwise it
should be 0. The aforementioned constraints on the assign-



ment can then be expressed as constraints on the row and
column sums of this assignment matrix B. Specifically the
constraint that each paper should be assigned no more than
cp reviewers corresponds to a requirement that the row sums
of the B should all be less than cp. Similarly the constraint
that no reviewer should be assigned more than cr papers can
be expressed by stating that none of the column sums of B
should be greater than cr.

Note a subtle but important feature of this formulation -
we are not requiring that every paper be assigned c p review-
ers - indeed depending on the structure of the affinity graph
this may be impossible. Our goal is to come up with the as-
signment that maximizes the overall affinity. Since the affini-
ties are all positive numbers this optimization process will
generally prefer to make as many assignments as possible
while taking into account the constraints on the assignment
matrix and the relative affinities of the edges.

Our optimization problem can be expressed as follows:

maximize trace(AT B) = ∑i ∑ j Ai jBi j
subject to Bi j ∈ [0,1] ∀i j

∑ j Bi j ≤ cp ∀i
∑i Bi j ≤ cr ∀ j

(1)

At first blush, it would appear that restricting the entries
in B to binary values, 1 and 0, would leave us with an inte-
ger programming problem. This would be unfortunate since
integer programming problems are notoriously difficult to
solve. Happily, this is not the case for the problem at hand. It
turns out that we will be able to reformulate our optimization
problem as a linear program where the structure of the con-
straints naturally restrict the solution to integer values with-
out any special effort on our part.

To do this we will make use of the node edge adjacency
matrix, N ∈ R

(np+nr)×ne . Every row in this matrix corre-
sponds to a node in the affinity graph and every column to
an edge. Each column contains exactly two non-zero entries
corresponding to the two nodes joined by that edge. That
is Ni j = 1 if edge j impinges upon node i and is 0 other-
wise. Since we are concerned with a bipartite graph where
the nodes are divided into two disjoint sets corresponding to
papers and reviewers, it is convenient to divide the node edge
matrix into two components Np ∈ R

np×ne and Nr ∈ R
nr×ne to

reflect this partition. The matrix N can then be expressed as
follows.

N =
(

Np
Nr

)
(2)

The node edge matrix has the property that if x ∈ R
ne de-

notes a vector of edge weights then Nx returns a vector in
R

np+nr containing the sum of the weights of the edges inci-
dent on each node in the graph. We will let a ∈ R

ne denote a
vector indicating the weights of the edges in the affinity ma-
trix. Similarly we will let b ∈ R

ne denote the weights of the
edges in the final assignment matrix B.

With these definitions in place the optimization problem
can be rewritten as follows.

maximize aTb
subject to Npb ≤ cp

Nrb ≤ cr
b ≤ 1
b ≥ 0

(3)

In this reformulation the matrix inner product trace(A T B)
is replaced by aTb, the row and column constraints on B
are replaced by Npb ≤ cp and Nrb ≤ cr respectively and the
range constraints on the entries of B are encoded by b ≥ 0
and b ≤ 1. 1 We can combine all of the linear inequality
constraints into a single expression Kb ≤ d as shown below.

maximize aTb
subject to Kb ≤ d

where K =

⎛
⎜⎝

Np
Nr
I
−I

⎞
⎟⎠ ,d =

⎛
⎜⎝

cp
cr
1
0

⎞
⎟⎠

(4)

At this point we note that the integer matrix K is totally
unimodular. A square integer matrix, F , is termed unimod-
ular if its determinant det(F) = ±1. An integer matrix G is
termed totally unimodular if every square, nonsingular sub-
matrix of G is unimodular [2].

In order to show that the matrix K is totally unimodular
we begin by observing that the node edge matrix, N, is to-
tally unimodular by construction. We then recall that if a
matrix G is totally unimodular then matrices derived from G
by appending I or −I are also unimodular. That is if G is
totally unimodular then so are the matrices: (G I), (G − I)
and GT . Proofs of these properties are quite straightforward
and can be found in [2].

Since the constraint matrix K is totally unimodular and
the entries in the vector d are all integral we can conclude
that the vertices of the convex polytope defined by the linear
equation Kb ≤ d have integral coordinates. [2] Since the
optimal values of a linear program correspond to the vertices
of the associated convex set we can conclude that at least
one of the optimal solutions to our problem will have binary
entries. In other words, we can simply formulate and solve
the linear program given in Equation 4 and be assured that
the resulting assignment matrix B will have binary entries
and will satisfy all relevant constraints.

The resulting linear program can be solved quite readily
using standard interior point methods [1]. For CVPR 06 as-
signment problems involving over 1100 papers and over 500
reviewers were routinely solved in a matter of seconds using
the linprog routine in MATLAB.

2.1 Assigning Affinities
The procedure described above can be used to find an

optimal assignment between papers and reviewers given an
affinity matrix A ∈ R

np×nr . There are, however, quite a num-
ber of reasonable approaches to assigning affinities between

1Since the edge weights in the affinity matrix are all positive we
don’t actually need to explicitly enforce the constraint b ≥ 0



papers and reviewers. Let us consider the most straightfor-
ward approach wherein each assignment that the area chair
makes between a paper and a reviewer is given equal weight.
That is all of the non-zero entries in the matrix A have the
same value. In this case the optimization routine will simply
find the solution with the greatest number of assignments.
Since all of the assignments have equal weight the assign-
ment procedure is motivated to make as many assignments as
possible subject to the load constraints on the reviewers and
on the papers. Clearly, the maximum number of assignments
that can be made is bounded above by min(n pcp,nrcr).

Alternatively, we can use the affinities to suggest that
some assignments should be preferred over others. An area
chair may indicate that the first choice reviewer assigned to
a paper will have an affinity score of 5, the second best re-
viewer a score of 4 and so on down to 1. In this scenario
the assignment procedure gets 5 times the reward for assign-
ing the most preferred reviewer as it would get for assigning
the least favored reviewer. However this optimal assignment
may contain fewer assignments since the assignment proce-
dure may be biased to assign preferred reviewers to papers at
the expense of leaving other papers partially assigned. One
can balance the ratio between the largest affinity score and
the smallest affinity value to smoothly transition between
finding the largest number of assignments vs assigning the
most preffered reviewers. Different choices of affinity will
result in slightly different assignments.

One can monitor the total number of assignments that are
made by the procedure by computing the row sums of the
final assignment matrix B. Ideally, each paper will end up
with cp assignments but a few papers may be incompletely
assigned if there are not sufficiently many edges in the graph
or if the affinity function is skewed in such a way that an
incomplete assignment produces a higher total affinity.

Similarly it is useful to monitor the total affinity of the as-
signment produced by the optimization procedure and com-
pare it to the theoretical maximum score which corresponds
to every paper being assigned its n p favorite reviewers. This
number provides a good indication of how effectively the as-
signment procedure is satisfying the preferences indicated by
the area chairs.
2.2 Adding Noise

One situation that can occur if integral values are used
for the affinity scores is that multiple assignments may have
precisely the same total affinity. Geometrically this corre-
sponds to a situation where the vector defined by the edge
weights, a, is perpendicular to a facet of the convex polytope
defined by the linear constraints, Kb ≤ d. Although the op-
timal solutions are still integral the barrier method may con-
verge to a point in the center of the polygonal facet yielding
non-integral entries in the final assignment vector.

One simple way to overcome this is by slightly perturb-
ing the affinity vector with a small amount of additive noise.
That is, we can replace the vector of edge weights, a, with
the vector a + ρδ where δ is a vector in R

ne with random
entries between 0 and 1 and ρ is a scalar. This corresponds
to adding a small random number to the affinity score as-
sociated with each of the vertices of the constraint poly-
tope. That is, if p ∈ R

ne denotes the coordinates of a ver-

tex of the convex ploytope then its affinity score before
the perturbation would be pTa and its score after would be
pT(a+ ρδ) = pTa+ ρ(pTδ)

The maximum value of the perturbation added to each
vertices score should be less than one so that the noise does
not materially affect the relative ordering of the assignments.
This implies that ρ(pTδ) < 1. Since the maximum value
of pTδ is bounded by cpnp - the maximum possible num-
ber of 1s in the assignment vector p - we can conclude that
the scalar ρ should be bounded by the following inequality
ρ(cpnp) < 1

2.3 Odds and Ends
In this framework one can manually assign a paper to a re-

viewer by setting the corresponding entry in the assignment
matrix B to a constant and removing that variable from the
optimization procedure. Similarly one can manually specify
that certain papers should not be assigned to certain review-
ers by setting the corresponding entries in the affinity matrix
A to zero. This effectively removes the edge between the pa-
per and the reviewer and ensures that the assignment will not
be made.

It is also possible to indicate that different reviewers
should have different load levels. In this situation cr should
be interpreted not as a scalar which specifies a single load
constraint for all reviewers but rather as a vector which spec-
ifies an individual load limit for each reviewer. 2 Similarly,
we could interpret cp as a vector which indicates the number
of reviewers that are to be assigned to each paper individu-
ally.

This flexibility can be convenient in situations where
some of the assignments are being made manually and oth-
ers automatically. Here the load limit vectors would indicate
how many assignments remain to be made for each paper or
reviewer after the manual assignments have been applied.

One needs to keep in mind that the assignment procedure
may not fully assign each and every paper. That is the assign-
ment may result in some papers having fewer than c p review-
ers. This problem can be solved by adding more edges to the
affinity graph. More edges provide the system with greater
flexibility in finding assignments and will ultimately allow
the system to find a complete assignment. For example, for
CVPR 2006 a three of five scheme was employed where area
chairs were asked to make five soft assignments so that the
assignment procedure would be able to automatically choose
three reviewers.

For a given affinity matrix one can experiment with the
affinity assignment policy and the load limits of the review-
ers in an attempt to arrive at a suitable global assignment.
Of course, depending on the number of incomplete assign-
ments one might find it simplest to simply manually assign
the remaining papers.

3 Conclusion
This paper describes an approach to solving a variant of

the bipartite matching problem which occurs in the context

2One might not want to publicize this feature for fear of being
innundated with requests for smaller reviewing loads.



of finding an optimal assignment between conference pa-
pers and reviewers. The affinities between papers and re-
viewers are encoded in an affinity graph, or equivalently, a
sparse affinity matrix A and the goal of the assignment pro-
cedure is to find an assignment between papers and review-
ers that maximizes the total affinity subject to constraints on
the number of reviewers that can be assigned to a paper and
the load that can be assigned to any individual reviewer. The
problem is formulated as a linear program which can be read-
ily solved using standard interior point methods.
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