
Planning and Control of Mobile Robots in Image Space
from Overhead Cameras∗

Rahul S. Rao, Vijay Kumar, Camillo J. Taylor
General Robotics, Automation, Sensing and Perception (GRASP) Laboratory

University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A
{rahulrao, kumar, cjtaylor}@grasp.cis.upenn.edu

Abstract— In this work, we present a framework for the
development of a planar mobile robot controller based on
image plane feedback. We show that the design of such a
motion controller can be accomplished in the image plane
by making use of a subset of the parameters that relate
the image plane to the ground plane, while still leveraging
the simplifications offered by modeling the system as a
differentially flat system. Our method relies on a waypoint-
based trajectory generator, with all the waypoints specified
in the image, as seen by an overhead observer. We present
some results from simulation as well as from experiments that
validate the ideas presented in this work and discuss some
ideas for future work.

Index Terms— Visual servoing, differential flatness, trajec-
tory generation and control.

I. INTRODUCTION AND RELATED WORK

There has been a great interest of late in the develop-
ment of vision as a means of sensing and feedback for
autonomous robotic systems. The availability of enhanced
computing power, coupled with the falling costs of com-
puters as well as sensors, has been greatly responsible for
this significant development. As we all know, vision is a
key tool that we use in our daily lives. Thus, incorporating
robotic systems with vision and the ability to make real-
time decisions on the basis of vision in addition to other
sensors will greatly enhance their ability to perform more
complex tasks. Beginning with the development of strate-
gies for the real time control of robot arms to reach desired
configurations with the aid of attached cameras, cameras
today are used extensively for the real time control of not
only robot arms but also mobile robots, groups of mobile
robots as well as in cars, such as for lane departure warning
systems as well as aids for parallel parking technologies in
cars.

Visual servoing is the fusion of several areas of research.
These include high speed image processing, kinematics,
dynamics, control theory and real time computing. Active
vision and structure from motion are also closely related
areas of research. Applications that have been proposed
and implemented in the realm of visual servoing include
grasping objects on conveyor belts, juggling [13], part
mating [14], teleoperation, missile tracking, fruit picking
[7], robotic ping-pong [1], car steering [9] and even aircraft
landing ([15], [6]).

∗This work was supported by ARO MURI Grant DAAD19-02-010383
and NSF Grant IIS00-83240

In our earlier work in this area we have presented a
framework for image based control of a wheeled ground
vehicle from an overhead camera. We have presented the
background and the problem formulation in the image
space [10] with some preliminary results in simulation. We
also presented some insights into and the significance of
the relationship between the robot’s ground plane velocity
and the velocity of its projection in the image and how
control tasks could be reformulated in the realm of this
limited parameter space [11]. Results from simulation
and experimental validation of our ideas as well as their
applications in some control tasks were also presented. We
have also presented results from the implementation of an
image based point to point motion controller in real time
to the case of a moving overhead camera with unstructured
motion [12].

In this work, we will be highlighting the significance
of the problem formulation in terms of the limited pa-
rameters of the 2-D homography (rather than the entire
homography) from the perspective of trajectory generation
and differential flatness based motion control along this tra-
jectory. Section II provides an overview of the relationship
between visual servoing and differential flatness. Section III
describes how the controller can be designed in the image
space utilizing the simplifications offered by modeling the
system as a differentially flat one. Section IV describes the
trajectory generation scheme that we use in tandem with
the controller design discussed earlier in order to define
a desired trajectory for the robot to follow. In Sections V
and VI, we present some results from simulation and real
time experiments that are all built upon the ideas presented
in prior sections. Finally, we discuss some ideas for future
work in Section VII.

II. BACKGROUND

A. Projective Geometry

Let w ≡ (x, y, 1)T denote the homogeneous coordinates
of a point on the ground plane and c = (u, v, 1)T denote
the coordinates of the projection of w in the image. It
is easy to show that w and c are related by a projective
transformation G. This can be expressed as

c ∝ Gw, G ∈ GL(3) (1)

⇒ w ∝ Hc (2)

where H = G−1.

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 2185

For clarity, let the matrices G and H be represented
in terms of their columns as G =

(
G1 G2 G3

)
and

H =
(
H1 H2 H3

)
respectively. Similarly, let the

rows of G and H be represented by
(
G1 G2 G3

)
and(

H1 H2 H3

)
respectively. Note that superscripts and

subscripts are used to distinguish between matrix columns
and rows.

We have shown in our earlier work [10] that the rela-
tionship between ground velocities, (ẋ, ẏ), and image plane
velocities, (u̇, v̇), can be written as

(
u̇
v̇

)
= (H3 · c)

(
1 0 −u
0 1 −v

) (
G1 G2

) (
ẋ
ẏ

)
(3)

where

H3 =
G1 × G2

(G3) · (G1 × G2)
=

G1 × G2

det(G)
(4)

Since G represents a projective transformation, it’s scale
is immaterial which means that we can, without loss of
generality, restrict G to be such that det(G) = 1. As
described in our previous work [11], we use this condition
and the property that the right hand side of equation (3)
must be perpendicular to the vector

(−v̇ u̇
)

to obtain the
relationship

(
u̇
v̇

)
= α3((Ĝ1 × Ĝ2) · c)

(
1 0 −u
0 1 −v

) (
Ĝ1 Ĝ2

) (
ẋ
ẏ

)
(5)

where
(
G1 G2

)
= α

(
Ĝ1 Ĝ2

)
. Thus, we get

(
ẋ
ẏ

)
= Q2×2

(
u̇
v̇

)
=

(
q11 q12

q21 q22

) (
u̇
v̇

)
(6)

B. Differential Flatness

The basic idea of a differentially flat system was in-
troduced by Fliess et. al [5]. A differentially flat system
is suited for trajectory generation tasks [16] including
real time feasible trajectory generation in the presence
of inequality constraints [4]. The reader is referred to
([5], [16]) for the formal mathematical definition of a
differentially flat system.

Murray et. al [8] provide many examples of mechanical
systems that are differentially flat. As shown by Nieuw-
stadt and Murray [16], it is relatively simple to generate
trajectories for differentially flat systems. This can be done
even when there are inequality constraints on the state [4].

With reference to differential flatness, we have shown in
earlier work [10] that the image based system is differen-
tially flat with the image coordinates of the center of the
rear axle, (u, v), of the unicycle being the differentially
flat outputs. This translates to the fact that the states of
the system, (x, y, φ) and the system inputs, (ν, ω), can be
explicitly represented as functions of the flat outputs and
their higher derivatives. Details are provided in [10], but it
can be summarized as

[x, y, φ, ν, ω]T = [(f1(u, v, u̇, v̇, ü, v̈) . . . f5(u, v, u̇, v̇, ü, v̈)]T

(7)

III. CONTROLLER DESIGN

There exists a methodology to design controllers for
differentially flat systems [16]. We take a slightly different
approach toward design in the image space. The key is
that we do the path generation, controller design and the
system feedback all in the flat space. In contrast to previous
work [16], our controller design requires feedback from
the image plane, which is also the flat space. Further, we
compute the real world inputs (ν̇, ω) by first computing
the inputs in the flat space and then using a nonlinear
transformation to obtain (ν̇, ω). The entire procedure rep-
resenting the trajectory generator, the controller and the
feedback loop is illustrated in Figure 1 and the details of
the controller design are presented next.

Trajectory

generator
Planner

controller

Flatness based

transformation
non−linear

P. D.

Camera

Robot

input

feedback

ν̇
∫ud(s)

vd(s)

ud(t)

vd(t) v1, v2
ν

ω

u, v, u̇, v̇

Fig. 1. The feedback loop for flatness based control of a robot along a
desired trajectory.

We first observe that Equation (5) presents a relationship
between the image velocities and the ground velocities of
the robot. However, when combined with the kinematic
model of a unicycle [10], it is observed that the input ω
does not appear on the right hand side of Equation (5).

Thus, we need to differentiate Equation (5) once more
to relate the outputs of our system, (u, v) with the inputs,
(ν, ω), i.e. our system is of relative degree 2.

Differentiating Equation (5) with respect to time once
again so that the second input ω also appears in the
dynamics of the system, we obtain

(
ü
v̈

)
= T

(
ν̇
ω

)
+

(
α1

α2

)
≡

(
v1

v2

)
(8)

where v1 and v2 are system inputs in the flat space. These
are not the inputs to the actual, physical robot. These
physical inputs, namely the forward and turning speeds
(ν and ω respectively) are then obtained using nonlinear
transformations that are a direct consequence of the system
being differentially flat.

Once the flat space inputs, (v1, v2), are computed, they
can be transformed into real world inputs, namely forward
and angular speeds (ν and ω, respectively). Equation (8)
translates to

(
ν̇
ω

)
= T−1

(
v1 − α1

v2 − α2

)
= P

(
v1 − α1

v2 − α2

)

=
(

P11 P12

P21 P22

) (
v1 − α1

v2 − α2

)
(9)

Thus, the explicit representations for the real world
inputs are

ν̇ = P11(v1 − α1) + P12(v2 − α2) (10)

ω = P21(v1 − α1) + P22(v2 − α2) (11)

2186

We note here that in order to provide a translational
velocity input (ν) to the robot in the real world, ν̇ will
have to be integrated over time, as shown in Figure (1).

In summary, as a consequence of the system being
differentially flat in the image space, the real world inputs
ν and ω can be represented by algebraic transformations
that are functions of image coordinates, image velocities
and robot orientation.

It is natural to ask how one calculates the inputs in the
flat space, v1 and v2. To compute the flat space inputs that
will control the robot about the desired trajectory (call it
(ud(t), vd(t))), we can make use of the linear representation
above (Equation (8)).

So, if Equation (8) is rewritten in state space form, it
will appear as

ż1 = z2

ż2 = v1

ż3 = z4

ż4 = v2 (12)

where (z1, z2, z3, z4) ≡ (u, u̇, v, v̇). A proportional deriva-
tive (PD) controller can be chosen to be of the following
form that incorporates feedforward as well as feedback
terms,

v1 = z̈1d + k1(ż1d − ż1) + k0(z1d − z1) (13)

v2 = z̈3d + k3(ż3d − ż3) + k2(z3d − z3) (14)

(ud(t), vd(t)) ≡ (z1d(t), z3d(t)) is the desired trajectory
that is obtained by a trajectory generation scheme. The
feedforward terms keep the robot on the desired trajectory
while the feedback terms get it back on track if it goes off
the trajectory due to modeling errors, system noise etc.

Having transformed the problem from its original nonlin-
ear structure to a linear framework, the task of designing a
linear state observer in the flat space can be accomplished
using linear systems theory. The rate of convergence of
the estimator can be controlled so that the estimated state
approaches the actual state at a desired rate by a proper
choice of the observer gain matrix [3].

We now discuss a scheme to generate desired trajectories
in the 2D image space, using parametrization in terms of
the arc length along the curve, s, as a parameter.

IV. PATH GENERATION IN THE IMAGE SPACE

In order to follow a certain path in the 2D image space,
one can define intermediate waypoints and then generate
a curve that passes through these waypoints while main-
taining certain continuity conditions at these waypoints
(velocity continuity in our case). Once these waypoints are
defined and the paths generated, control schemes can be
used following the methods outlined in the previous section
to guide the robot along the desired path. A method that
parametrizes the desired path in terms of the arc length
along the path, s, is now discussed in greater detail.

If each segment is assumed to be quadratic and of the
form u(s) = a2s

2 + a1s + a0, it is required that the 3

(u,v)

d

(UR, VR)Y

X

φ

ω
ν

ε

(x,y)

Fig. 2. A situation in which the robot is off the desired path, highlighting
the closest distance d between the robot and the desired path.

unknown coefficients a2, a1, a0 be determined using con-
tinuity conditions at the waypoints. In order to determine
the 3n coefficients, we will need 3n independent equations
that can be solved simultaneously. This set of equations
can be obtained by writing the expressions for the n
segments, each of which passes through 2 points. (n − 1)
more equations can be obtained by imposing continuity
conditions at the intermediate points. The final equation is
obtained by assuming a linear final segment of the curve.

Once the quadratic splines have been determined, the
problem of determining the desired coordinate on the
path, the desired velocity at a certain time instant and the
desired acceleration at that instant can be formulated as a
minimization problem as follows (Figure 2):

Given a certain location of the robot, (uR, vR), deter-
mine the location (u, v) on the piecewise quadratic path
that is closest to the robot’s current location, (uR, vR), i.e.

Min (u − uR)2 + (v − vR)2

such that u = ai
2s

2 + ai
1s + ai

0

and v = bi
2s

2 + bi
1s + bi

0,

i = 1, . . . , n (15)

The goal of the optimization problem is to minimize the
distance between the robot and the desired trajectory in the
direction perpendicular to the trajectory as well as along
the trajectory. The representation of the arc length as a
function of time (such as s(t) = κt) ensures that once the
robot approaches the desired trajectory, it will continue to
move along the desired trajectory with a certain speed.

This optimization problem, when expanded, results in
having to find the roots of a third order polynomial, for
which closed form solutions exist. Thus, a value of s will
be the solution to this optimization problem, which will
translate into a value for (u(s), v(s)).

Once s(t) is obtained, (u̇d(t), v̇d(t)) can be obtained
using the chain rule. Following that, Equations (13) and
(14) can then be applied to obtain the values of the inputs
that need be applied in the flat space domain to get the
robot to follow the desired path.

We present now a quick summary of the minimization
scheme to determine the point (u, v) on the curve that is
closest to (uR, vR) at any time t. The objective function,

2187

φo is defined as

φo = (u − uR)2 + (v − vR)2

and the point (u, v) is constrained to lie on a segment of
the curve. This translates to

u(s) = ai
2s

2 + ai
1s + ai

0

v(s) = bi
2s

2 + bi
1s + bi

0

for some unknown i ∈ [1, . . . , n]. The optimization prob-
lem will have to be solved for each segment of the spline
as we do not know beforehand where the optimal solution
to the problem lies, on the spline. The generic procedure
described below can be applied to each segment. Once
multiple solutions are obtained, infeasible solutions can
be discarded if they are found to violate any feasiblity
conditions. For instance, one might obtain s < 0 as a
solution belonging to a segment of the curve. This solution
is not physically possible as s, being the arc length along
the curve, has to be greater than zero. Thus, the objective
function is modified as

φo = (u − uR)2 + (v − vR)2 + λ1(u − (a2s
2 + a1s + a0))

+λ2(v − (b2s
2 + b1s + b0)) (16)

The necessary conditions for the existence of an optimal
solution are

∂φo

∂u
= 0;

∂φo

∂v
= 0;

∂φo

∂λ1
= 0;

∂φo

∂λ2
= 0;

∂φo

∂s
= 0

Evaluating these expressions, using the expressions for
u(s) and v(s) now, and then simplifying, we obtain

2s3 + 3a1a2+b1b2
a2
2+b22

s2 +
2a2(a0−uR)+a2

1+2b2(b0−vR)+b21
a2
2+b22

s

+ a1(a0−uR)+b1(b0−vR)

a2
2+b22

= 0 (17)

This is a cubic equation in s, and a closed form solution
can be found [17]. However, there may be multiple solu-
tions for s, translating into multiple solutions for (u, v).
So, some of the solutions will be have to be discarded if
they are not optimal or if s < 0 (since s is the arc length,
it does not make sense for s to be negative).

Once a solution s is found, it will be found to belong
to a certain segment of the piecewise quadratic spline.
Thus, u(s) and v(s) can now be found, and so can their
slopes and second derivatives. Thus, u′

d(s) and v′d(s) can
be found.

V. PATH FOLLOWING- SIMULATION RESULTS

Section IV outlined the path generation in the image
plane and Section III described the control of a robot
along such a trajectory. We restrict ourselves to the use of
second order splines as we intend to use kinematic vehicle
models and velocity inputs to control the robot. We have
implemented these ideas in simulation as well as in real
time and we present some of the results that have been
obtained in simulation and experiments.

We carried out simulations that generated paths made
up of piecewise quadratic splines as described in Section
IV and simulated controllers to track robots along those
paths. An illustration of this path following method is
shown in Figure 4. It must be noted that these waypoints

Fig. 3. A view from an overhead camera showing the robot, the
obstacles and the desired goal. A shortest path algorithm can potentially
be computed by defining appropriate waypoints in the image.

100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

Waypoints

piecewise
quadratic path

Starting robot
pose

Goal

obstacles

Fig. 4. A robot following a piecewise quadratic path generated in
simulation using waypoints. Note that the robot starts at a point off the path
and then converges to it, employing the optimization scheme described
in Section IV.

are defined in the image space by just clicking on points
in the image. Thus, a user can potentially get a shortest
path to the goal by clicking on appropriate waypoints in
the image. The path followed by the controlled robot in
simulation corresponding to the overhead view depicted in
Figure 3 is shown in Figure 4. The variation in ν and ω,
the forward and turning speeds of the robot respectively,
are also illustrated in Figure 5.

An alternate way to define the trajectory is to use an ex-
plicitly time parametrized trajectory rather than parametriz-
ing it in terms of the arc length along the curve. Though
hard to implement in practice due to factors such as system
delays and system noise, such parameterizations validate
the idea of using flatness based techniques for image based
trajectory control.

Though the desired time parametrized trajectory is speci-
fied (such as a circle, ellipse or a path created to resemble a
real life situation, such as in Figure 6), the starting position
and orientation of the robot in the real world is chosen
arbitrarily, the only constraint being that it should lie within
the camera’s field of view. The full state observer described
briefly in Section III is used to establish the state vector.

2188

0 500 1000 1500 2000 2500
−0.5

0

0.5

fo
rw

ar
d

sp
ee

d,
 v

 (
m

/s
)

0 500 1000 1500 2000 2500
−2

−1

0

1

2

time steps

an
gu

la
r

sp
ee

d,
 ω

 (
ra

d/
s)

Fig. 5. Variation of forward and turning speeds of the robot as it follows
the piecewise quadratic path shown in Figure 4.

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

u (pixels)

v
(p

ix
el

s)

Desired trajectory

Actual robot path
Starting position
in the image

Fig. 6. The robot path as seen in the image (solid) and the desired image
plane trajectory

Figure 6 shows the path traced by the robot, as seen in
the image, under the influence of the controller designed
using the procedure described in Section III. The starting
position of the robot is indicated by a cross-hair and it
can be seen that the robot does not start on the desired
trajectory but converges to the desired trajectory.

VI. PATH FOLLOWING- EXPERIMENTAL RESULTS

We also conducted experiments in real time to validate
this framework of motion based calibration of the camera
system coupled with the use of flatness based techniques
for trajectory control of a mobile robots. Experiments have
been conducted in real time using a distributed framework
that is being developed independent of this work at the
University of Pennsylvania. Further details of this frame-
work for multi robot perception and control can be found
in [2]. Experiments were conducted with the ER-1 mobile
robot from Evolution Robotics and an overhead Dragonfly
firewire camera with a Sony ICX204 sensor. The ER-1 is
a three- wheeled, Hilare-like robot.

The experimental procedure to control the robot included
the tasks of calibrating the system using motion correspon-
dences, generating a trajectory as described in Section IV
by defining waypoints in the image plane, computing the
controller inputs as described in Section III and utilizing
the feedback obtained to guide the vehicle along the desired

460 480 500 520 540 560

200

220

240

260

280

300

320

340

u (image plane)

v
(im

ag
e

pl
an

e)

actual path
desired path

Obstacles in the
image plane

Final desired position

Starting
position

0 50 100 150 200 250 300 350
−10

−5

0

5

10

15

20

time step

pi
xe

ls

error for u
error for v

Fig. 7. A sample path taken by the robot to reach desired goals in the
presence of obstacles (top) and the error between the actual and desired
robot position in the image plane.

path. This procedure is illustrated in Figure 1.
Sample experimental runs are illustrated in Figures 7 and

8. In both cases, the waypoints are indicated by crosses
(i.e. ×). The path followed by the robot enroute to its
desired final destination is indicated by a solid line, while
the desired trajectory generated in real time is indicated by
a dashed line. We now make some observations from our
experiments about the performance of our controller.

Any system operating in real time will be subject to some
errors and uncertainties that can be reduced but not totally
eliminated. There will be errors due to inherent flaws in
the camera (pixel offsets, skew etc.). Image and feedback
noise are a potential source of error. Real time calibration
procedures are not ideal and can introduce errors. In
addition, there will be errors in the implementation of the
controller in real time due to time delays, input saturation
etc.

We observe that the flatness based controller designed
and implemented in the image space in real time does the
task that it is required to do. Like any real time system,
it is limited by the factors mentioned above. The robot
tries to follow the desired trajectory (which is continuously
updated according to the procedure outlined in Section IV)
after the system is calibrated. While the robot is in motion,
the feedback is obtained from the image, used to update
the desired trajectory and to compute the inputs to be fed
to the robot.

As mentioned in previous work [12], the same procedure
could be implemented on an overhead camera mounted
on a moving aerial observer. A simple image stabilization
scheme that makes use of at least 4 fixed points that can

2189

360 370 380 390 400 410 420 430 440

150

200

250

300

350

400

u (image plane)

v
(im

ag
e

pl
an

e)
actual path
desired path

Starting
position

Final desired position

0 50 100 150 200 250
−10

−8

−6

−4

−2

0

2

4

6

8

10

time step

pi
xe

ls

error for u
error for v

Fig. 8. A case of a simple straight path defined by image waypoints
being followed by the robot (top) and a measure of the error between
actual and desired image positions as measured in the image plane.

be tracked and identified over time has been implemented
in real time.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a systematic procedure
to combine the advantages offered by the representation
of a system in a differentially flat manner with its repre-
sentation in the image plane rather than the real world.
We have presented a trajectory generator that utilizes the
simplifications of the differentially flat representation to
convert flat space inputs to real world inputs via simple
algebraic transformations. The trajectory generator is novel
by virtue of the fact that it is generated entirely in the image
plane and the waypoints that are required to generate the
trajectory are defined by just simple mouse clicks in the
image plane. Further, the goal of the trajectory generator
is such that the difference between the robot’s location at
any time and it’s desired location at that time is minimized
in the direction perpendicular to the trajectory as well as
tangential to the trajectory, so that the robot continues
to move along the trajectory once it gets to the desired
position. We have presented results from simulations that
incorporate these ideas as well as some experimental results
that demonstrate real time trajectory tracking using the
flatness based controller designed in the image space.
In contrast to flatness based controllers that have been
designed in the past, our method uses feedback from the
image, i.e. the flat space to obtain flat space inputs first
and then uses nonlinear transformations (obtained by using
differential flatness) to obtain the real world robot inputs
(forward and angular velocities).

A potential application of the ideas presented in this
work relates to the control of groups of robots. None of
the control strategies for control of formations of robots
have yet leveraged the advantages of air-ground coordina-
tion. The global perspective than an overhead camera or
a network of overhead cameras provides can potentially
be combined with ideas from line-of-sight vision from
cameras mounted on robots.

From a systems perspective the development of a system
consisting of a network of cameras that communicate
with each other while keeping the robots and the robot
workspace within their combined field of view would
enable the camera vision system to broaden its field of
view and thereby allow for a greater range of motion
of the ground robot. As one camera loses sight of the
robot, the information that it possesses at that instant can
be communicated to the next camera that is able to see
it, thereby allowing for a smooth exchange of feedback
information within the camera network.

REFERENCES

[1] R. Andersson. Real Time Expert System to Control a Robot Ping-
Pong Player. Ph.D. thesis, University of Pennsylvania, 1987.

[2] L. Chaimowicz, A. Cowley, V. Sabella, and C. Taylor. ROCI: A
distributed framework for multi-robot perception and control. In
Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, Las Vegas, NV, October 2003.

[3] C.-T. Chen. Linear System Theory and Design. Oxford University
Press, 1999.

[4] N. Faiz, S. K. Agrawal, and R. M. Murray. Trajectory planning
of differentially flat systems with dynamics and inequalities. AIAA
Journal of Guidance, Navigation and Control, 24(2):219–227, 2001.

[5] M. Fliess, J. Levine, and P. Rouchon. Flatness and defect of
nonlinear systems: Introductory theory and examples. International
Journal of Control, 61(6):1327–61, 1995.

[6] R. Frezza and C. Altafini. Autonomous landing by computer vision:
an application of path following on se(3). In Proceedings of the 39th
IEEE Conference on Decision and Control. IEEE, 2000.

[7] R. Harrell, D. Slaughter, and P. Adsit. A fruit-tracking system for
robotic harvesting. Machine Vision and Applications, 2:69–80, 1989.

[8] R. M. Murray, M. Rathinam, and W. Sluis. Differential flatness
of mechanical control systems: A catalog of prototype systems. In
Proc. ASME Int. Mech. Eng. Congress and Expo, San Francisco,
November 1995.

[9] D. Pomerleau and T. Jochem. Rapidly adapting machine vision for
automated vehicle steering. IEEE Expert, 11:19–27, April, 1996.

[10] R. S. Rao, V. Kumar, and C. J. Taylor. Visual servoing of a
UGV from a UAV using differential flatness. In Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2003), October 2003.

[11] R. S. Rao, C. J. Taylor, and V. Kumar. Calibrating an air-
ground control system from motion correspondences. In Proc.
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Washington, D. C., June 2004.

[12] R. S. Rao, C. J. Taylor, and V. Kumar. Experiments in robot
control from uncalibrated overhead imagery. In 9th International
Symposium of Experimental Robotics, Singapore, June 2004.

[13] A. Rizzi and D. Koditschek. Preliminary experiments in spatial
robot juggling. In 2nd.Int.Symp. Experimental Robotics, 1991.

[14] Y. Shirai and H. Inoue. Guiding a robot by visual feedback in
assembling tasks. Pattern Recognition, 5:99–108, 1973.

[15] T. Soni and B. Sridhar. Modelling issues in vision based aircraft
navigation during landing. In Proceedings of the Second IEEE
Workshop on Applications of Computer Vision, pages 89–96. IEEE,
1994.

[16] M. J. van Nieuwstadt and R. M. Murray. Real time trajectory
generation for differentially flat systems. International Journal of
Robust and Nonlinear Control, 8, No. 11:995–1020, 1998.

[17] D. Zwillinger. CRC Standard Mathematical Tables and Formulae.
CRC Press, Boca Raton, FL, 1996.

2190

